
1

Timed Model-based Programming:
Executable Specifications for
Robust Critical Sequences

Michel D. Ingham
Brian C. Williams

Model-based Embedded Robotic Systems Group
MIT Space Systems Laboratory

MIT Artificial Intelligence Laboratory
June 10th, 2003

Deep space exploration:
• highly uncertain environment
• require highly robust system

Mission-critical sequences:
• launch & deployment
• planetary fly-by
• orbital insertion
• entry, descent & landing

Motivation

Mars Polar Lander (NASA)

Problem Statement

• Traditional programming can lead to “brittle” sequences:
complexity of plant interactions
complexity of control specification
complexity of off-nominal behavior

• Time is central to the execution of mission-critical sequences:
plant spec: component behavior includes latency and evolution
control spec: hard-coded delays in sequence capture state
knowledge

• Robust executive must consider time in its control and behavior
models, in addition to reactively managing complexity

Current “State of the Practice”

Non-Critical Mission Sequences:
Time-tagged nominal command sequences

GS,SITURN,490UA,BOTH,96-355/03:42:00.000;

 CMD,7GYON, 490UA412A4A,BOTH, 96-355/03:47:00:000, ON;
 CMD,7MODE, 490UA412A4B,BOTH, 96-355/03:47:02:000, INT;
 CMD,6SVPM, 490UA412A6A,BOTH, 96-355/03:48:30:000, 2;
 CMD,7ALRT, 490UA412A4C,BOTH, 96-355/03:50:32:000, 6;
 CMD,7SAFE, 490UA412A4D,BOTH, 96-355/03:52:00:000, UNSTOW;
 CMD,6ASSAN, 490UA412A6B,BOTH, 96-355/03:56:08:000, GV,153,IMM,231,
 GV,153;
 CMD,7VECT, 490UA412A4E,BOTH, 96-355/03:56:10.000, 0,191.5,6.5,
 0.0,0.0,0.0,
 96-350/
 00:00:00.000,MVR;
 SEB,SCTEST, 490UA412A23A,BOTH, 96-355/03:56:12.000, SYS1,NPERR;
 CMD,7TURN, 490UA412A4F,BOTH, 96-355/03:56:14.000, 1,MVR;
 MISC,NOTE, 490UA412A99A,, 96-355/04:00:00.000, ,START OF TURN;,
 CMD,7STAR, 490UA412A406A4A,BOTH 96-355/04:00:02.000, 7,1701,
 278.813999,38.74;
 CMD,7STAR, 490UA412A406A4B,BOTH, 96-355/04:00:04.000, 8,350,120.455999,
 -39.8612;
 CMD,7STAR, 490UA412A406A4C,BOTH, 96-355/04:00:06.000, 9,875,114.162,
 5.341;
 CMD,7STAR, 490UA412A406A4D,BOTH, 96-355/04:00:08.000, 10,159,27.239,
 89.028999;
 CMD,7STAR, 490UA412A406A4E,BOTH, 96-355/04:00:10.000, 11,0,0.0,0.0;
 CMD,7STAR, 490UA412A406A4F,BOTH, 96-355/04:00:12.000, 21,0,0.0,0.0;

If absolutely necessary, conditional behavior via rule-based
monitors or hard-coded state machines

Current “State of the Practice”

Non-Critical Mission Sequences:
Time-tagged nominal command sequences

Critical Mission Sequences:
Standard safing mechanism is disabled
Hard-coded fault protection via highly-specialized s/w modules:
• ad-hoc
• complex
• expensive to generate and test

Usual off-nominal behavior response is “safe mode”:
• costly ground ops
• lost science opportunities

If absolutely necessary, conditional behavior via rule-based
monitors or hard-coded state machines

Current “State of the Practice”

Non-Critical Mission Sequences:
Time-tagged nominal command sequences

2

Related Work

Model-based
Programming

Timed
Formal

Modeling

TMBP

Timed Control Programs,
Timed Plant Models,
Semi-Markov Semantics

RMPL and
Control Sequencer

State-based
Specifications

Robotic
Execution

Constraint
Programming

Synchronous
Programming

Model-based
Execution

Deductive Estimation & Control

Constraint Modeling

Goal-driven, Closed-loop Control

Visual Representations

Embedded
Programming
Constructs

Mission
Data

System

Non-deterministic
Timed Transitions

Related Work

• State-based Specifications
– StateCharts (Harel, ‘87)
– Timed StateCharts (Kesten &

