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Autonomous Robust Execution of
Complex Robotic Missions

Paul Robertson, Robert T. Effinger, Brian C. Williams

MERS, CSAIL, MIT (papers on http://mers.mit.edu)

Goals

1. Enable development of complex missions with 
contingencies (Complexity)

2. Provide robustness to component, temporal, and 
contingency failure (Robustness)

3. Support online optimal temporal planning with 
contingencies (Optimality)

What I won’t talk about

1. Health Management/Maintenance

2. Mapping/localization

3. Path Planning

4. Distribution over multiple robots

5. Algorithms for Performance

6. Generative Activity Planner

Model-based Programming

• Suspicious
• Monitors intentions and plans 

• Self-Adaptive
• Exploits and generates 
contingencies

• State and Fault Aware
• Specified at level of states.
• Achieved using failure knowledge. 

• Anticipatory
– Plans and verifies into the future
– Predicts likely future states
– Plans contingencies

“RMPL” reactive Model-Based
Programming Language
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Model-Predictive Method Selection
To ensure safe, optimal execution, the control sequencer:

Dynamically selects consistent methods over future horizon, 
Adapts to uncertainty by selecting execution times dynamically, 
Monitors outcomes and plans contingencies.

Encode possible executions via Temporal Plan Network

Continuous Temporal Planner
Control 
Program
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imageScienceTargets(Rover1, Rover2) 
{

{  [5,10] Rover1.goto(p4); 
[5,10] Rover1.goto(p5); 
[2,5] Rover1.imageTargets(); 
[5,10] Rover1.goto(p3);

},
{  [5,10] Rover2.goto(p1); 

[5,10] Rover2.goto(p2);
[2,5] Rover2.findTargets();
[5,10] Rover2.goto(p3);

}
}

Temporal Plan Network

control sequencer

deductive controller

What is a TPN?
• A Temporal Plan Network (TPN) is

– A Simple Temporal Network extended to 
support:

• Multiple Redundant Methods
• Method Deprecation and Regeneration
• Optimal Planning

– Adds a choice node
– Adds exceptions
– Adds cost/rewards to arcs
– Adds online replanning



2
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Architecture Walkthrough

RMPLRMPL
Compiler

TPN Macro
Library

1.The human writes a mission program in RMPL. 

2.The RMPL Compiler compiles the RMPL code 
and populates a library of TPN specifications.  
This library contains the main program, along 
with any macros that may be called.

Architecture Walkthrough

TPN Macro
Library

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling

The Kernel connects 
the specification, TPN, 
and CSP parts of the 
system, translating 
data so that these sub-
systems can work 
together.

The Kernel contains a 
variety of modules that 
it uses to update the 
TPN and CSP.

Reformulating the TPN into a 
conditional optimal CSP

• Step 1:  
– Walk the TPN and create variables and constraints 

corresponding to the decision nodes

• Step 2:
– Create variables and constraints corresponding to the 

non-causal link constraint arcs (these come from 
arbitrary temporal constraints)

Tell(A=y)

Tell(A=x)

Initialize: Reformulate TPN into 
CSP

Tell(B=x)

Tell(B=y)

Ask(B=x)

Start End

Step 1: Walk the TPN and create variables 
corresponding to the decision nodes

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

initialize
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Initialize: Reformulate TPN into 
CSP

Start End

Step 2: Create variables and constraints 
corresponding to the non-causal link constraint arcs

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

initialize
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The CSP solver finds a 
solution or partial solution to 
the CSP problem, and 
passes it back to the Kernel 
for analysis.

Architecture Walkthrough

TPNKernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling

TPN updates

TPN data

CSP
Variables

and
Domains
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CSP Solver
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partial
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The first analysis kernel 
module is Temporal 
Consistency Check.

When the CSP solver returns a partial solution to the Kernel, the Kernel 
analyzes the partial solution.  Each analysis module may generate additional 

TPN nodes & arc, as well as additional CSP variables and constraints.  

Solution Analysis: Temporal 
Consistency Check

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

TC Check Partial Solution

V1={   } V2={   } V3={   }

If the temporal consistency checking 
algorithm detects a negative cycle, the 
conjunction of variable assignments that 
contributes to the negative cycle become 
a new conflict constraint.

