
1

Autonomous Robust Execution of
Complex Robotic Missions

Paul Robertson, Robert T. Effinger, Brian C. Williams

MERS, CSAIL, MIT (papers on http://mers.mit.edu)

Goals

1. Enable development of complex missions with
contingencies (Complexity)

2. Provide robustness to component, temporal, and
contingency failure (Robustness)

3. Support online optimal temporal planning with
contingencies (Optimality)

What I won’t talk about

1. Health Management/Maintenance

2. Mapping/localization

3. Path Planning

4. Distribution over multiple robots

5. Algorithms for Performance

6. Generative Activity Planner

Model-based Programming

• Suspicious
• Monitors intentions and plans

• Self-Adaptive
• Exploits and generates
contingencies

• State and Fault Aware
• Specified at level of states.
• Achieved using failure knowledge.

• Anticipatory
– Plans and verifies into the future
– Predicts likely future states
– Plans contingencies

“RMPL” reactive Model-Based
Programming Language

S
Services and Hardware

Obs Cntrl

Model-based
Embedded Programs

S

Continuous
Reactive

Commanding

Continuous
Mode/State
Estimation

Model

Lazy Activity Scheduling

Model-predictive Method Selection

RMPL

Activity
PlanningObservation

Planning

Path
PlanningMapping

Health
Management

Temporal
Planning

Model-Predictive Method Selection
To ensure safe, optimal execution, the control sequencer:

Dynamically selects consistent methods over future horizon,
Adapts to uncertainty by selecting execution times dynamically,
Monitors outcomes and plans contingencies.

Encode possible executions via Temporal Plan Network

Continuous Temporal Planner
Control
Program

Commands

Observables
Mode

Estimation
Mode

Reconfiguration
Model of

Subsystems

Plan Runner
RMPL

imageScienceTargets(Rover1, Rover2)
{

{ [5,10] Rover1.goto(p4);
[5,10] Rover1.goto(p5);
[2,5] Rover1.imageTargets();
[5,10] Rover1.goto(p3);

},
{ [5,10] Rover2.goto(p1);

[5,10] Rover2.goto(p2);
[2,5] Rover2.findTargets();
[5,10] Rover2.goto(p3);

}
}

Temporal Plan Network

control sequencer

deductive controller

What is a TPN?
• A Temporal Plan Network (TPN) is

– A Simple Temporal Network extended to
support:

• Multiple Redundant Methods
• Method Deprecation and Regeneration
• Optimal Planning

– Adds a choice node
– Adds exceptions
– Adds cost/rewards to arcs
– Adds online replanning

2

Temporal Planner Block Diagram

TPN

RMPLRMPL
Compiler

TPN Macro
Library

Algorithm Nexus

Common Data
Repository

Suite of Algorithms
FIFOSSSPSDSPAPSP

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling Executive

TPN updates

plan updates

exceptions

processed
TPN
data

TPN data

TPN dataCSP
Variables

and
Domains

Constraints

Dynamic Optimal
CSP Solver

CSP problem updates

partial
solutions

Temporal Planner Block Diagram

TPN

RMPLRMPL
Compiler

TPN Macro
Library

Algorithm Nexus

Common Data
Repository

Suite of Algorithms
FIFOSSSPSDSPAPSP

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling Executive

TPN updates

plan updates

exceptions

processed
TPN
data

TPN data

TPN dataCSP
Variables

and
Domains

Constraints

Dynamic Optimal
CSP Solver

CSP problem updates

partial
solutions

Mission Specification

Dynamic
OCSP Kernel

TPN

Architecture Walkthrough

RMPLRMPL
Compiler

TPN Macro
Library

1.The human writes a mission program in RMPL.

2.The RMPL Compiler compiles the RMPL code
and populates a library of TPN specifications.
This library contains the main program, along
with any macros that may be called.

Architecture Walkthrough

TPN Macro
Library

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling

The Kernel connects
the specification, TPN,
and CSP parts of the
system, translating
data so that these sub-
systems can work
together.

The Kernel contains a
variety of modules that
it uses to update the
TPN and CSP.

Reformulating the TPN into a
conditional optimal CSP

• Step 1:
– Walk the TPN and create variables and constraints

corresponding to the decision nodes

• Step 2:
– Create variables and constraints corresponding to the

non-causal link constraint arcs (these come from
arbitrary temporal constraints)

Tell(A=y)

Tell(A=x)

Initialize: Reformulate TPN into
CSP

Tell(B=x)

Tell(B=y)

Ask(B=x)

Start End

Step 1: Walk the TPN and create variables
corresponding to the decision nodes

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

initialize

3

Initialize: Reformulate TPN into
CSP

Start End

Step 2: Create variables and constraints
corresponding to the non-causal link constraint arcs

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

initialize

Architecture Walkthrough

TPN

RMPLRMPL
Compiler

TPN Macro
Library

Algorithm Nexus

Common Data
Repository

Suite of Algorithms
FIFOSSSPSDSPAPSP

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling Executive

TPN updates

plan updates

exceptions

processed
TPN
data

TPN data

TPN dataCSP
Variables

and
Domains

Constraints

Dynamic Optimal
CSP Solver

CSP problem updates

partial
solutions

The CSP solver finds a
solution or partial solution to
the CSP problem, and
passes it back to the Kernel
for analysis.