Pnueli, ‘92)

• Synchronous Programming
– Esterel (Berry & Gonthier, ‘92)
– Lustre (Halbwachs, ‘93)

• Constraint Programming
– TCC (Saraswat, Jagadeesan &

Gupta, ‘94)

• Robotic Execution
– RAPs (Firby, ‘89)
– ESL (Gat, ‘96)
– TDL (Simmons, ‘98)

• Timed Formal Modeling
– Timed Transition Systems

(Henzinger, Manna, & Pnueli, ‘92)
– Timed Automata (Alur & Dill, ‘94)

• Model-based Execution
– GDE, Sherlock (deKleer & Williams,

‘87-’89)
– Livingstone (Williams & Nayak, ‘96-

‘97)
– Livingstone2 (Kurien & Nayak, ‘00)

• Model-based Programming
– RBurton (Williams & Gupta, ‘99)
– Titan (Williams, Ingham, Chung &

Elliott, ‘03)

• Mission Data System
– MDS (Dvorak, Rasmussen, et al.,

‘00)

Principal Contributions

1. Language definition
• Textual & graphical programming languages for control spec
• Extension of plant modeling language to capture timed effects

2. Formal execution semantics
• Plant modeled as factored Partially Observable Semi-Markov Decision

Process (POSMDP)
• Control program expressed as timed deterministic automaton
• Execution defined in terms of legal plant state evolutions

3. Algorithm specification & implementation
• Execution of timed control specifications
• Reasoning on timed plant models (for estimation and reconfiguration)

4. Architecture design & implementation
• Modular, state-based & fault-aware
• Demonstrated on representative mission scenario

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Contributions and future directions

C
ap

ab
ili

ty
O

ve
rv

ie
w

Te
ch

ni
ca

l D
et

ai
ls

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions

3

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

(Loosely based on Mars Polar Lander Entry Sequence)

Descent engine to “standby”:

heating

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

off

standby

Descent engine to “standby”:

heating
30-60 sec

off

standby

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Mars Entry Sequence:
State-based Specification

engine to standby

Spacecraft approach:
• 270 mins delay
• Relative position wrt Mars not

observable
• Based on ground computations

of cruise trajectory

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Switch navigation mode:
“Earth-relative” = Star Tracker + IMU

Switch navigation mode:

“Inertial” = IMU only

Mars Entry Sequence:
State-based Specification

engine to standby

Rotate spacecraft:
• Command ACS to entry orientation

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

4

Mars Entry Sequence:
State-based Specification

engine to standby

Rotate spacecraft:
• Once entry orientation achieved,

ACS holds attitude

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Mars Entry Sequence:
State-based Specification

engine to standby

Separate lander from cruise stage:

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

cruise
stage

lander
stagepyro

latches

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• When entry orientation achieved,

fire primary pyro latch
cruise
stage

lander
stagepyro

latches

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• When entry orientation achieved,

fire primary pyro latch
cruise
stage

lander
stage

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• In case of failure of primary latch,

fire backup pyro latch
cruise
stage

lander
stage

Mars Entry Sequence:
State-based Specification

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• In case of failure of primary latch,

fire backup pyro latch
cruise
stage

lander
stage

5

Key Features of Executive

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

• Simple state-based control
specifications

• Models are writable/inspectable by
systems engineers

• Handle timed plant & control behavior
• Automated reasoning through low-

level plant interactions
• Fault-aware (in-the-loop recoveries)

TMBP for Mars Science Lab

MSL Mission (2009)

courtesy NASA JPL

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions Plant
CommandsObservations

Timed
Model-based

Program

Timed
Model-based

Executive

System
Clock

Timed Model-based Program

Timed Model-based Program

Plant
CommandsObservations

Timed Model-based
Program

Timed
Model-based

Executive

System
Clock

Plant
Model

Timed
Control

Program

Timed Hierarchical
Constraint Automata

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

• Graphical specification language for control programs,
in spirit of Timed StateCharts