Solution Analysis: Tell 
Consistency Check

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

Tell(A=y)

Tell(A=x)

V7={   ,   }V7

Tell(B=x)

Tell(B=y)

Tell Consist Check
Partial Solution

V1={   } V2={   } V6={   }

Possible Overlap!!

Tell Consistency Check ensures that any 
potentially co-occuring mutually 

exclusive Tells are ordered so they do 
not co-occur.

Solution Analysis: Tell 
Consistency Check

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

Tell(A=y)

Tell(A=x)

V7={   ,   }

V7

Tell Consist Check
Partial Solution

V1={   } V2={   } V6={   }

The CSP is updated with a new 
variable and constraint

The TPN is updated with two 
new conflict avoidance arcs
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Tell(B=y)

Solution Analysis: Ask 
Consistency Check

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

Tell(A=y)

Tell(A=x)

V7={   ,   }

V7

Tell(B=x)

Ask(B=x)

Ask Consistency Check

Partial Solution

V1={   }
Phase 1: Create Ask Variables

Phase 2: Populate Ask Domains

V8

V8={   }

When we detect an Ask, we 
create a new CSP variable.

The Ask variable’s domain 
is empty, because we have 

not yet identified any 
satisfying Tells

V8={   }

Tell(B=y)

Solution Analysis: Ask 
Consistency Check

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

Tell(A=y)

Tell(A=x)

V7={   ,   }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

Partial Solution

V1={   }

V4={   }

Phase 1: Create Ask Variables

Phase 2: Populate Ask Domains

When a Tell is detected that 
could satisfy an Ask, 

containment arcs are added 
to the TPN, and a domain 

assignment is added to the 
Ask’s CSP variable.

Location Consistency

Summary:
– Location Consistency must ensure that mutex location constraints

can be ordered (like Tell Consistency)
– Location Consistency must add time-bounds that guarantee 

feasible travel-time exists between temporally-adjacent location 
constraints

Tell ( location = A )

Tell ( location = B )

Tell ( location = C )

[time(A,B),+INF] [time(B,C),+INF]

Architecture Walkthrough

TPNKernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling

TPN updates

TPN data
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CSP problem updates

partial
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During execution, a primitive activity may fail, triggering an exception 
and replanning.  Before replanning occurs, the Exception Handling

module must process the executive’s exception.

Executive
plan updates

exceptions

The exception handler 
interacts with the TPN, the 
CSP, and the executive.

V8={   }

Tell(B=y)

Solution Analysis: Exception 
Handling

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

Tell(A=y)

Tell(A=x)

V7={   ,   }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

1. Execution begins…
2. An error occurs, and an exception is thrown

Partial Solution

V1={   }

V4={   }

V2={   }

V5={   }

V3={   }

V8={   }

EXCEPTION

Solution Analysis: Exception 
Handling

Ask Consistency Check
1. Execution begins…
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted

EXCEPTION

handlerdelay

The handler is the TPN sub-process
corresponding to the RMPL “catch” statement

that matches the thrown exception

The delay represents 
the amount of time 
spent in the original 
process before the 

exception was 
thrown, plus an 
upper-bound on 
replanning time
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V8={   }

Tell(B=y)

Solution Analysis: Exception 
Handling

Start End

V1={   }

VI={V1}

V2={   ,   }
V3={   ,   }
V4={   ,   }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={   }

V5

V6={   }

V6

V7={   ,   }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

Partial Solution

V1={   }

V4={   }

V2={   }

V5={   }

V3={   }

V8={   }

EXCEPTION

1. Execution begins…
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted
4. Replanning begins, pre-selecting anything 

that has already been executed

Execution
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When the CSP solver generates a 
complete solution and none of the 

kernel modules generate 
additional constraints or variables, 

the TPN associated with the 
solution is sent as output to the 

executive.

