## On-demand Bound Computation for Finding Leading Solutions to Soft Constraints

Martin Sachenbacher and Brian C. Williams MIT Computer Science and AI Laboratory

September 27, 2004

## **Finding Leading Solutions**

- Many AI problems = Constraint optimization problems
  Diagnosis (state estimation)
  - Planning
  - ...
- Practical AI requirement: Robustness ⇒ Generate solutions in best-first order, until halted
   Most likely diagnoses, until failure is found
  - Least cost plans, until actions are executable
- Problem: Not known in advance when halted ⇒ Must generate *each* solution as quickly as possible

## Example: Full Adder Diagnosis

- Variables {u, v, w, y, a1, a2, e1, e2, o1}
- {a1, a2, e1, e2, o1} describe modes of gates
- Gates are either in good ("G") or broken ("B") mode



## Example: Full Adder Diagnosis

- And-gates broken with 1% probability
- Or-, Xor-gates broken with 5% probability
- Probabilistic valuation structure ([0,1], ≤, \*, 1, 0)



| Modelin                     | ng ti | he Examj               | ole a | is Soft CS        | SP_ |
|-----------------------------|-------|------------------------|-------|-------------------|-----|
| $f_{a1}:a1$ w y             |       | $f_{a2}$ : a2 u v      |       | $f_{e1}$ : e1 u y |     |
| G 0 0                       | .99   | G 0 0                  | .99   | G 1 0             | .95 |
| G 1 1                       | .99   | G 1 1                  | .99   | G 0 1             | .95 |
| B 0 0                       | .01   | B 0 0                  | .01   | B 0 0             | .05 |
| B 0 1                       | .01   | B 0 1                  | .01   | B 0 1             | .05 |
| B 1 0                       | .01   | B 1 0                  | .01   | B 1 0             | .05 |
| B 1 1                       | .01   | B 1 1                  | .01   | B 1 1             | .05 |
| <i>f</i> ₀1 : <u>o1 v w</u> |       | $f_{e2}$ : e2 u $\mid$ |       |                   |     |
| G 0 0                       | .95   | G 0                    | .95   |                   |     |
| B 0 0                       | .05   | B 0                    | .05   |                   |     |
| B 0 1                       | .05   | B 1                    | .05   |                   |     |
| B 1 0                       | .05   |                        |       |                   |     |
| B 1 1                       | .05   |                        |       |                   |     |



































































|         | Dand | om M | av CS | De firet (beet) colu    | tion          |
|---------|------|------|-------|-------------------------|---------------|
|         | Nanu |      |       | F 5, III 51 (DESI) 5010 | lion          |
| Т       | C    | N    | K     | BFTC (% time)           | BFOB (% time) |
| 4       | 20   | 15   | 4     | 100%                    | 1.4%          |
| 8       | 20   | 15   | 4     | 100%                    | 3.2%          |
| T       | a    | M    | V     | DET(1/(2/(1-1)))        |               |
| 1       | C    | IV   | n     | BFIC (% time)           | BFOB (% time) |
| 4       | 15   | 10   | 4     | 100%                    | 4.5%          |
| 8       | 15   | 10   | 4     | 100%                    | 14.3%         |
| -       | ~    |      |       |                         |               |
| $T_{-}$ | C    | N    | K     | BFTC (% time)           | BFOB (% time) |
| 4       | 20   | 10   | 4     | 100%                    | 9.7%          |
| 0       | 20   | 10   | 4     | 100%                    | 38.8%         |











