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Executing Reactive, Model-based 
Programs through Graph-based 

Temporal Planning

Phil Kim and Brian C. Williams, 
Artificial Intelligence and Space Systems Labs
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Mark Abramson
Draper Labs

Outline

• Cooperative Vehicle Missions
• Model-based Programming
• Reactive Model-based Programming 

Language (RMPL)
• Temporal Plan Networks (TPN)
• Activity Planning (Kirk)
• Optional: Hybrid Activity/Path Planning

Cooperative Mars Exploration
How do we coordinate heterogeneous teams of orbiters, 

rovers and air vehicles to perform globally optimal 
science exploration?

MIT Cooperative Vehicle Testbed

• Distributed Satellites: Spheres, Spheres, TechSat21

MIT Cooperative Vehicle Testbed

• Distributed Satellites: Spheres, Spheres, TechSat21
• Aerobots: Indoor blimps

MIT Cooperative Vehicle Testbed

• Distributed Satellites: Spheres, Spheres, TechSat21
• Aerobots: Indoor blimps
• Sensing:   distributed, wireless sensor net
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MIT Cooperative Vehicle Testbed

• Distributed Satellites: Spheres, Spheres, TechSat21
• Aerobots: Indoor blimps
• Sensing:   distributed, wireless sensor net
• Rovers: 1 ATRV Sr., 3 ATRV Jr 

Outline

• Cooperative Vehicle Missions
• Model-based Programming
• Reactive Model-based Programming 

Language (RMPL)
• Temporal Plan Networks (TPN)
• Activity Planning (Kirk)
• Optional: Hybrid Activity/Path Planning

Why Model-based Programming?

Create Embedded Languages
That Reason from 

Commonsense Models

Leading Diagnosis:

•Legs deployed during descent.

• Noise spike on leg sensors 
latched by monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to 
determine touch down.

• Latched noise spike read as 
touchdown.

• Engine shutdown at ~50ft. 
Mars 98:
• Climate Orbiter
• Mars Polar Lander 

Model-based Programs 
Interact Directly with State

Embedded programs interact with
plant sensors/actuators:

• Read sensors 

• Set actuators

Model-based programs 
interact with plant state:

• Read state

• Write state

Embedded Program

S
Plant

Obs Cntrl

Model-based
Embedded Program

S
Plant

Programmer must map between 
state and sensors/actuators.

Model-based executive maps 
between sensors, actuators to states.

Reactive Model-based Programs 
Interact Directly with State

S
Plant

Obs Cntrl

Model-based
Embedded Programs

Model-based
Executive

S

Plant
Model

State estimates

Reactive
Planning

Mode
Estimation

State goals

ŝ

Reactive Model-based 
Programming Language:

State assertion
State query
Conditional Execution
Preemption
Iteration 
Concurrent execution

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow = outflow = 0

S T

X0 X1 XN-1 XN

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

Fire backup
engine

Thrust 
= On

Cooperative Model-based Programming

• How do we specify the allowed behaviors 
of cooperative robotic networks? (RMPL)

• How do we command cooperative 
networks? (this talk)

• How do we monitor cooperative networks? 
(next talk)
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Outline

• Cooperative Vehicle Missions
• Model-based Programming
• Reactive Model-based Programming 

Language (RMPL)
• Temporal Plan Networks (TPN)
• Activity Planning (Kirk)
• Optional: Hybrid Activity/Path Planning

Properties:
Teams are focused to a hierarchy complex strategies.
Maneuvers are temporally coordinated.
Novel events occur during critical phases.
Quick response draws upon a library of contingencies.

Example Scenario

HOMEHOME

TWO

EnrouteCOLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1SCIENCE AREA 1’’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

ONE

SCIENCE AREA 1SCIENCE AREA 1

Create Language with planner-like capabilities

Reactive Model-based Programming

Idea: Describe team behaviors by starting with a rich concurrent, 
embedded programming language (RMPL,TCC, Esterel):

c
If c next A
Unless c next A
A, B
Always A

• Sensing/actuation activities
• Conditional execution
• Preemption
• Full concurrency 
• Iteration

A [l,u] • Timing
Add temporal constraints:

Choose {A, B} • Contingency
Add choice (non-deterministic or decision-theoretic):

Example Enroute Activity:

RendezvousRendezvous Rescue AreaRescue Area

Corridor 2

Corridor 1

Enroute

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-
Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK
};
{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-
Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK
};
{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

Activities:
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RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-
Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK
};
{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

Conditionality
and Preemption:

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-
Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK
} ;
{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

Sequentiality:
Concurrency:

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Fly-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Fly-
Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK
};
{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

Temporal Constraints:

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-
Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK
};
{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

Non-deterministic
choice:

RMPL Interpreter

•• KirkKirk

•• IdeaIdea

•• TitanTitan

Dynamically selects among alternate executions, satisfies open 
conditions and checks schedulability, 
Selects execution times, monitors outcomes  and plans 
contingencies.

