A Model-Based System 1]
Supporting Automatic contt
Self-Regeneration of Critical
Software
Paul Robertson|& Brian Williams

Model-Based and Embedded Robotic Systems
http://mers.mit.edu

MIT
Computer Science and Atrtificial Intelligence Laboratory

What we are trying to do

* Why software fails:

— Software assumptions about the environment
become invalid because of changes in the
environment.

— Software is attacked by a hostile agent.
— Software changes introduce incompatibilities.
» What can be done when software fails:
— Recognize that a failure has occurred. = &
- Di hat has failed — and why. X
iagnose what has failed — and why (\\, Q,\6

— Find an alternative way of achievi e 6
intended behavior. @0

5/19/05 SelfMan 2005 2

Self repairing explorer: Arih
Deep Space 1 : CSAIL
Flight Experiment, May 1999.

courtesy ARC & JPL

5/19/05 SelfMan 2005 3

“PHEFgl Doy o Dorgte £ 4

AR

'assini Saturn Prob

Project Status

Funding: DARPA (SRS), NASA (Ames)
Current State: Prototype System Operational
Project Premise:

Extend proven approach to hardware diagnosis
and repair as used in DS-1 to critical software.

Principle Ideas:
Model-Based Language Approach
Redundant Methods
Method Deprecation
Model-Predictive Dispatch
Hierarchical Models
Adjustable Autonomy

5/19/05 SelfMan 2005 5

Overview]
CSAIL
Technical Objective:
When software fails because (a) environment changes

(b) software incompatibility (c) hostile attack, (1)
recognize that a failure has occurred, (2) diagnose

what has failed and why, and (3) find an alternative

way of achieving the intended behavior.

Technical approach:

By extending RMPL to support software failure, we can
extend robustness in the face of hardware failures to
robustness in the face of software failures. This

involves:
(1) Detection RMPL Models of:
(2) Diagnosis Software Components,
. . Component Hierarchy & Interconnectivity,
(3) Reconfiguration and Correct Behavior.

(4) Utility Maximization.
5/19/05 SelfMan 2005 6

Expected Benefits (4

¢ Software systems that can operate
autonomously to achieve goals in complex and
changing environments.
— Modeling environment

¢ Software that detects and works around “bugs”
resulting from incompatible software changes.
— Modeling software components

¢ Software that detects and recovers from
software attacks.
— Modeling attack scenarios

« Software that automatically improves as better
software components and models are added.

5/19/05 SelfMan 2005

What can go wrong? (]2
CSAIL
1. Hardware: A problem with robot hardware.

2. Software: A problem with the environment.

1. A mismatch between a chosen algorithm and the
environment such as there not being enough
light to support processing of a color image.

2. An unexpected imaging problem such as an
obstruction to the visual field (caused by a large
obscuring rock).

Solution to 2.1

Solution to 2.2

Reconfigure the software structure: Switch to a contingent plan:

Redundant Methods

= 1. Exception
2 WMol Estlmat_lon . 2. Model Predictive Dispatch
3. Mode Reconfiguration .

3. Replanning

Test Bed Platform (h

Involves:
Cooperative use of multiple robots.
Timing critical software.
Reconfiguration of Software Components.
Multiple Redundant Methods
Continuous Replanning
Multiple Redundant Methods

5/19/05 SelfMan 2005

Science Target Search FH
Scenario “esan

*— -

« Cooperatively search for targets in the predefined
regions

» Search from predefined viewpoints

« Search for the targets using stereo cameras and various
visualization algorithms

5/19/05 SelfMan 2005 10

Science Target Search

nario
-

=
AN

—~

i"-

5/19/05 SelfMan 2005

11

Science Target Search
Scenario é
0/2 -g\’
© v
\@
-\7-

5/19/05 SelfMan 2005 12

Science Target Search A

Scenario » “esan
-
- @ -
@
- — -

Method Regeneration: Adh
Exception Handling Fesan

» Arock blocks the view

— Recover by taking the image from a different perspective (i.e.
change the strategy)

» The shadow cast by the rock fails the imaging code from
identifying the objects in view
— Reconfigure the imaging algorithm to work under these conditions

5/19/05 SelfMan 2005 14

Method Regeneration:

Method Regeneration: Arin
ExceptigggHandling Fesan

Exception Handling Sesan
-
Method Regeneration:

Exceptigg Handling

5/19/05 SelfMan 2005 17

- Tl
4
\ﬁ'\v-
Method Regeneration:

