

TENT Pre-Co - Observatio - Compute - Compute $m=\prod$ - Ignore al	Sol te Observ bability Rule for a set of partia using the diss $\neg \overline{\mathbf{x}} \mid \overline{\mathbf{0}} \wedge \mathrm{M}(\overline{\mathbf{x}}) \wedge$ $\left.o_{i}\right)$ - number of $\mathbf{P}(\overline{\mathbf{0}} \mid \bar{x}$ with probability	Probability Rul $\overline{\mathbf{x}} \Rightarrow \mathbf{P}(\overline{\mathbf{o}} \mid \overline{\mathbf{x}})$ nsistent $\}$ nt observations
Model	Max \# of OPRs	\# OPRs Required Online
EO-1	1.77×10^{8}	64
MarsEDL	1.46×10^{6}	307
ST7-A	1.44×10^{4}	8

Solve Mode Estimation as an Optimal Constraint Satisfaction Problem

- Use Conflict-directed A^{*} with a tight admissible heuristic
- Use greedy approximation for the cost to go (BFBSE)
- Include observation probability within the heuristic (BFBSU)

Conclusion

- Best-First Belief State Update
- Compute k most likely estimates
- Remove most likely trajectory approximation by computing the most likely belief state estimates
- Remove 1 or 0 observation probability approximation by computing the proper observation probabilities
- Increased PCCA estimator accuracy by computing the Optimal Constraint Satisfaction Problem (OCSP) utility function directly from the HMM propagation and update equations
- Maintaining the computational efficiency.

䛧
16 \qquad

