

1. Introduction	Previous Work	
 Deal wit Handle 	es to address: h under-actuation ⇒ reason light synchronization robustness	in terms of state
 Previous work: – Model-based programming (Williams et al. 03): State-level control of under-actuated discrete plants. 		
Phil summer and a second		

1. Introduction Previous	Work	
 Challenges to address: Deal with under-actuation Handle tight synchronization Provide robustness 	⇒ execute temporal plans ⇒ use temporal flexibility & replan when necessary	
 Previous work: Dispatchable plan execution (Vidal & Ghallab 96, Morris & Muscettola 98, Tsamardinos & Ramakrishnan 03): Scheduling and execution of temporally flexible plans 		
 Continuous planning and e & Steel 88, Wilkins & Myers Robust interleaved planning plans; inspired by Model Pre 	95, Chien et al. 00): and execution of temporal	

1. I	ntroduction Innovative Claim
•	Model-based execution of temporally flexible state plans for continuous, under-actuated systems
•	 Technical Innovations: Responds to disturbances by framing temporal state plan execution as Model Predictive Control (<i>Propoi 63, Richalet 76, How et al. 02</i>) Achieves real-time performance through novel constraint pruning policies

3. Conclusion	
 Model-based execution of temporally flexible state plans enables coordination of agile systems. 	
 Real-time execution is obtained by Model Predictive Control and pruning policies. 	
 Our executive has been demonstrated on a real- time hardware-in-the-loop UAV testbed. 	
Will Mental Market 36	<u>.</u>