Exceptigh Handling

5/19/05 SelfMan 2005 18

Overall Architecture

C5AIL C5AIL

|::>‘ Planner ‘
T 8

» | Plan Runner | Reconfigurable Vision for
T 8 Robust Rover Mapping

Deductive Controller

|:> I_Aode_ Mode
Estimation Reconfiguration

T 1

Plant

5/19/05 SelfMan 2005 19

Reconfigurable Vision A , , :
Il Nominal Configuration cl]
Plant Model CSAIL CSAIL
‘CU\UrCameraW ‘ D ‘S.egmemCoIOM ‘ & ColorGamerat SegmentColort FindTargets1
oufput ==Finput__output= Pt outputd oulput inpul__output TApul_output
R ¥
FindTargetShape!
Finput___outputd & Ohserver] L_Jbsetntem
Input I;Epl':h
/EL |Depthap1 | |AverageDemh1 |
[Deptimiant | [AverageDeptr | > outpul nput _outout
ot B—tint ot
5/19/05 SelfMan 2005 21 5/19/05 SelfMan 2005 22

Contingent Configuration (e Connection

C5AIL C5AIL

Command: Disconnect

SN = ™\)
ColorCameral [SegmentColort | [FindTargets1 | / \ Inputs: x
outputy Finpul _outputd Finpul_outputd | Connected Unconnected) | Outputs: X
\ /
\ . o~
/g - = \7 J

FindTargetShapet

Command: Connect

Obse{"’e” class Connection ()
npul (
depth) ;
| l rdephh | Rawlmage image_in;
[Depthmant | AverageDepthl Segmentedimage image_out;
output input output -

mode Connected (...) {

primitive method disconnect () => Unconnected; }
mode Unconnected (...) {

primitive method connect () => Connected; }
failure mode Failed (...) { ... };

5/19/05 SelfMan 2005 23 5/19/05) SelfMan 2005 24

SegmentColor

Inputs: Rawlmage

\ Outputs: Segmentedimage
| Usable) GoDark
\

_— \/

class SegmentColor ()

Rawlmage image_in;
Segmentedimage image_out;

mode Usable ((image_in = Nominal)) { ... }

mode TooDark ((image_in = Dark)) { ... }
}

25

5/19/05 SelfMan 2005

Solution Analysis: Exception

Handling B

Partial Solution
V,={@} V,={@} V,={@}| 1.Execution begins...
. 2. An error occurs, and an exception is thrown
V=) V(&) Ve=(®})

Initial Variables
C I Ep
EXCEPTION
Ask(B=x)

Variables

LoTelg=) g/
;. i /

\ .
y Constraints Tell(B=y) ©
o, ooy,
o ooV X
o ®o v, oo Vg
Tellay) erecy, ©>@
ON® OV,

Block Diagram (Hloa
CSAIL
O - Beh

Algorithm Nexus

| TPNupdaies |

CSP probem updaes Kernel ToN dara

processed Suite of Algorithms
TN

| o

partial

Dynamic soluions |
CSP Solver

Common Data
Repository
plan updates.
Exception Handling exceptions | Executive

5/19/05 SelfMan 2005

5/19/05 SelfMan 2005

Solution Analysis: Exception
Handling Fesan

1. Execution begins...
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted

EXCEPTION
L —

The delay represents /
&% O——— X
ey vand®

N

the amount of time

spent in the original -~

process before the
exception was
thrown, plus an

upper-bound on .
replanning time The handler is the TPN sub-process
corresponding to the RMPL “catch” statement
that matches the thrown exception
5/19/05 SelfMian 2005 28

Solution Analysis: Exception i+

Handlin g CSAIL
Partial Solution 1. Execution begins...
V,={®@} V,={®} Vo={®} | 2 an error occurs, and an exception is thrown
V,={@} V={@} Ve={®}] 3. The excgption-h‘andling code i_s insenet_j
4. Replanning begins, pre-selecting anything
that has already been executed @

EXCEPTION

o Ask(B=x)
@ H :
® @ | TelB=x) &/
’ - //
e ° y
® ° Constraints Tell(B=y) ©
0oV,
® o A oNe oV,
ooy ooV,
ereoy, OO
LY A

5/19/05 SelfMan 2005 29

Conclusions (el

» Models of correct operation permits:
— Detection and Diagnosis of failed components.
— Reconfiguration of Software/Hardware
components to achieve high-level goals
— Describe goals as abstract state trajectories.
» Software can be handled by adding:
— Hierarchy to component organization
— Models of the environment

30

5/19/05 SelfMan 2005