Temporal Plan Network Represents 
Possible Threads of Execution

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargetsRover1.goto(p5) Rover1.goto(p3)

Rover2.goto(p2)Rover2.imageTargets Rover2.goto(p3)

imageScienceTargets(Rover1, Rover2) 
{

{  [5,10] Rover1.goto(p4); 
[5,10] Rover1.goto(p5); 
[2,5] Rover1.imageTargets(); 
[5,10] Rover1.goto(p3);

},
{ [5,10] Rover2.goto(p1);

[5,10]Rover2.imageTargets();
[2,5] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

}
}

p1

p2 p3

p4

p51

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

2

1

Choice Nodes Represent Decision Theoretic 
Choices Between Threads of Execution

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

imageScienceTargets(Rover1, Rover2)
{{

[5,10] Rover1.goto(p4);
choose { 

{
[5,10] Rover1.goto(p5); 
[2,5] Rover1.imageTargets();

}
{

[2,5] Rover1.imageTargets();
[5,10] Rover1.goto(p5); 

}
};
[5,10] Rover1.goto(p3);

},
{

[5,10] Rover2.goto(p1); 
choose {

{
[5,10] Rover2.goto(p2);
[2,5] Rover2.findTargets();

}
{

[2,5] Rover2.imageTargets(); 
[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

}
}

} 

p1

p2 p3

p4

p51

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Maintenance and Success Conditions 
Specified  via Asks

Start EndRover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

imageScienceTargets(Rover1, Rover2)
{

{
[5,10] Rover1.goto(p4); 
choose {

{
do { [5,10] Rover1.goto(p5); } 

maintaining( site1 = ¬ obstructed);
[2,5] Rover1.imageTargets(); 

}
{

[2,5] Rover1.imageTargets(); 
[5,10] Rover1.goto(p5);

}
};

[5,10] Rover1.goto(p3);
}, 
{

[5,10] Rover2.goto(p1); 
choose {

{
do { [2,5 ]Rover2.imageTargets(); }

maintaining ( site1 = ¬ obstructed);          
[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

} 
{

[5,10] Rover2.goto(p2); 
[5,10] Rover2.goto(p3);
[2,5] Rover2.imageTargets(); 

}
}

}

p1

p2 p3

p4

p51

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Ask site1 = ¬ obstructed

Ask site1 = ¬ obstructed

Tell site1 = ¬ obstructed

Restoration of  Functional States After Failure
Achieved Via Catch and Throw

Start EndRover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

p1

p2 p3

p4

p51

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Ask site1 = ¬ obstructed

Ask site1 = ¬ obstructed
Failure

Throw:
Type:  imageTargets
Reason: site1 = obstructed

Tell site1 = ¬ obstructedobstructed

imageScienceTargets(Rover1, Rover2)
{

{
[5,10] Rover1.goto(p4); 
choose {

{
do { [5,10] Rover1.goto(p5); } 

maintaining( site1 = ¬ obstructed);
[2,5] Rover1.imageTargets(); 

}
{

[2,5] Rover1.imageTargets(); 
[5,10] Rover1.goto(p5);

}
};

[5,10] Rover1.goto(p3);
}, 
{

[5,10] Rover2.goto(p1); 
choose {

{
do { [2,5 ]Rover2.imageTargets(); }

maintaining ( site1 = ¬ obstructed);          
[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

} 
{

[5,10] Rover2.goto(p2); 
[5,10] Rover2.goto(p3);
[2,5] Rover2.imageTargets(); 

}
}

}

Catch:
Type:  imageTargets
Handler:

Rover1.goto(p4)
Tell:  site1 = obstructed 

1

2

2
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Recovering From Failure Wrap up

1. Enable development of complex missions with 
contingencies (Complexity)

2. Provide robustness to component, temporal, and 
contingency failure (Robustness)

3. Support online optimal temporal planning with 
contingencies (Optimality)

Supports development of very complex missions by 
(i) raising the level of programming to coaching 

(from commanding); (ii) Sub-plan and component reuse.

Complexity

Handles recovery (with graceful degradation) from:
(i) Robot health failure; (ii) Temporal plan failure
(iii) Failed contingencies

Robustness

Uses least commitment temporal planning for optimal 
solutions
Handles incremental replanning for contingencies 
Continuous monitoring and replanning

Optimality

Architecture
Temporal Planner

Deductive Controller

Plant

Models
Plan Runner

Mode
Estimation

Mode
Reconfiguration

Mission 
Models

Plant
Models

Goal StatesEstimated States
And Exceptions

Task Completion Times
And Exceptions

Dispatchable Plan

CommandsObservations