• Writable, inspectable by systems engineers

composite
locations

primitive
locations

compact encoding: multiple locations
can be simultaneously marked

Mars Entry control program

6

Timed Hierarchical
Constraint Automata

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

• Graphical specification language for control programs,
in spirit of Timed StateCharts

• Writable, inspectable by systems engineers

goal constraint
(hidden state)

clock
initialization

act on hidden state
clocks provide timing mechanism

Mars Entry control program

Timed Hierarchical
Constraint Automata

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

• Graphical specification language for control programs,
in spirit of Timed StateCharts

• Writable, inspectable by systems engineers

conditioned on time &
state constraints

transition transition
guard

maintenance
constraint

Mars Entry control program

Plant
CommandsObservations

Timed Model-based
Program

Timed
Model-based

Executive

System
Clock

Plant
Model

Timed
Control

Program

Timed Model-based Program Concurrent Constraint Automata

• Variant of Factored POMDP (state not directly observable,
next state depends on current state)

Engine:

Off

Firing Standby

cmd = standby

cmd = fire

Failed

cmd =
off

Camera:

cmd = standby

(power = off) AND
(thrust = zero)

(power = on) AND
(thrust = zero) AND

(temp = nominal)

(power = on) AND
(thrust = full) AND
(temp = nominal)

Heating

(power = on) AND
(thrust = zero)

cmd = off

temp =
nominal

Inactive

Taking
Picture Idle

cmd = camOn

cmd = takePicture

Stuck Shutter

cmd = camOff

(power = off) AND
(shutter = closed)

(power = on) AND
(shutter = open)

(power = on) AND
(shutter = closed)

(power = on) AND
(shutter = closed)

unconstraned

modal
constraints

nominal
modes

fault
modes modal rewards

guarded
probabilistic
transitions

Pτ = 99.9%

Pτ = 0.1%

Timed Concurrent
Constraint Automata

• Variant of Factored POSMDP (state not directly observable,
next state depends on current state & time spent in state)

• Extend Concurrent Constraint Automata to timed behavior
Engine:

Off

Firing Standby

cmd = standby

cmd = fire

Failed

cmd =
off

Camera:

cmd = standby

(power = off) AND
(thrust = zero)

(power = on) AND
(thrust = zero) AND

(temp = nominal)

(power = on) AND
(thrust = full) AND
(temp = nominal)

Heating

(power = on) AND
(thrust = zero) AND
(temp = increasing)

cmd = off

tE>=30
& tE<=60

Inactive

Taking
Picture Idle

cmd = camOn

cmd = takePicture

Stuck Shutter

cmd = camOff

(power = off) AND
(shutter = closed)

(power = on) AND
(shutter = open)

tC>=0.1
& tC<=0.2

(power = on) AND
(shutter = closed)

(power = on) AND
(shutter = closed)

unconstraned

pτ(t)

t0.1 0.2

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions

7

Timed Model-based
Executive Architecture

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Plant
Model

Timed
Control
Program

Deductive Controller

Timed Model-based
Program

Timed Model-based
Executive

System
Clock

Mode
Estimation

Mode
Reconfigurationestimates

State

Clocks

Timers

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Control Sequencer executes THCA

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Engine:

Off

Firing Standby

cmd = standby

cmd = fire

Failed

cmd = off

cmd = standby

(power = off) AND
(thrust = zero)

(power = on) AND
(thrust = zero) AND

(temp = nominal)

(power = on) AND
(thrust = full) AND
(temp = nominal)

Heating

(power = on) AND
(thrust = zero)

cmd = off

temp =
nominal

Deductive Controller provides state estimates
and command sequences that achieve goals

Obs:

Goal: Standby

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Engine:

Off

Firing Standby

cmd = standby

cmd = fire

Failed

cmd = off

cmd = standby

(power = off) AND
(thrust = zero)

(power = on) AND
(thrust = zero) AND
(temp = nominal)

(power = on) AND
(thrust = full) AND
(temp = nominal)

