SAL-Timed Model-based Programming: **Executable Specifications for Robust Critical Sequences**

Michel D. Ingham Brian C. Williams

Model-based Embedded Robotic Systems Group MIT Space Systems Laboratory MIT Artificial Intelligence Laboratory June 10th, 2003

C	Problem Statement
•	 Traditional programming can lead to "brittle" sequences: complexity of plant interactions complexity of control specification complexity of off-nominal behavior
•	 Time is central to the execution of mission-critical sequences: plant spec: component behavior includes latency and evolution control spec: hard-coded delays in sequence capture state knowledge

Robust executive must consider time in its control and behavior • models, in addition to reactively managing complexity

Current "State of the Practice"												
Non-Critic	Ion-Critical Mission Sequences:											
> Time_ta	and nominal comm	and sequences										
- mine-tag	gged norminal comme	and sequences										
	GS, SITURN, 490UA, BC	DTH,96-355/03:42:00	.000;									
CMD,7GYON,	490UA412A4A,BOTH,	96-355/03:47:00:000,	ON;									
CMD,7MODE,	490UA412A4B,BOTH,	96-355/03:47:02:000,	INT;									
CMD,6SVPM,	490UA412A6A,BOTH,	96-355/03:48:30:000,	2;									
CMD,7ALRT,	490UA412A4C,BOTH,	96-355/03:50:32:000,	6;									
CMD,7SAFE,	490UA412A4D,BOTH,	96-355/03:52:00:000,	UNSTOW;									
CMD, 6ASSAN,	490UA412A6B,BOTH,	96-355/03:56:08:000,	GV,153,IMM,231, GV,153;									
CMD,7VECT,	490UA412A4E,BOTH,	96-355/03:56:10.000,	0,191.5,6.5, 0.0,0.0,0.0, 96-350/									
			00:00:00.000,MVR									
SEB, SCTEST,	490UA412A23A, BOTH,	96-355/03:56:12.000,	SYSI, NPERR;									
CMD, / TURN,	4900A412A4F, BOTH,	96-355/03:56:14.000,	1, PIV K ;									
MISC, NOTE,	490UA412A99A,,	96-355/04:00:00.000,	,START OF TURN;,									
CMD, 7STAR,	490UA412A406A4A, BOTH	96-355/04:00:02.000,	278.813999,38.74									
CMD,7STAR,	490UA412A406A4B, BOTH,	96-355/04:00:04.000,	8,350,120.455999									
CMD,7STAR,	490UA412A406A4C,BOTH,	96-355/04:00:06.000,	9,875,114.162,									
CMD,7STAR,	490UA412A406A4D, BOTH,	96-355/04:00:08.000,	10,159,27.239,									
awn			89.0289991									
1 1011 / 51 0 0	ayuunaı∠nau6A4E,BOTH,	96-355/04:00:10.000,	11, U, U. U, U. U;									

Å	Ō	Current "State of the Practice"
No	n-Criti	cal Mission Sequences:
≻ ⊺	Time-ta	gged nominal command sequences
≻ I r	f absolution	utely necessary, conditional behavior via rule-based s or hard-coded state machines
Γ	5.1.2.2.6	If the supply current for OXIDIZER TANK PRIMARY HEATER, multiplied by the bus voltage, is greater than TBD watts, then the FPP shall issue a command to turn OFF OXIDIZER TANK PRIMARY HEATER.
	5.1.2.2.7	If the supply current for HELIUM TANK PRIMARY HEATER, multiplied by the bus voltage, is greater than TBD watts, then the FPP shall issue a command to turn OFF HELIUM TANK PRIMARY HEATER.
	5.1.2.2.8	If the supply current for STAR TRACKER A, multiplied by the bus voltage, is greater than TBD watts, then the FPP shall issue a command to turn OFF STAR TRACKER A.
	5.1.2.2.9	If the supply current for STAR TRACKER B, multiplied by the bus voltage, is greater than TBD watts, then the FPP shall issue a command to turn OFF STAR TRACKER B.
	5.1.2.2.10	If the supply current for IMU PPSM-A, multiplied by the bus voltage, is greater than TBD waits, then the FPP shall issue a command to turn OFF IMU PPSM-A.
	5.1.2.2.11	If the supply current for IMU PPSM-B, multiplied by the bus voltage, is greater than TBD watts, then the FPP shall issue a command to turn OFF IMU PPSM-B.
	5.1.2.2.12	If the supply current for REACTION WHEEL 1, multiplied by the bes voltage, is greater than TBD watts, then the FPP shall issue a command to turn OFF REACTION WHEEL 1. In addition, the corresponding rules that monitor power dissipation of the remaining three reaction wheels shall be disabled. REACTION WHEEL 1 shall be flagged as "unvaliable" to the G&C task in the MP.