Architecture Walkthrough

TPNKernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling

TPN updates

TPN data

CSP
Variables

and
Domains

Constraints

Dynamic Optimal
CSP Solver

CSP problem updates

partial
solutions

The first analysis kernel
module is Temporal
Consistency Check.

When the CSP solver returns a partial solution to the Kernel, the Kernel
analyzes the partial solution. Each analysis module may generate additional

TPN nodes & arc, as well as additional CSP variables and constraints.

Solution Analysis: Temporal
Consistency Check

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

TC Check Partial Solution

V1={ } V2={ } V3={ }

If the temporal consistency checking
algorithm detects a negative cycle, the
conjunction of variable assignments that
contributes to the negative cycle become
a new conflict constraint.

Solution Analysis: Tell
Consistency Check

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

Tell(A=y)

Tell(A=x)

V7={ , }V7

Tell(B=x)

Tell(B=y)

Tell Consist Check
Partial Solution

V1={ } V2={ } V6={ }

Possible Overlap!!

Tell Consistency Check ensures that any
potentially co-occuring mutually

exclusive Tells are ordered so they do
not co-occur.

Solution Analysis: Tell
Consistency Check

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

Tell(A=y)

Tell(A=x)

V7={ , }

V7

Tell Consist Check
Partial Solution

V1={ } V2={ } V6={ }

The CSP is updated with a new
variable and constraint

The TPN is updated with two
new conflict avoidance arcs

4

Tell(B=y)

Solution Analysis: Ask
Consistency Check

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

Tell(A=y)

Tell(A=x)

V7={ , }

V7

Tell(B=x)

Ask(B=x)

Ask Consistency Check

Partial Solution

V1={ }
Phase 1: Create Ask Variables

Phase 2: Populate Ask Domains

V8

V8={ }

When we detect an Ask, we
create a new CSP variable.

The Ask variable’s domain
is empty, because we have

not yet identified any
satisfying Tells

V8={ }

Tell(B=y)

Solution Analysis: Ask
Consistency Check

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

Tell(A=y)

Tell(A=x)

V7={ , }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

Partial Solution

V1={ }

V4={ }

Phase 1: Create Ask Variables

Phase 2: Populate Ask Domains

When a Tell is detected that
could satisfy an Ask,

containment arcs are added
to the TPN, and a domain

assignment is added to the
Ask’s CSP variable.

Location Consistency

Summary:
– Location Consistency must ensure that mutex location constraints

can be ordered (like Tell Consistency)
– Location Consistency must add time-bounds that guarantee

feasible travel-time exists between temporally-adjacent location
constraints

Tell (location = A)

Tell (location = B)

Tell (location = C)

[time(A,B),+INF] [time(B,C),+INF]

Architecture Walkthrough

TPNKernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling

TPN updates

TPN data

CSP
Variables

and
Domains

Constraints

Dynamic
CSP Solver

CSP problem updates

partial
solutions

During execution, a primitive activity may fail, triggering an exception
and replanning. Before replanning occurs, the Exception Handling

module must process the executive’s exception.

Executive
plan updates

exceptions

The exception handler
interacts with the TPN, the
CSP, and the executive.

V8={ }

Tell(B=y)

Solution Analysis: Exception
Handling

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

Tell(A=y)

Tell(A=x)

V7={ , }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

1. Execution begins…
2. An error occurs, and an exception is thrown

Partial Solution

V1={ }

V4={ }

V2={ }

V5={ }

V3={ }

V8={ }

EXCEPTION

Solution Analysis: Exception
Handling

Ask Consistency Check
1. Execution begins…
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted

EXCEPTION

handlerdelay

The handler is the TPN sub-process
corresponding to the RMPL “catch” statement

that matches the thrown exception

The delay represents
the amount of time
spent in the original
process before the

exception was
thrown, plus an
upper-bound on
replanning time

5

V8={ }

Tell(B=y)

Solution Analysis: Exception
Handling

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

V7={ , }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

Partial Solution

V1={ }

V4={ }

V2={ }

V5={ }

V3={ }

V8={ }

EXCEPTION

1. Execution begins…
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted
4. Replanning begins, pre-selecting anything

that has already been executed

Execution

TPN

RMPLRMPL
Compiler

TPN Macro
Library

Algorithm Nexus

Common Data
Repository

Suite of Algorithms
FIFOSSSPSDSPAPSP

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling Executive

TPN updates

plan updates

exceptions

processed
TPN
data

TPN data

TPN dataCSP
Variables

and
Domains

Constraints

Dynamic
CSP Solver

CSP problem updates

partial
solutions

When the CSP solver generates a
complete solution and none of the

kernel modules generate
additional constraints or variables,

the TPN associated with the
solution is sent as output to the

executive.

