
1

OnOn--demand Bound Computation demand Bound Computation
for Finding Leading Solutionsfor Finding Leading Solutions
to Soft Constraintsto Soft Constraints

Martin Sachenbacher and Brian C. Williams
MIT Computer Science and AI Laboratory

September 27, 2004

FindingFinding Leading SolutionsLeading Solutions
Many AI problems = Constraint optimization problems
– Diagnosis (state estimation)
– Planning
– …

Practical AI requirement: Robustness ⇒
Generate solutions in best-first order, until halted
– Most likely diagnoses, until failure is found
– Least cost plans, until actions are executable
– …

Problem: Not known in advance when halted ⇒
Must generate each solution as quickly as possible

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
Variables {u, v, w, y, a1, a2, e1, e2, o1}
{a1, a2, e1, e2, o1} describe modes of gates
Gates are either in good (“G”) or broken (“B”) mode

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
And-gates broken with 1% probability
Or-, Xor-gates broken with 5% probability
Probabilistic valuation structure ([0,1], ≤, *, 1, 0)

Modeling the Example as Soft CSPModeling the Example as Soft CSP

o1 v w
G 0 0
B 0 0
B 0 1
B 1 0
B 1 1

.95

.05

.05

.05

.05

e2 u
G 0
B 0
B 1

.95

.05

.05

a1 w y
G 0 0
G 1 1
B 0 0
B 0 1
B 1 0
B 1 1

.99

.99

.01

.01

.01

.01

a2 u v
G 0 0
G 1 1
B 0 0
B 0 1
B 1 0
B 1 1

.99

.99

.01

.01

.01

.01

e1 u y
G 1 0
G 0 1
B 0 0
B 0 1
B 1 0
B 1 1

.95

.95

.05

.05

.05

.05

Leading Solutions for the ExampleLeading Solutions for the Example
Gate e1 is B (a1=G, a2=G, e1=B, e2=G, o1=G)
Gate o1 is B (a1=G, a2=G, e1=G, e2=G, o1=B)
Next best diagnosis involves double fault → Stop.

2

Heuristic (BoundHeuristic (Bound--Guided) SearchGuided) Search
Best-first (A*) search expands node with best ,
where is value so far and is heuristic estimate
(Kask Dechter AIJ 01): Compute heuristics using
bucket trees and dynamic programming

A* Search
Tree

Bucket TreeBucket Tree
Scheme for one-by-one variable elimination
Each node defines sub-problem with constraints

Bucket TreeBucket Tree
Evaluate using dynamic programming
Store constraint at edge to parent

Dynamic ProgrammingDynamic Programming

Dynamic ProgrammingDynamic Programming Dynamic ProgrammingDynamic Programming

3

Bounds from Bucket TreesBounds from Bucket Trees
Assign in reverse order using the evaluation function:

Exact Bound

Bounds from Bucket TreesBounds from Bucket Trees

Tree DecompositionTree Decomposition
Generalization of Bucket Trees
Eliminate variables in groups (partial order)

Compatible Variable OrderCompatible Variable Order
Complete partial order to total order by also ordering
variables within groups (Jégou Terrioux AIJ 03)

Bounds from Tree DecompositionsBounds from Tree Decompositions
Assign in reverse order using the evaluation function:

is the node index such that

Exact
Bound

Bounds from Tree DecompositionsBounds from Tree Decompositions

4

OnOn--Demand Bound ComputationDemand Bound Computation
If only a few leading solutions are needed, pre-
computing becomes inefficient
Interleave search and dynamic programming to
compute only as needed (“on-demand”)

Dynamic
Programming

Best-First
Search

+ =

On-demand
Bounds

Preferential IndependencePreferential Independence
For any valuation structure:
Sufficient to expand only next best child
Sufficient to compute only for next best child

To exploit, need to know order of children in advance

Dual FormulationDual Formulation
Unary soft constraints (functions as variables)
Binary hard constraints (equality)
Compatible order

Dual FormulationDual Formulation
Drop redundant (inter-cluster) equality constraints
Preserve locality (tree structure)

Approximating HApproximating H
Drop hard (equality) constraints for H
Heuristics becomes equal for all children
Order of children known if tuples of fi are sorted
Makes it possible to generate only as needed

OnOn--Demand Bound ComputationDemand Bound Computation
Generate tuples of constraints only as needed

Generate Next
Best Tuple

(Root)

Generate Next
Best Tuple

(Child)

5

ExampleExample ExampleExample

ExampleExample ExampleExample

ExampleExample ExampleExample

6

ExampleExample ExampleExample

ExampleExample ExampleExample

ExampleExample ExampleExample

7

ExampleExample ExampleExample

Best
Solution

found

ExperimentsExperiments
Random Max-CSPs, first (best) solution

Related ApproachRelated Approach
BTDval algorithm (Terrioux Jégou CP 03)
Depth-first branch-and-bound on tree decompositions
Record tuples for constraints (“structural goods”)

ComparisonComparison

BTDval BFOB

Space

Time

O(exp(s))

O(exp(w))

Problem
Single optimal

Solution
Solutions in

Best-first order

O(exp(w))

O(exp(w))

s = Separator size, w = Tree width (s ≤ w)

Future WorkFuture Work
Evaluate against depth-first branch-and-bound
– Best-first (A*) search potentially faster

Combine with approximate dynamic programming
– Mini-buckets (Dechter Rish UAI 97)

Extend to partial orders
– Semiring-based CSPs (Bistarelli IJCAI 95)

8

Material

FindingFinding Leading SolutionsLeading Solutions

% Solutions

Time
Best …2nd

best
Best 2nd

best
…3rd

best