Current "State of the Practice"

Non-Critical Mission Sequences:

- Time-tagged nominal command sequences
- > If absolutely necessary, conditional behavior via rule-based monitors or hard-coded state machines
- > Usual off-nominal behavior response is "safe mode":
 - · costly ground ops
 - · lost science opportunities

Critical Mission Sequences:

- Standard safing mechanism is disabled
- > Hard-coded fault protection via highly-specialized s/w modules:
 - ad-hoc • complex
 - · expensive to generate and test

Principal Contributions

1. Language definition

- Textual & graphical programming languages for control spec
 Extension of plant modeling language to capture timed effects
- 2. Formal execution semantics
 - Plant modeled as factored Partially Observable Semi-Markov Decision Process (POSMDP)
 - Control program expressed as timed deterministic automaton
 - Execution defined in terms of legal plant state evolutions

3. Algorithm specification & implementation

- Execution of timed control specifications
- Reasoning on timed plant models (for estimation and reconfiguration)
- 4. Architecture design & implementation
 - Modular, state-based & fault-aware
 - Demonstrated on representative mission scenario

Objectives & Outline Objectives & Out

Objectives & Outline

- Timed Model-based Execution "in a nutshell"
- Timed Model-based Programming: a visual programming paradigm
- Illustration of Timed Model-based Execution
- · Execution semantics
- · Executive implementation
- Conclusions

57. -

Objectives & Outline

- Timed Model-based Execution "in a nutshell"
- Timed Model-based Programming: a visual programming paradigm
- Illustration of Timed Model-based Execution
- Execution semantics
- Executive implementation
- Conclusions

SA.

EDL Scenario Highlights Key Capabilities Nominal operations: Execution conditioned on state constraints

- Execution conditioned on time constraints
- Nominal mode tracking through commanded and timed transitions
- Accept configuration goal and generate appropriate command
- sequence (single-step, multi-step reconfigurations)

• Operations in the presence of faults:

- Fault diagnosis through commanded transitions
- Fault diagnosis through timed transitions
- Recovery by repair (deductive controller)
- Recovery by leveraging physical/functional redundancy (control sequencer, deductive controller)

Objectives & Outline

- Timed Model-based Execution "in a nutshell"
- Timed Model-based Programming: a visual programming paradigm
- Illustration of Timed Model-based Execution
- Execution semantics
- · Executive implementation
- Conclusions

Implementation Approximations

Mode Estimation:

- Full belief state update is computationally infeasible
- Assume probability of a few most-likely states dominates probability of other possible states
- Track a limited set of most-likely states, from one cycle to the next

Mode Reconfiguration:

- · Assume probability of nominal behavior dominates off-nominal
- Assume reward of being in goal state dominates reward of getting to goal state
- Perform MR in 2 steps:
 - Goal Interpretation: find the max-reward goal state, reachable via nominal transitions, that satisfies the configuration goal
 - Reactive Planning: returns series of control actions that achieve the goal state

Objectives & Outline

- Timed Model-based Execution "in a nutshell"
- Timed Model-based Programming: a visual programming paradigm
- Illustration of Timed Model-based Execution
- · Execution semantics
- Executive implementation
- Conclusions

TCCA Mode E Algorithm	Estimation (k = 1)
Given current system state $s^{(i)}$, con $o^{(i+1)}$ & current time t^{abs} :	trol action $\mu^{(i)}$, observation
1. Update timer values for $s^{(i)}$	
2. Compute probability associate system state	d with each possible next
3. Choose highest-probability sys	stem state
 In this system state, reinitialize associated with components w 	t zero any timers nith oged modes
5. Return resulting system state	Perform steps 2 & 3 in best- first order, by framing as an Optimal Constraint Satisfaction Problem, then solving using OPSAT

TCCA Mode Estimation as OCSP SAL

> Setup OCSP < \mathbf{x} , f, C >:

• decision vars x, such that dom[x] = reachable target modes

• objective function f(x) = prior probability of state x, i.e.:

