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Motivation
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The continuous model-based execution problem:
* A dynamic system (a plant)
+ A desired evolution of the plant state over time (a temporally flexible
state plan)
* A consistent control sequence

- Fire fighting example [Léauté-AAAI-05]
e - TwoUAVs
« Afire to extinguish
< Avoid obstacles
« Drop water
* Assess the damage
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The state plan of the fire fighting example:
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Encodings
LS

In [Léauté-AAAI-05] the plant and the state plan within each limited horizon are
encoded in disjunctive linear programs (DLPs) [Balas-ADM-79].

« State plan encoding example

« Plant model encoding example
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A fast algorithm is needed to solve the DLPs for each horizon.
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Disjunctive Linear Programs

=]
Definition: Minimize fir)
Subject to 7\ it VJ Cylz) < 0)
clause
Example: B9 o) )
P T
A B
g 4]
(g, 7] X vw) .;E vl
Minimize f{x)
Subject to g(x) <0
rp =1 rp = TR Y b g Vi =y, V=1 "
LU & )




Other Formulations
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DLP: Binary Integer Program (BIP):
Minimize fix)
. Minimize f{x)

Subject to glz) <0

Subject fo glz) <0
o —xp < M(1-by)
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e = ¥p <= M(1 = ba)
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« LCNF [Wolfman-lJCAI-99] - vr 2 Mlba—1)
“Trigger” linear inequalities with propositional variables Z by = 1
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» Mixed Logical Linear Programs (MLLPs) by e {01}, ¥i=1,....4
[Hooker-JDAM-99]

Generalized Conflict-Directed
Branch and Bound

* Building upon Branch and Bound (B&B)

» Two key features:

— Generalized Conflict Learning
« infeasibility
+ sub-optimality

— Forward Conflict-Directed Search
« constituent kernel

« kernel
« DLP candidate
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Viml,...,n
- Generalization from LCNF
- optimization
- variables over finite domain
- logic forms other than CNF
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Branch and Bound
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+ Infeasibility conflict
Minimize = -y
Subject ta
— An infeasibility conflict,
since the constraints are not
satisfiable for any value of x.
A minimal infeasibility conflict
» Sub-optimality conflict
Minimize — 2 -3y A sub-optimality conflict, since
Subject to the best solution that satisfies it
has value -100 > f(x*).
1]
_-.//-'\ minimal sub-optimality conflict
vys4d
Incumbent: x*(200,0)
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Generalized Conflict-Directed
L= Branch and Bound

 Building upon Branch and Bound (B&B)

* Two key features:

# Generalized Conflict Learning
« infeasibility
« sub-optimality.

— Forward Conflict-Directed Search
« constituent kernel
« kemnel
« DLP candidate

Minimal Conflict Extraction
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» Extract minimal conflicts rather than any conflicts

+ Novel methads:tiagedl an duglityithdory
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Generalized Conflict-Directed
Branch and Bound

 Building upon Branch and Bound (B&B)

* Two key features:

— Generalized Conflict Learning
« infeasibility
* sub-optimality.

—| Forward Conflict-Directed Search
« constituent kernel
* kernel
* DLP candidate

Forward Conflict-Directed Search
==

K A constituent kernel is a minimal description of
Generate Constituent the states that Tesotve a conflict e context
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kernels are generated.

Generate DLP Candidates
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Forward Conflict-Directed Search

« Backward conflict-directed methods use conflicts to select
backtrack points and as a cache to prune nodes without testing
consistency.

— dependency-directed backtracking [Stallman77]
— conflict-directed backjumping [Prosser93]

— dynamic backtracking [Ginsberg93]

— LPSAT [Wolfman99].

» Forward conflict-directed search guides the forward step of
search away from regions of the state space that are ruled out
by known conflicts [Williams - CD-A* - JDAMO05].

« Our experimental results on a range of cooperative vehicle plan
execution problems show that forward conflict-directed search
significantly outperforms backtrack search with conflicts.
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Best-First Search (BFS) v.s.

meis Depth-First Search (DFS)

» BFS is more efficient than DFS in time.

* BFS can take dramatically more memory space than DFS.

« With conflict learning and forward conflict-directed search,
BFS takes similar memory space to DFS.

* The concept of sub-optimality is rooted in maintaining an
incumbent. Hence, it can be applied to DFS but not to BFS.

Empirical Evaluation
Ll

Test problems: Model-based temporal plan execution for cooperative
vehicles [Léauté-AAAI-05].
Comparisons: GCD-BB v.s. BIP-BB
algorithmic variants of GCD-BB
Measures: Computation time - number of LPs & average LP size
Memory use - maximum queue length
BIP-BB v.s. GCD-BB
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Generalized Conflict-Directed Branch and Bound (GCD-BB)
— branch and bound for DLPs

— generalized conflict learning

— forward conflict-directed search

An order of magnitude speed-up over BIP-BB.
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Without conflicts v.s. with conflcts
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Backtrack with conflicts v.s. Forward conflict-
directed search
DLP+BFS+Backtrack
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Empirical Evaluation
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Future Work
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Run GCD-BB on a range of well-known benchmark
problems, and compare its actual runtime against that of BIP-
BB.

Study empirically the reason why sub-optimality conflicts do
not speed up search as much as infeasibility conflicts.

Apply GCD-BB to a more general form of HDLOPs than
DLPs.

Extend conflict learning to non-linear programming.
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