Heating

(power = on) AND
(thrust = zero) AND
(temp = increasing)

cmd = off

tE>=30
& tE<=60

Deductive Controller provides state estimates
and command sequences that achieve goals

t30 60

pτ(t)

Obs:

Goal: Standby

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

8

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

9

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Model-based executive provides robustness
in the goal-driven control loop

Obs:
Goal: Separated

Lander:

Connected

pyro_cmd =
fire-primary

Failed

Separated

0.0001

(primary_pyro =
not-fired) AND
(backup_pyro =

not-fired)

Unsuccessful
Attempt

(primary_pyro =
fired) OR

(backup_pyro =
fired)

(primary_pyro =
misfired) AND

(backup_pyro =
not-fired)

pyro_cmd =
fire-backup

0.001

0.0001

primary pyro misfired!backup pyro fired

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

10

Mars Entry Example

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Complete EDL Scenario

• Proof-of-concept on a representative mission scenario:
“Full” Entry, Descent and Landing scenario

• Control program (57 locations, 16 state vars, 6 clock vars)
• Plant model (~25 components, avg. 3-4 modes per component)

alt: 4600 km

guidance system initialization

alt: 3000 km

command turn to entry attitude

alt: 2300 km

cruise ring separation

alt: 125 km

atmospheric entry

alt: 8800 m

parachute deployment

alt: 7500 m

heatshield jettison

alt: < 7500 m

leg deployment

alt: 2500 m

radar ground acquisition

alt: 1300 m

backshell separation

alt: 40 m

radar power off

alt: 0 m

touchdown

EDL Scenario Highlights
Key Capabilities

• Nominal operations:
– Execution conditioned on state constraints
– Execution conditioned on time constraints
– Nominal mode tracking through commanded and timed transitions
– Accept configuration goal and generate appropriate command

sequence (single-step, multi-step reconfigurations)

• Operations in the presence of faults:
– Fault diagnosis through commanded transitions
– Fault diagnosis through timed transitions
– Recovery by repair (deductive controller)
– Recovery by leveraging physical/functional redundancy (control

sequencer, deductive controller)

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Plant
Model

Timed
Control
Program

Deductive Controller

Timed Model-based
Program

Timed Model-based
Executive

System
Clock

Mode
Estimation

Mode
Reconfigurationestimates

State

Clocks

Timers

TMBP Semantics Plant Model

• Variables:

• Factored POMDP:
, , , , ,PM P P P RΘ Τ Ο= Σ Τ

{ }, ,s c oΠ = Π Π Π

state
vars

control
vars

obs
vars

transitions
: sτ Σ → Σ

initial state
prob 0()P sΘ

transition prob
(' | ,)P s s µΤ

obs prob
(|)P o sΟ

state
reward

()R s

Σ: full assignments σ
over all vars in Π

Σs: plant states s
Σc: control actions µ
Σo: observations o

11

• Variables:

• Factored POSMDP:

Timed Plant Model

, , , , ,TPM P P P RΘ Τ Ο= Σ Τ

{ }, , ,s c toΠ = Π Π Π Π

add Σt , set of
assignments ν
over all plant
timers in Πt

transitions
conditioned on ν
upon transition, subset
of timers are reset

: s tτ Σ → Σ × Σ transition prob
(' | , ,)P s s µ νΤ

timer
vars

Mode Estimation

• Given latest commands and observations, what is the
most likely current state?

• Belief state update to estimate state for POMDPs:
s(0) s(1) s(t-1) s(t)^ ^ ^ ^

(1)
1[]ip s+ •

(1)
2[]ip s+ •

(1)
3[]ip s+ •

most likely
state sj
chosen as s(t)^

(1) ()

1
(1)

(1) (1)

(1) (1)

1

[] []P (| ,)

P (|)[] []
[]P (|)

n
i i

l k l k
k

i
i i l

l l n
i i

k k
k

p s p s s s

o sp s p s
p s o s

µ• + •
Τ

=

+
+ • • + Ο

• + +
Ο

=

=

=

∑

∑

current
belief state

Mode Reconfiguration

• Given current belief state and configuration goal, what is
the first control action from a policy that maximizes
expected reward?