Reactive Temporal Planner

Plan Runner

(Hidden) States

RMPL Program

CommandsObservables

Mode Estimation Reactive Planning
Model of 
Networked
Embedded 

Vehicles

•• monitor activitiesmonitor activities
•• diagnose plan failuresdiagnose plan failures

• How do we provide fast, temporally flexible 
planning?

• Graph-based planners support fast planning.
• … but plans are totally order.
• Desire flexible plans based on simple temporal 

networks (e.g., HSTS, Muscetola et al.).

How do we create temporally flexible plan graphs?
• Generalize simple temporal networks 

(temporal plan network TPN).
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Kirk: Reactive Temporal Planner

RMPL Compiler

Temporal Plan Network (TPN) with STN

Reactive Temporal Planner Selects schedulable 
execution threads of 
TPN

Reactive Model-based 
Programming Language

Concurrent Plan
Plan = Execution 
threads related by 
Simple Temporal Net

Represents all 
RMPL executions

Outline

• Cooperative Vehicle Missions
• Model-based Programming
• Reactive Model-based Programming 

Language (RMPL)
• Temporal Plan Networks (TPN)
• Activity Planning (Kirk)
• Optional: Hybrid Activity/Path Planning

Enroute Activity:

1

4 5

8

9 10

13

2

11 12

Enroute

Group Fly Traverse Group Wait

Group Transmit

Activity (or sub-activity)

Science Target

• Start with flexible plan representation

Enroute Activity:

1

4 5

8

2
Enroute [450,540]

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

[0,  ]

[0, 0][0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Science Target

• Start with flexible plan representation

Enroute Activity:

3

1

4 5

8

9 10

13

2

6 7 11 12

Enroute

Group Fly Path

Group Fly Path Group Wait

Group Transmit

Activity (or sub-activity)

Science Target

•TPN representation of Enroute activity and sub-activities

Enroute Activity:

3

1

4 5

8

2
Enroute [450,540]

Group Traverse

[405, 486]

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

[0,  ]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Science Target

• Add conditional nodes

Conditional node
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Enroute Activity:

3

1

4 5

8

9 10

13

2

6 7 11 12

Enroute [450,540]

Group Traverse

[405, 486]

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

[0,  ]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Ask( PATH1 = OK)

Ask( PATH2 = OK)

Ask( EXPLORE = OK)Science Target

•Add temporally extended, symbolic constraints

Symbolic constraint (Ask,Tell)

Conditional node

Outline

• Cooperative Vehicle Missions
• Model-based Programming
• Reactive Model-based Programming 

Language (RMPL)
• Temporal Plan Networks (TPN)
• Activity Planning (Kirk)
• Optional: Hybrid Activity/Path Planning

Planning Group-Enroute

3

6

4 5[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10[0,54]

12

13

[0,2]

[0,∞]

To Plan:
• Instantiate Group-Enroute

Group-Enroute

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

Planning Group-Enroute

3

6

4 5[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10[0,54]

12

13

[0,2]

[0,∞]

[0,∞] [0,∞]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED)

[200,200]

s e
[500,800]

[10,10] [0,∞]

To Plan:
• Instantiate Group-Enroute
• Add External Constraints (Tells)

Group-Enroute

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

Generates Schedulable Plan

3

6

4 5[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10
[0,54]

12

13

[0,2]

[0,∞]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED)

[200,200]

s e
[500,800]

[10,10] [0,∞]

[0,∞] [0,∞]

Group-Enroute

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

Trace consistent trajectories
• Check Schedulability 
• Satisfy and Protect Asks

To Plan:
• Instantiate Group-Enroute
• Add External Constraints

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Find paths from start-node to end-node

Start End

15 16 17 18
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Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Not a decision-node: Follow all outarcs

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Not a decision-node: Follow all outarcs

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Not a decision-node: Follow all outarcs

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Decision-node: Select a single outarc

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Not a decision-node: Follow all outarcs

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Continue

Start End

15 16 17 18
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Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Not a decision-node: Follow all outarcs

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Continue

Start End

15 16 17 18

Planning Example

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

Temporal Constraint Consistency

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Don’t test consistency at each step.
• Only when a path induces a cycle, 

check for negative cycle in the STN distance graph

15 16 17 18

[18,20]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,0]

[0,∞]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

Temporal Constraint Consistency

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Example: Inconsistent

15 16 17 18

[18,20]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,0]

[0,∞]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

Temporal Constraint Consistency

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Backtrack to choice

15 16 17 18

[18,20]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,0]

[0,∞]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

[0,0]

[0,0] [12,13]

[0,0]
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Temporal Constraint Consistency

1 2

3 4 5 6

7 8 9

10 11 12

13 14

• Complete paths

15 16 17 18

[18,20]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,0]

[0,∞]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

[0,0]

[0,0] [12,13]

[0,0]

How Do Handle Asks?

