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Forward Conflict-Directed Search
• Backward conflict-directed search uses conflicts to select 

backtrack points and as a cache used to prune nodes. 
– dependency-directed backtracking [Stallman-Sussman-77] 
– conflict-directed backjumping [Prosser-93]
– dynamic backtracking [Ginsberg-93]  
– LPSAT [Wolfman-Weld-99].

• Forward conflict-directed search guides the forward step of search 
away from regions of the state space that are ruled out by known 
conflicts 
– Conflict-directed A* [Williams-Nayak-AAAI96, Williams-Ragno-JDAM].
– Assumption-based DDBT [deKleer-Williams AAAI86, IJCAI89], 

Factor Out Failure[Freuder-IJCAI-95
– Candidate Generation [deKleer-Williams-AIJ87, Reiter-AIJ87]

Introduce Generalized Forward Conflict-directed Search
on Hybrid Discrete/Linear Optimization
– Experiments on cooperative vehicle plan execution problems 

demonstrates that the approach significantly outperforms branch 
and bound using conflicts on backtracking.
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Outline

• Context
• Review of Conflict-directed A*
• The GCD-BB algorithm
• Empirical Evaluation
• Conclusion
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90’s Self-Repairing Explorers Solve COPs Using 
Forward, Conflict-directed Best First Search 

• Deep Space 1 Remote Agent 
Experiment (May, 1999) 

• Livingstone Model-based Execution 
System [Williams & Nayak, AAAI96]

• Optimal Satisfiability Problem

• OpSat uses conflicts (nogoods) in 
the forward direction, to substantially 
improve Best-first Search (CD A*) 
[Williams-Nayak-AAAI96,Williams-Ragno-JDAM].
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• [Leaute & Williams, AAAI05]
To put out the Burbank wildfires, . . .
UAV1 Starts at home;
{Gets fuel & water; drops on fire-1} [1, 5];
{Gets fuel & water; drops on fire-2} [2, 6];
Returns home.

00’s Plan-driven Agile Systems Solve Hybrid Discrete/Linear 
Optimization Problems via Forward Conflict-directed Search

• Hybrid Discrete/Linear 
Optimization Problems
– Disjunctive Linear Programs (DLPs)

[Balas-ADM-79]
– Binary Integer Programming
– LCNF [Wolfman-IJCAI-99]
– Mixed Logical Linear Programs 

(MLLPs)  [Hooker-JDAM-99]

• How do we generalize forward 
conflict-directed search to 
HDLOPs? 

Generalized Conflict-directed 
Branch and Bound (GCD-BB)

• [Hoffman & Williams, ICAPS05] • Hybrid Discrete/Linear 
Optimization Problems
– Disjunctive Linear Programs (DLPs)

[Balas-ADM-79]
– Binary Integer Programming
– LCNF [Wolfman-IJCAI-99]
– Mixed Logical Linear Programs 

(MLLPs)  [Hooker-JDAM-99]

• How do we generalize forward 
conflict-directed search to 
HDLOPs? 

Generalized Conflict-directed 
Branch and Bound (GCD-BB)
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00’s Plan-driven Agile Systems Solve Hybrid Discrete/Linear 
Optimization Problems via Forward Conflict-directed Search
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Disjunctive Linear Programs [Balas 79]

Definition:

i j

Example:

clause
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Generalized Conflict-directed B&B
Extends traditional Branch & Bound:
1. Constructs conflicts from search tree nodes found

– Infeasible or
– Sub-optimal

2. Uses conflicts to guide forward search away from 
infeasible and sub-optimal states.

3. Performs induced unit clause relaxation
– Deduces (some) entailed unit clauses.

Demonstrates substantial performance improvement
– For both Best-first and depth-first Branch & Bound search,
– In terms of speed and memory usage.

Compared with
– BIPs
– BFS and B&B without conflicts
– Backup on conflicts. 
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Optimal Satisfiability Problems

• Diagnosis
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Conflict-directed A* 

Infeasible
Conflict 2

• Select optimal state outside conflicts at each step.

[Williams-Nayak-AAAI96, 
Williams-Ragno-JDAM0?,
deKleer-Williams-IJCA89]

Increasing
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C
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Conflict 2

Conflict 1

Conflict-directed A* 
• Select optimal state outside conflicts at each step.

• Feasible subregions described by kernel assignments.
Use conflicts to search for kernel assignment 

containing the best cost candidate.
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Generating candidate after two iterations…
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• Diagnosis

Conflicts: {O1=G, O2=G, A1=G} is inconsistent

{O1=G, A1=G A2=G} is  inconsistent

Constituent Kernels: {O1=U, O2=U,  A1=U} at least one holds

{O1=U, A1=U A2=U} at least one holds(Resolve one conflict -
All states outside conflict)

A2=U

M3=U
{A1=U, A2=U, 
M1=U, M3=U}

{A1=U} {M1=U} {M2=U}

{A1=U} {M1=U} {M1=U, A2=U} {M2=U, M3=U}

•The kernel assignments are the minimal coverings of 
the constituent kernels.      [deKleer-Williams-AIJ87, Reiter-AIJ87]

• The best kernel is found through A* search of the 
covering tree. [Williams-Nayak-AAAI96, Williams-Ragno-JDAM]

{A1=U, M1=U , M2=U}

Constituent Kernels
1st iteration

2nd iteration

3rd iteration

(Kernels resolve ALL conflicts -
ALL states outside ALL conflicts)
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Outline
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1. Branch and Bound for DLPs
1. Branch on subproblems.
2. Maintain running best soln in incumbent. 
3. Bound cost using relaxed problems.
4. Prune infeasible and 

suboptimal branches.