• Solve Bellman equation to compute optimal policy for
POMDPs:

*

1

* *
T

() max
π

π () arg max () P (' | ,µ) V (')
µ '

i
i

i

g

V s E r

s R s s s s
s S

γ

γ

∞

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥= +
⎢ ⎥∈⎣ ⎦

∑

∑

s(0) s(1) s(t-1) s(t)^ ^ ^ ^

µ

Optimal
policy π∗: goal state sg

is max-reward
reachable state
that satisfies the
config. goal

Timed ME & MR

• Problem:
For factored POSMDP, next state depends on current
state, current control actions AND current timer values

• Key Insight:
Define “system state” = plant states ∪ plant timers

• Timed ME can now use same belief state update
equations, where s is now the system state

• Timed MR finds optimal policy based on system state,
defines “wait” actions to accommodate non-deterministic
timed transitions

Timed Control Program

• Control program:

– program locations:

– clocks:

– deterministic automaton:

, , , , , ,cp cp cp cp cp s cpTCP L gλ τ ι= Σ Ω

t
cpΠ

cpL

initial program
location

transitions between locations,
conditioned on state &
current clock values

config. goal
()cp sg l ⊂ Σ

clock init.
() t

cp cplι ⊂ Π

assignments ω to
all clocks in t

cpΠ

Executive Semantics

• Interleaving model of execution
cycle = discrete event + continuous phase

• Legal execution of TMBP:

Such that:
1. initial conditions are valid
2. next state is legal
3. next program location is legal
4. next clock values are legal

Pgm clocks
Pgm location
Plant state

…Cycle start time

0l
0ω

0ŝ
0t 1t

()

()

0

0

0

ˆ 0

0, for all clocks
cp

t t

P s
l

x x

λ

ω

Θ >

=

=

12

Executive Semantics

• Interleaving model of execution
cycle = discrete event + continuous phase

• Legal execution of TMBP:

Such that:
1. initial conditions are valid
2. next state is legal
3. next program location is legal
4. next clock values are legal

Pgm clocks
Pgm location
Plant state

…Cycle start time

0l
0ω

0ŝ
0t 1t

1̂s

()
()

0 0

0 0 0

1 0 0 0 1

()

ˆ, ,

ˆ ˆ, , , ,

cpg g l

MR PM s g

s ME PM s o

µ

µ ω

=

=

=

→

Executive Semantics

• Interleaving model of execution
cycle = discrete event + continuous phase

• Legal execution of TMBP:

Such that:
1. initial conditions are valid
2. next state is legal
3. next program location is legal
4. next clock values are legal

Pgm clocks
Pgm location
Plant state

…Cycle start time

0l
0ω

0ŝ
0t 1t

1̂s

1 0 0 0ˆ(, ,)cpl l sτ ω=

1l→

→

Executive Semantics

• Interleaving model of execution
cycle = discrete event + continuous phase

• Legal execution of TMBP:

Such that:
1. initial conditions are valid
2. next state is legal
3. next program location is legal
4. next clock values are legal

Pgm clocks
Pgm location
Plant state

…Cycle start time

0l
0ω

0ŝ
0t 1t

1 0 ,
where ME MR CS

t
t t t t

ω ω= + ∆
∆ = + +

1ω
1l

1̂s
1l→

→ 1̂s

Executive Semantics

• Interleaving model of execution
cycle = discrete event + continuous phase

• Legal execution of TMBP:

Such that:
1. initial conditions are valid
2. next state is legal
3. next program location is legal
4. next clock values are legal

Pgm clocks
Pgm location
Plant state

…Cycle start time

0l
0ω

0ŝ
0t 1t

1ω
1l

…
…
…

1̂s
→

→ 1̂s
1l →

→ 2ŝ
2l

Implementation Approximations

Mode Estimation:
• Full belief state update is computationally infeasible
• Assume probability of a few most-likely states dominates probability

of other possible states
• Track a limited set of most-likely states, from one cycle to the next

