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Estimation of PCCA
(Probabilistic Concurrent Constraint Automata)

• Belief State Evolution visualized with a Trellis Diagram

• Complete history knowledge is captured in a single belief 
state by exploiting the Markov property

• Belief states are computed using the HMM belief state update 
equations

Compute the belief state for each estimation cycle
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Hidden Markov Model
Belief State Update Equations

• Propagation step computes aprior probability

• Update step computes posterior probability
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Approximations to PCCA Estimation

• k most likely estimates – The belief 
state can be accurately approximated by 
maintain the k most likely estimates

• Most likely trajectory – The probability 
of each state can be accurately 
approximated by the most likely trajectory 
to that state

• 1 or 0 observation probability – The 
observation probability can be reduced to 
1.0 for observations consistent with the 
state, and 0.0 for observations 
inconsistent with the state

t+11.0 or 0.0
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Previous Estimation Approach:
Best-First Trajectory Estimation (BFTE)

• Livingstone
– Williams and Nayak, AAAI-96

• Livingstone 2
– Kurien and Nayak, AAAI-00

• Titan 
– Williams et al., IEEE ’03

• The belief state can be accurately 
approximated by maintain the k 
most likely estimates

• The probability of each state can 
be accurately approximated by 
the most likely trajectory to that 
state

• The observation probability can 
be reduced to
– 1.0 for observations consistent 

with the state,
– 0.0 for observations inconsistent 

with the state
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Previous Estimation Approach:
Best-First Belief State Enumeration (BFBSE)

• Diagnosis as Approximate 
Belief State Enumeration for 
Probabilistic Concurrent 
Constraint Automata
– Martin et al.,  AAAI-05

• Increased estimator accuracy by 
maintaining a compact belief 
state encoding

• Minimal overhead over BFTE

• The belief state can be accurately 
approximated by maintain the k 
most likely estimates

• The probability of each state can 
be accurately approximated by 
the most likely trajectory to that 
state

• The observation probability can 
be reduced to
– 1.0 for observations consistent 

with the state,
– 0.0 for observations inconsistent 

with the state

Approximations to Estimation
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New Approach:
Best-First Belief State Update (BFBSU)

• Increased estimator accuracy by 
properly computing the 
observation probability

• Minimal overhead over BFBSE

• The belief state can be accurately 
approximated by maintain the k 
most likely estimates

• The probability of each state can 
be accurately approximated by 
the most likely trajectory to that 
state

• The observation probability can 
be reduced to
– 1.0 for observations consistent 

with the state,
– 0.0 for observations inconsistent 

with the state

Approximations to Estimation
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BFBSE vs. BFBSU: The Consequence of
Incorrect Observation Probability

Sensor = High

Working

Broken

Observe (Sensor = High) at every time step

Assume:  P(Sensor = High | Broken) = 1 P(Sensor = High | Broken) = 0.5
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BSBSU Computes
HMM Belief State Update Equations

• Propagation Step

• Update Step

• Problem: Computing the observation probability for the 
“otherwise” case can be expensive.
– Must compute total

number of consistent
observations for k states

– Model counting for k
problems
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Solution:
Pre-Compute Observation Probability Rules

• Observation Probability Rule (OPR):
– Compute OPR for a set of partial states
– Compute OPRs using the dissents

– Ignore all OPRs with probability of 0 or 1
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Solve Mode Estimation as an
Optimal Constraint Satisfaction Problem

• Use Conflict-directed A* with a tight admissible 
heuristic
– Use greedy approximation for the cost to go (BFBSE)
– Include observation probability within the heuristic 

(BFBSU)
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ST7A Model Results:
State Estimate Accuracy

• Single-point Failure state 
estimate probability

• Nominal state estimate 
probability
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ST7A Model Results:
State Estimate Performance

• Space Performance
– Best case:  n·b
– Worst case:  bn

• Time Performance
– Best case: n2·b·k + n·b·C
– Worst case:

• BFBSE:  bn(n·k + C)
• BFBSU:  bn(n·k + bn·R + C)
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EO1 Model Results:
State Estimate Performance

• Space Performance • Time Performance
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Conclusion

• Best-First Belief State Update
– Compute k most likely estimates
– Remove most likely trajectory approximation by computing 

the most likely belief state estimates 
– Remove 1 or 0 observation probability approximation by 

computing the proper observation probabilities 

• Increased PCCA estimator accuracy by computing 
the Optimal Constraint Satisfaction Problem (OCSP) 
utility function directly from the HMM propagation 
and update equations

• Maintaining the computational efficiency.