Temporal Plan Network Represents
Possible Threads of Execution

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargetsRover1.goto(p5) Rover1.goto(p3)

Rover2.goto(p2)Rover2.imageTargets Rover2.goto(p3)

imageScienceTargets(Rover1, Rover2)
{

{ [5,10] Rover1.goto(p4);
[5,10] Rover1.goto(p5);
[2,5] Rover1.imageTargets();
[5,10] Rover1.goto(p3);

},
{ [5,10] Rover2.goto(p1);

[5,10]Rover2.imageTargets();
[2,5] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

}
}

p1

p2 p3

p4

p51

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

2

1

Choice Nodes Represent Decision Theoretic
Choices Between Threads of Execution

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

imageScienceTargets(Rover1, Rover2)
{{

[5,10] Rover1.goto(p4);
choose {

{
[5,10] Rover1.goto(p5);
[2,5] Rover1.imageTargets();

}
{

[2,5] Rover1.imageTargets();
[5,10] Rover1.goto(p5);

}
};
[5,10] Rover1.goto(p3);

},
{

[5,10] Rover2.goto(p1);
choose {

{
[5,10] Rover2.goto(p2);
[2,5] Rover2.findTargets();

}
{

[2,5] Rover2.imageTargets();
[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

}
}

}

p1

p2 p3

p4

p51

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Maintenance and Success Conditions
Specified via Asks

Start EndRover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

imageScienceTargets(Rover1, Rover2)
{

{
[5,10] Rover1.goto(p4);
choose {

{
do { [5,10] Rover1.goto(p5); }

maintaining(site1 = ¬ obstructed);
[2,5] Rover1.imageTargets();

}
{

[2,5] Rover1.imageTargets();
[5,10] Rover1.goto(p5);

}
};

[5,10] Rover1.goto(p3);
},
{

[5,10] Rover2.goto(p1);
choose {

{
do { [2,5]Rover2.imageTargets(); }

maintaining (site1 = ¬ obstructed);
[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

}
{

[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);
[2,5] Rover2.imageTargets();

}
}

}

p1

p2 p3

p4

p51

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Ask site1 = ¬ obstructed

Ask site1 = ¬ obstructed

Tell site1 = ¬ obstructed

Restoration of Functional States After Failure
Achieved Via Catch and Throw

Start EndRover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

p1

p2 p3

p4

p51

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Ask site1 = ¬ obstructed

Ask site1 = ¬ obstructed
Failure

Throw:
Type: imageTargets
Reason: site1 = obstructed

Tell site1 = ¬ obstructedobstructed

imageScienceTargets(Rover1, Rover2)
{

{
[5,10] Rover1.goto(p4);
choose {

{
do { [5,10] Rover1.goto(p5); }

maintaining(site1 = ¬ obstructed);
[2,5] Rover1.imageTargets();

}
{

[2,5] Rover1.imageTargets();
[5,10] Rover1.goto(p5);

}
};

[5,10] Rover1.goto(p3);
},
{

[5,10] Rover2.goto(p1);
choose {

{
do { [2,5]Rover2.imageTargets(); }

maintaining (site1 = ¬ obstructed);
[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);

}
{

[5,10] Rover2.goto(p2);
[5,10] Rover2.goto(p3);
[2,5] Rover2.imageTargets();

}
}

}

Catch:
Type: imageTargets
Handler:

Rover1.goto(p4)
Tell: site1 = obstructed

1

2

2

6

Recovering From Failure Wrap up

1. Enable development of complex missions with
contingencies (Complexity)

2. Provide robustness to component, temporal, and
contingency failure (Robustness)

3. Support online optimal temporal planning with
contingencies (Optimality)

Supports development of very complex missions by
(i) raising the level of programming to coaching

(from commanding); (ii) Sub-plan and component reuse.

Complexity

Handles recovery (with graceful degradation) from:
(i) Robot health failure; (ii) Temporal plan failure
(iii) Failed contingencies

Robustness

Uses least commitment temporal planning for optimal
solutions
Handles incremental replanning for contingencies
Continuous monitoring and replanning

Optimality

Architecture
Temporal Planner

Deductive Controller

Plant

Models
Plan Runner

Mode
Estimation

Mode
Reconfiguration

Mission
Models

Plant
Models

Goal StatesEstimated States
And Exceptions

Task Completion Times
And Exceptions

Dispatchable Plan

CommandsObservations