Mode Reconfiguration:
• Assume probability of nominal behavior dominates off-nominal
• Assume reward of being in goal state dominates reward of getting

to goal state
• Perform MR in 2 steps:

– Goal Interpretation: find the max-reward goal state, reachable via
nominal transitions, that satisfies the configuration goal

– Reactive Planning: returns series of control actions that achieve the
goal state

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions

13

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Plant
Model

Timed
Control
Program

Deductive Controller

Timed Model-based
Program

Timed Model-based
Executive

System
Clock

Mode
Estimation

Mode
Reconfigurationestimates

State

Clocks

Timers

Control Sequencer Implementation THCA Execution Algorithm

1. update active clocks
2. check maintenance constraints
3. assert clock initializations & state goals
4. request MR to take action
5. obtain new state estimate from ME
6. await incomplete goals
7. take enabled transitions
8. mark new set of locations
9. return to step 1

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

reactive preemption
goal-driven execution

closed-loop execution
progress due to goal
achievement or preemption

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Plant
Model

Timed
Control
Program

Deductive Controller

Timed Model-based
Program

Timed Model-based
Executive

System
Clock

Mode
Estimation

Mode
Reconfigurationestimates

State

Clocks

Timers

Deductive Controller
Implementation Mode Estimation

• Mode Estimation tracks a limited set of most-likely states
• Explores state space in best-first order:

– Formulate Optimal Constraint Satisfaction Problem (OCSP), to
identify “k-best” extensions to current trajectories (“shortest path”
from set of current possible states to next possible states)

– Solve using OPSAT engine:

best-first
search

best-first
search

mostmost--likelylikely
candidatecandidate

optimaloptimal
feasiblefeasible
modesmodes

conflicts (infeasible modes)conflicts (infeasible modes)

consistent with
model & obs?

consistent with
model & obs?

conflict
database
conflict
database

Timed Mode Estimation

t0

Off Heat

t1

action:
cmd=stby

action:
none

Heat

t1+dt ...

Heat

action:
none

Heat

t1+30+2dtt1+30+dt

Stand
by

action:
none

Heat

t1+30+3dt

Stand
by

action:
cmd=off

Off

action:
none

tE := 0

0.99 0.99

Failed

Failed

Failed Failed Failed Failed

Failed Failed Failed Failed

Failed

Failed Failed Failed

Failed Failed

Failed

tE := 0

tE := 0

tE := 0

tE := 0

tE := 0

1

11

1 1 1

1 1 1 1

tE = dt

tE = 30 tE = 30+dt

tE = dt tE = 30+dt tE = 30+2dt

tE = 30+2dt

tE = 30+3dt

tE = 30+3dt

0.01

0.01

0.99(1-
PT(30+dt))

0.99
PT(30+dt)

Stand
by

0.01

0.99(1-
PT(30+2dt))

PT(30+2dt)

0.01

0.01

0.99

0.99

0.01

0.99

0.01

0.01
0.99

tE := 0

tE = 30+4dt

tE = 2dt

tE = dt

tE = dt

tE = dt tE = 30+dt tE = 30+2dt tE := 0

• For physical plants modeled as TCCA (POSMDP):

Good news:
can leverage existing
OPSAT engine!

Bad news:
state space gets
much larger…

TCCA Mode Estimation
Algorithm (k = 1)

Given current system state s(i), control action µ(i), observation
o(i+1) & current time tabs:

1. Update timer values for s(i)

2. Compute probability associated with each possible next
system state

3. Choose highest-probability system state

4. In this system state, reinitialize to zero any timers
associated with components with changed modes

5. Return resulting system state Perform steps 2 & 3 in best-
first order, by framing as an
Optimal Constraint
Satisfaction Problem, then
solving using OPSAT

14

TCCA Mode Estimation as OCSP

Setup OCSP < x, f, C >:

• decision vars x, such that dom[xj] = reachable target modes

• objective function f(x) = prior probability of state x, i.e.:

• constraint C(x), such that is consistent

Solve using OPSAT

() ()(x | , ,)i i
j jjj

P s tµΤ∏

(1)
xx i

MC o +∧ ∧

Objectives & Outline

• Timed Model-based Execution “in a nutshell”

