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Motivation

The continuous model-based execution problem: 
• A dynamic system (a plant)
• A desired evolution of the plant state over time (a temporally flexible 

state plan)
• A consistent control sequence

Fire fighting example [Léauté-AAAI-05]
• Two UAVs
• A fire to extinguish
• Avoid obstacles
• Drop water
• Assess the damage
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The state plan of the fire fighting example:

Motivation

Receding horizon
continuous planner:
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Encodings

In [Léauté-AAAI-05] the plant and the state plan within each limited horizon are 
encoded in disjunctive linear programs (DLPs) [Balas-ADM-79]. 

• State plan encoding example

• Plant model encoding example

A fast algorithm is needed to solve the DLPs for each horizon.

Generalized Conflict-Directed Branch and Bound
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Disjunctive Linear Programs

Definition:

i j

Example:

clause
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Other Formulations
Binary Integer Program (BIP):DLP:

• LCNF [Wolfman-IJCAI-99]
“Trigger” linear inequalities with propositional variables

• Mixed Logical Linear Programs (MLLPs) 
[Hooker-JDAM-99]

- Generalization from LCNF
- optimization
- variables over finite domain
- logic forms other than CNF
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Generalized Conflict-Directed 
Branch and Bound

• Building upon Branch and Bound (B&B)

• Two key features:
– Generalized Conflict Learning

• infeasibility 
• sub-optimality

– Forward Conflict-Directed Search
• constituent kernel
• kernel
• DLP candidate
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Branch and Bound

• Discrete + Continuous
• “Branch”
• “Bound”
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Generalized Conflict-Directed 
Branch and Bound

• Building upon Branch and Bound (B&B)

• Two key features:
– Generalized Conflict Learning

• infeasibility 
• sub-optimality.

– Forward Conflict-Directed Search
• constituent kernel
• kernel
• DLP candidate
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Generalized Conflict Learning

• Infeasibility conflict

• Sub-optimality conflict

An infeasibility conflict, 
since the constraints are not
satisfiable for any value of x. 

A sub-optimality conflict, since 
the best solution that satisfies it 
has value -100 > f(x*).  

Incumbent: x*(200,0)

A minimal infeasibility conflict

A minimal sub-optimality conflict
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Minimal Conflict Extraction

• Extract minimal conflicts rather than any conflicts
• Novel methods based on duality theory
• No overhead LPs incurred

LP Solver
Reduce the constraint matrix to linearly independent rows

Run the dual simplex method

Identify the constraints of the minimal conflict
with the non-zero elements of the extreme ray 

An relaxed LP

If the dual problem is unbounded? 
(an extreme ray is discovered?)

yes
no

Output optimal 
solution

LP Solver
Reduce the constraint matrix to linearly

independent rows

Run the dual simplex method

An relaxed LP

If the dual problem is unbounded? 
(an extreme ray is discovered?)

yes
no

Output optimal 
solution

Extract sub-optimality 
conflict?

yes
Take the dual solution vector

If more than n elements of the 
dual vector is non-zero?

Identify the minimal conflict with 
any n of the non-zero elements

Identify the minimal conflict with 
all the non-zero elements

no

no

yes
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Generalized Conflict-Directed 
Branch and Bound

• Building upon Branch and Bound (B&B) 

• Two key features:
– Generalized Conflict Learning

• infeasibility 
• sub-optimality.

– Forward Conflict-Directed Search
• constituent kernel
• kernel
• DLP candidate
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Forward Conflict-Directed Search

• Backward conflict-directed methods use conflicts to select 
backtrack points and as a cache to prune nodes without testing 
consistency. 
– dependency-directed backtracking [Stallman77] 
– conflict-directed backjumping [Prosser93]
– dynamic backtracking [Ginsberg93]  
– LPSAT [Wolfman99].

• Forward conflict-directed search guides the forward step of 
search away from regions of the state space that are ruled out 
by known conflicts [Williams - CD-A* - JDAM05].

• Our experimental results on a range of cooperative vehicle plan 
execution problems show that forward conflict-directed search 
significantly outperforms backtrack search with conflicts.
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Forward Conflict-Directed Search

Generate Constituent
Kernels

Generate Kernels

Generate DLP Candidates

A constituent kernel is a minimal description of 
the states that resolve a conflict. In the context 
of DLPs, a constituent kernel of a conflict is a 
linear inequality that is the negation of a linear 
constraint contained in the conflict.

Conflict {x≥80,x≤10} → {x≤80},{x≥10}

For each unresolved conflict, a set of constituent 
kernels are generated.

Given the sets of constituent kernels from 
multiple unresolved conflicts, kernels are 
generated, each of which resolves all the 
conflicts, by combining the constituent kernels 
using minimal set covering.

A DLP candidate is generated for each kernel. 
The ones that are propositionally unsatisfiable 
are pruned and the DLP is simplified, using a 
fast unit propagation test before solving any 
relaxed LP.
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Example 
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Best-First Search (BFS) v.s. 
Depth-First Search (DFS)

• BFS is more efficient than DFS in time. 

• BFS can take dramatically more memory space than DFS.

• With conflict learning and forward conflict-directed search, 
BFS takes similar memory space to DFS.

• The concept of sub-optimality is rooted in maintaining an 
incumbent. Hence, it can be applied to DFS but not to BFS.
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Empirical Evaluation
Test problems: Model-based temporal plan execution for cooperative 

vehicles [Léauté-AAAI-05].
Comparisons: GCD-BB v.s. BIP-BB 

algorithmic variants of GCD-BB
Measures: Computation time - number of LPs & average LP size

Memory use - maximum queue length
BIP-BB v.s. GCD-BB
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Empirical Evaluation
Without conflicts v.s. with conflicts
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Backtrack with conflicts v.s. Forward conflict-
directed search
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Empirical Evaluation
BFS v.s. DFS
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Conclusion

Generalized Conflict-Directed Branch and Bound (GCD-BB) 
– branch and bound for DLPs  
– generalized conflict learning
– forward conflict-directed search 

An order of magnitude speed-up over BIP-BB.
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Future Work

• Run GCD-BB on a range of well-known benchmark 
problems, and compare its actual runtime against that of BIP-
BB. 

• Study empirically the reason why sub-optimality conflicts do 
not speed up search as much as infeasibility conflicts.

• Apply GCD-BB to a more general form of HDLOPs than 
DLPs.

• Extend conflict learning to non-linear programming.