For BIPs
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2. Induced Unit Clause Relaxation

• Simple DLP relaxation: 
Remove all non-unit clauses from the DLP 

Problem: ignoring all non-unit clauses forms a weak 
relaxation.

Induced unit clause relaxation: 
– Strengthen by adding entailed unit clauses
– Approach: Relax DLP to a propositional theory

+ apply unit propagation …. (alternatively, failed literals)

• BIP relaxation: 
Binary constraint x∈{0,1} → Continuous constraint 0≤x≤1 

Problem: adding binary variables and constraints increases
the dimensionality of the search problem.
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2. Induced Unit Clause Relaxation

DP at a sub-problem 
before relaxation:

max x +3y
s.t. x ≤ 200

y ≤ 200
x ≤ 100
y ≤ 5 v x ≥ 100
x > 80 v x ≥ 30 v y ≤ 0

Example:

Relaxed
Problem:

max x +3y
s.t. x ≤ 200

y ≤ 200
x ≤ 100
y ≤ 5

a1

max x +3y
s.t. a

b
c
d
e v f v g

Unit propagate

Reintroduce
the linear 

inequalities

a1

max x +3y
s.t. a

b
c
d

Relax non-
unit clauses

max x +3y
s.t. a

b
c
d v ¬ c
e v f v g

a1

Relax to
propositional

clauses
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3. Generalized Conflict Learning
Extracts conflicts whenever branch pruned:
• Infeasibility conflict

• Sub-optimality conflict

Set of constraints that are not 
satisfiable for any value of x. 

Set of constraints, all of whose 
feasible states are worse than the 
incumbent (-100 > f(x*)). 

Incumbent: x*(200,0)

A minimal infeasibility conflict

A minimal sub-optimality conflict
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3. Minimal Conflict Extraction

• Extracted based on duality theory:

• Incurs 1 additional LP per conflict

o Minimal sub-optimality conflicts: 
The active constraint set at the solution, assuming no 
degeneracy. The active constraint set is identified by the 
non-zero terms of the optimal dual vector. 
[Bertsimas&Tsitsiklis97].

o Minimal infeasibility conflicts:
The extreme rays of the cone formed by the modified 
dual of the original LP [Gleeson&Ryan90]. 
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4. Forward Conflict-directed Search 
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Empirical Evaluation
Test problems: Model-based temporal plan execution for cooperative        

vehicles [Léauté-Williams-AAAI05].
Comparisons: GCD-BB v.s. BIP-BB

v.s. algorithmic variants of GCD-BB
Measures: Computation time - number of LPs & average LP size

Memory use - maximum queue length

Model of 
Vehicle &

Terrain

extract
control

sequence

solve up 
to limited 

horizon

encode as
disjunctive

LP
24

A Mars Plane Scouting Valle Marineris
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Generalized forward conflict-directed search
on DLPs improves runtime over BIP-BB.

BIP-BB v.s. GCD-BB
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Conflicts significantly improve best-first search
runtime.

Without conflicts v.s. with conflicts
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Backtrack with conflicts v.s. Forward conflict-
directed search
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Forward conflict-directed search significantly 
outperforms conflicts used on backtrack.

BFS v.s. DFS
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Conflicts significantly improve Best-first search memory use

Memory performance similar to depth-first-search w conflicts
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BFS v.s. DFS
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But BFS is not an anytime algorithm.
Use Depth-first B&B with conflicts for 
infeasibility and suboptimality.

•Runtime performance similar to conflict-directed BFS
•Significantly better than B&B with infeasible conflicts alone. 
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Future Work

• Study influence of cutting planes, such as Bender’s 
cuts, on performance. 

• Study empirically why sub-optimality conflicts do not 
speed up search as much as infeasibility conflicts.

• Apply GCD-BB to non-clausal forms of HLLPs.

• Generalize to non-linear programs.
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Generalized-Conflict-directed Branch & Bound
1. Learns conflicts from search tree nodes found

– Infeasible or
– Sub-optimal

2. Branches using conflicts to guide forward search away from 
infeasible and sub-optimal states.

3. Bounds using unit clause relaxation
– Deduces (some) entailed unit clauses.

Demonstrates substantial performance improvement
– For both Best-first and depth-first Branch & Bound search,
– In terms of speed and memory usage.

Compared with
– BIPs
– Traditional BFS and B&B
– Backup on conflicts. 

32

References

• [Gleeson&Ryan90] J. Gleeson and J. Ryan, Identifying minimally inconsistent 
subsystems of inequalities, ORSA J. Computing 2, 1990.

• [Bertsimas&Tsitsiklis97] D. Bertsimas and J. Tsitsiklis, Introduction to Linear 
Optimization. Athena Scientific, 1997.

• [Stallman77] Stallman, R. and Sussman, G.J., Forward Reasoning and 
Dependency-Directed Backtracking in a System for Computer-Aided Circuit 
Analysis. J. of Artificial Intelligence. 9. 1977.

• [Prosser93] Prosser, P., Hybrid Algorithms for the Constraint Satisfaction 
Problem. J. of Computational Intelligence, 9(3),1993.

• [Ginsberg93] Ginsberg, M., Dynamic Backtracking. J. of Artificial Intelligence 
Research, 1, 1993.

• [Wolfman99] Wolfman, S. and Weld, D., The LPSAT Engine & Its Application to 
Resource Planning. IJCAI. 1999.

• [Williams05] Williams, B. and Ragno, R., Conflict-directed A* and its Role in 
Model-based Embedded Systems. JDAM, to appear 2005.

• [Katsirelos03] Katsirelos, G. and Bacchus, F., Unrestricted Nogood Recording in 
CSP Search. CP, 2003.

• [Léauté05] Léauté, T. and Williams, B., Coordinating Agile Systems Through The 
Model-based Execution of Temporal Plans. AAAI. 2005.