• Timed Model-based Programming:
a visual programming paradigm

• Illustration of Timed Model-based Execution

• Execution semantics

• Executive implementation

• Conclusions

Conclusions

• TMBP paradigm for visual programming of embedded systems:
– THCA unify features of StateCharts, synchronous programming, constraint

programming, timed automata and robotic execution languages
– CCA allow constraint-based, probabilistic modeling of physical plants
– (TCCA extend CCA to capture timed effects)

• Semantic specification for TMBP:
– Physical plants modeled as factored PO(S)MDPs
– ME as belief state update, MR as decision theoretic planning
– Control programs modeled as deterministic automata
– Control Sequencer steps control program location based on state & time
– Execution of TMBP defined in terms of legal plant state evolutions

• Design & implementation of Timed Model-based Executive:
– Execution architecture is modular, state-based & fault-aware
– Control Sequencer executes THCA
– ME performs approximate belief state update for (T)CCA
– MR performs reactive planning for (T)CCA

Directions for Future Work

Theory:
• Formal verification (model checking) for timed plant

models, timed control programs
• Extension to Hybrid Model-based Programming

– Control programs can specify trajectories in terms of continuous
and/or discrete states

– Fold continuous estimators & controllers into Deductive Controller

Implementation:
• Improve Timed ME

– Move costly M-B deduction offline, through compilation of the timed
models

• Improve Timed MR
– Consider time to reach goal to be included in cost

Backup Slides

Mars EDL: RMPL Code Excerpt

MarsEDL():: {
 do {
 EntrySequence(),
 DescentLandingSequence()
 } watching (landing = success)

}

EntrySequence():: {
 engine = standby;
 t1 = 0;
 when (t1 >= 16200.0) donext {
 nav = inertial;
 t2 = 0;
 when (t2 >= 240.0) donext {
 do {

 always (att = entry-orient),
 when (att = entry-orient) donext (lander = separated)
 } watching (entry = initiated)
 }
 }
}

15

TCCA Mode Reconfiguration
Algorithm Extensions

Tank
2

Tank
1

PDE

Valve1 Valve2

Engine

commands

• Untimed MR algorithms have been
extended to address:
– timed transitions
– irreversible actions

Desired MR behavior, given config.
goal Engine = Firing…

GI should return the goal state:
{PDE = Off, Valve1 = Open, Valve2 =
Open, Engine = Firing}

Thus, it must realize that the Firing
mode is reachable, through the
“uncontrollable” nominal timed
transition from Heating to Standby.

RP should return the following
control sequence:
{PDE-cmd = Turn-on,
Engine-cmd = Standby,
Wait until Standby mode is achieved,
Valve1-cmd = Turn-on,
Valve2-cmd = Turn-on,
Engine-cmd = Fire,
PDE-cmd = Turn-Off}

Assumptions/Limitations

1. Executive is “fast enough” to keep up with plant evolution
– Mode of a component cannot change more than once per

execution cycle, for ME algorithm to function correctly.
– From Control Seq’s perspective, transitions assumed to occur at

execution cycle start times, and plant state is assumed to hold
constant through to the time of the next execution cycle.

– Duration of execution cycle is dictated by Ded. Contr. computation
time, so require this computation time to be short.

– This assumption limits effective resolution of time constraints in
control programs and plant models.

2. Observations are provided to executive in a timely manner
– In the absence of observations to refute nominal behavior, current

exec implementation assumes nominal behavior.
– In case of timed transitions, executive will take transition at

“expected” nominal transition time (mean of transition PDF).
– Observation associated with a transition should be received within

the execution cycle that the triggering command was issued.

Soundness Arguments

• Deductive controller
– founded on proven model-based reasoning techniques
– timed language extensions have properties similar to formal

real-time specification languages, to allow for straightforward
verification

– algorithms implement a tractable approximation of factored
POSMDP semantics

– despite worst-case exponential performance of on-line
reasoning, practical experience has shown adequate
performance for typical engineered systems

– deductive controller enables in-the-loop robustness

Soundness Arguments (cont.)