$\prod_{j} P_{\mathrm{T}_{j}}(\mathrm{X}_{j} \mid s^{(i)}, \mu^{(i)}, t_{j})$

• constraint C(x), such that $x \wedge C_{M_x} \wedge o^{(i+1)}$ is consistent

Solve using OPSAT

57. **Objectives & Outline** · Timed Model-based Execution "in a nutshell" · Timed Model-based Programming: a visual programming paradigm · Illustration of Timed Model-based Execution Execution semantics · Executive implementation

Conclusions

- ME performs approximate belief state update for (T)CCA MR performs reactive planning for (T)CCA

Directions for Future Work

Theory:

- · Formal verification (model checking) for timed plant models, timed control programs
- Extension to Hybrid Model-based Programming Control programs can specify trajectories in terms of continuous and/or discrete states
 - Fold continuous estimators & controllers into Deductive Controller

Implementation:

- Improve Timed ME Move costly M-B deduction offline, through compilation of the timed models
- Improve Timed MR Consider time to reach goal to be included in cost

Backup Slides	

Soundness Arguments Soundness Arguments Oeductive controller founded on proven model-based reasoning techniques timed language extensions have properties similar to formal real-time specification languages, to allow for straightforward verification algorithms implement a tractable approximation of factored POSMDP semantics

- despite worst-case exponential performance of on-line reasoning, practical experience has shown adequate performance for typical engineered systems
- deductive controller enables in-the-loop robustness

Soundness Arguments (cont.)

- Control Sequencer
 - graphical language for control programs unifies:
 - · representational efficiency of Timed Statecharts,
 - executable computational model for, and
 - verifiability properties of formal RT specification languages
 - execution algorithm provides the capabilities of robotic execution
 - languages:
 - conditional execution
 - goal-driven execution
 - closed-loop execution
 - reactive preemption
 - execution algorithm is linear in # of THCA locations
 - implemented algorithm proven to conform to specified control
 - sequencer semantic model

Soundness Arguments (cont.)

Overall Executive

SA.

- "traditional" model-based control architecture, familiar to spacecraft control and system engineers
- control program provides "set points" for deductive controller
- executive reacts to feedback from plant under control
- modular and expandable architecture
- can interface with existing system-level planning technologies (e.g. Kirk, ASPEN, EUROPA)

"State of the Art" Solutions								
	SCL	ESL	TDL	CIRCA-II	Livingstone/L2	Titan	Timed M-B Exec	
Complexity of Plant Interactions					✓	~	✓	
Complexity of Control Spec.	✓	✓	✓	✓		✓	✓	
Complexity of Fault Behavior	✓	ad- hoc	ad- hoc	✓	✓	✓	√	
Timed Plant Behavior				✓			✓	
Timed Control Spec.	~	~	~	~			✓	

"State of the Art" Solutions								
	SCL	ESL	TDL	CIRCA-II	Livingstone/L2	Titan	MDS	Timed M-B Exec
Complexity of Plant Interactions					✓	~	f/w*	✓
Complexity of Control Spec.	✓	~	~	✓		~	~	✓
Complexity of Fault Behavior	✓	ad- hoc	ad- hoc	✓	✓	~	✓	✓
Timed Plant Behavior				✓			f/w	✓
Timed Control Spec.	✓	~	✓	✓			✓	✓
Executable Visual Spec.					✓	~		✓
* f/w: provides framework for addressing the issue, but no explicit solution								

Control Sequencer Semantics

• input:

5. .

- timed control program TCP
- sequence of plant state estimates
- sequence of cycle start times from system clock
- output:
 - sequence of config goals
- internally:
 - updates clock variables according to
 - advances current TCP location according to

Deductive Controller Semantics

input:

- plant model TPM
- sequence of config goals
- sequence of observations
- sequence of observation times from system clock
- output:
 - sequence of state estimates
 - sequence of control actions
- internally:
 - composition of Mode Estimation and Mode Reconfiguration semantic specifications

"Standard" POSMDP vs. "TCCA" Factored POSMDP

- TCCA model is "Factored":
 - state depends on multiple timer values, not just single "time" parameter
- Fundamental difference due to type of problem each is meant to address
 - Standard POSMDP model for systems where state changes are more frequent than "decision epochs" (opportunities to take an action)
 - TCCA model for composite system where decision epochs are more frequent than state changes