3

6

4 5[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10[0,54]

12

13

[0,2]

[0,∞]

[0,∞] [0,∞]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED)

[200,200]

s e
[500,800]

[10,10] [0,∞]

Unconditional Planning: 
• Guarantee satisfaction at compile time.
•Treatment similar to causal-link planning

Group-Enroute

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

Satisfying Asks
• Compute bounds on activities.
• Link ask to equivalent, overlapping tell.
• Constrain tell to contain ask.

5

7 8 9

10 11 12

6{4,6}

{4,6}

{4,6} {6,9}

{5,8} {7,11}

{7,10}

{8,11}

ask(c)

tell(c)

Avoiding Threats

• Identify overlapping Inconsistent activities.

5

7 8 9

10 11 12

6{4,6}

{4,6}

{4,6} {6,9}

{5,8} {7,11}

{7,10}

{8,11}

tell(c)

tell(¬c)

Symbolic Constraint Consistency

• Promote or demote

5

7 8 9

10 11 12

6{4,6}

{4,6}

{4,6} {7,9}

{5,8} {7,9}

{7,10}

{8,11}

tell(c)

tell(¬c)

[0,infb]

Outline

• Cooperative Vehicle Missions
• Model-based Programming
• Reactive Model-based Programming 

Language (RMPL)
• Temporal Plan Networks (TPN)
• Activity Planning (Kirk)
• Optional: Hybrid Activity/Path Planning
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Enroute Activity:

3

1

4 5

8

9 10

13

2

6 7 11 12

Enroute [450,540]

Group Traverse

[405, 486]

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

[0,  ]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Ask( PATH1 = OK)

Ask( PATH2 = OK)

Ask( PROCEED)

Traverse to Science Target

Science Target

•Closer look at Group Traverse sub-activity

Group Traverse sub-activity:

3

4

8

6 7

[0, 0]
[0, 0]

Ask( PATH2 = OK)

Ask( PATH2 = OK)
5

•Traverse through way points to science target 

Group Traverse [405, 486]

Group Traverse [405, 486]

[0, 0] [0, 0]

3

4

8

6 7

[0, 0]
[0, 0]

5

•One obstacle between nodes 4 and 5
•Two Obstacles between nodes 6 and 7

[0, 0] [0, 0]

Group Traverse sub-activity:

ObstacleObstacleObstacle

ObstacleObstacleObstacle ObstacleObstacleObstacle

How do we optimally select activities and 
paths?

Current Research:

• Perform global path planning using Rapidly-exploring Random 
Trees (RRTs) (la Valle).

• Search for globally optimal plan by unifying TPN & RRT graphs, 
and by searching hybrid graph best first.

•Perform local kino-dynamic path planning along path segments using 
hybrid maneuver automata (Frazzoli, Dahleh, Feron).

3

4

8

6 7

[0, 0] [0, 0]

5

•Non-explicit representations of obstacles obtained from an incremental 
collision detection algorithm

[0, 0] [0, 0]

Group Traverse sub-activity: RRT: Example

3

4

8

6 7

[0, 0] [0, 0]

5

[0, 0] [0, 0]

Path 1

Path 2
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3

4

8

6 7

[0, 0] [0, 0]

5

[0, 0] [0, 0]

xinit xgoal

Assume rovers take Path 1:

Path 1

Path 2

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example
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4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

Common Node

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example

4 5

xinit

Path 1

xgoal

Xobs

RRT: Example Current Status

• Kirk demonstrated on cooperative scenario using UAV simulation.
• Development on Multi-Rover testbed currently in progress.
• Distributed hybrid activity/path planning in progress.
• Selected for NASA Space Technology 7, Phase A 
• together with IDEA (Muscettola)
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Model-based Cooperative Programming

Goal: Fast, mission-directed coordination of teams of vehicles 
acting in an uncertain environments.

Solution: New middle ground between embedded programming, 
task decomposition execution, and temporal planning.

• Rich embedded language,RMPL, for describing complex 
concurrent team strategies extended to time and contingency.

• Kirk Interpreter “looks” for schedulable threads of execution 
before “leaping” to execution.

• Temporal Plan Network provides a flexible, temporal, graph-
based planning paradigm built upon Simple Temporal Nets.

• Interpreter “leaps” through flexible execution (Nicola talk).
• Current work towards unifying activity planning, global path 

planning and kino-dynamics.