• Control Sequencer
– graphical language for control programs unifies:

• representational efficiency of Timed Statecharts,
• executable computational model for, and
• verifiability properties of formal RT specification languages

– execution algorithm provides the capabilities of robotic execution
languages:

• conditional execution
• goal-driven execution
• closed-loop execution
• reactive preemption

– execution algorithm is linear in # of THCA locations
– implemented algorithm proven to conform to specified control

sequencer semantic model

Soundness Arguments (cont.)

• Overall Executive
– “traditional” model-based control architecture, familiar to

spacecraft control and system engineers
– control program provides “set points” for deductive controller
– executive reacts to feedback from plant under control
– modular and expandable architecture
– can interface with existing system-level planning technologies

(e.g. Kirk, ASPEN, EUROPA)

Execution Architecture

Control Sequencer

Monitor Adapter Control Adapter

Physical Plant / Simulation

MR

state estimate

goal,
MR request

MR request

command

command

commandobservation

observations
command,
ME request

command,
observation,

ME request

state
estimate

ME MR
dispatcher

M
R

q
u
e
u
e

MR_RTAPI

ME
dispatcher

M
E

q
u
e
u
e

ME_RTAPI

state estimate 2
3

4

5

6

7
8

12

14

15

System
Clock

current time

current time

1

11

13

9 10

16

ME in MDS

Model-based
Mode Estim.

System
State Vars

Local
State Vars

Sensor
Adapters

H/W
Devices

Actuator
Adaptors

Commands
(from controllers)

Measurements

System
States

Qualitative
Observations

Qualitative
Commands

Local
Estimators

Local
States

State
Feedback

Commands
issued

“State of the Art” Solutions

Complexity of
Plant Interactions

Tim
ed M

-B
 E

xec

Titan

Livingstone/L2

C
IR

C
A-II

TD
L

E
S

L

S
C

L
Complexity of
Control Spec.
Complexity of
Fault Behavior
Timed Plant

Behavior
Timed Control

Spec.

ad-
hoc

ad-
hoc

“State of the Art” Solutions

Complexity of
Plant Interactions

Tim
ed M

-B
 E

xec

M
D

S

Titan

Livingstone/L2

C
IR

C
A-II

TD
L

ES
L

S
C

L

Complexity of
Control Spec.
Complexity of
Fault Behavior
Timed Plant

Behavior
Timed Control

Spec.
Executable Visual

Spec.

f/w

ad-
hoc

ad-
hoc

f/w*

* f/w: provides framework for addressing the issue, but no explicit solution

Motivation

Linear Complex

H
ig

h
Lo

w

COMPLEXITY

U
R

G
EN

C
Y

Post Office

Most manufacturing

Junior college

Trade schools

Nuclear plant

Military early-warning

Space missions

Chemical plants

Aircraft

Universities

Mining
R&D firms

Military actions

Power grids

Airways

Dams

Rail transport

Marine transport

Adapted from Charles Perrow, “Normal Accidents: Living with High-Risk Technologies”, 1984.

High-risk systems

Control Sequencer Semantics

• input:
– timed control program TCP
– sequence of plant state estimates
– sequence of cycle start times from system clock

• output:
– sequence of config goals

• internally:
– updates clock variables according to

– advances current TCP location according to

Deductive Controller Semantics

• input:
– plant model TPM
– sequence of config goals
– sequence of observations
– sequence of observation times from system clock

• output:
– sequence of state estimates
– sequence of control actions

• internally:
– composition of Mode Estimation and Mode Reconfiguration

semantic specifications

17

“Standard” POSMDP
vs. “TCCA” Factored POSMDP

• TCCA model is “Factored”:
– state depends on multiple timer values, not just single “time”

parameter

• Fundamental difference due to type of problem each
is meant to address
– Standard POSMDP model for systems where state changes

are more frequent than “decision epochs” (opportunities to
take an action)

– TCCA model for composite system where decision epochs
are more frequent than state changes

“Standard” POSMDP
vs. “TCCA” Factored POSMDP

time

state

time

state
D.E. 1 D.E. 2 D.E. 3 D.E. 4

D.E. 1
D.E. 2

D.E. 3
D.E. 4

…

