
Page 1

Chart: 1

A Reactive Model-based Programming Language
for Robotic Space Explorers

Michel Ingham, Robert Ragno, Brian Williams
MIT Space Systems Lab

MIT Artificial Intelligence Lab
Cambridge, MA

i-SAIRAS
June 21, 2001

Chart: 2

Outline

• Motivation, Objective & Approach

• Example Scenario

• Introduction to Model-based Programming

• Reactive Model-based Programming Language
(RMPL) Overview

• Compilation and Execution of Model-based Programs

• Future work

Chart: 3

Motivation for Highly
Autonomous Systems

DS-1

Chart: 4

State-of-the-art
Autonomy S/W

• key challenge: complexity of s/w interfaces
• different modules require distinct knowledge representation

– benefit: ability to reason at different levels of abstraction
– drawbacks: potential divergent models, knowledge duplication

Diagnosis
& Repair

Mission
Manager

Scripted
Executive

Planner/
Scheduler

Goals

Planning models

Scripts

Component models

Chart: 5

Research Goal

Barrier to wide deployment of autonomy s/w:

Our goal:

head toward unified representation of spacecraft

accommodate complexities of spacecraft domain

maintain capacity for knowledge abstraction

numerous tasks use variety of
modeling & programming languages

Chart: 6

Approach

To reach this goal, we introduce:

Model-based Programming
(a novel approach to designing embedded s/w systems)

Reactive Model-based Programming Language
(a language for encoding model-based programs)

Today’s objective:
show how M-B Programming & RMPL
provide a framework for robust sequencing

Page 2

Chart: 7

Model-based Programming
Example Scenario

EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

Orbital Insertion Scenario:

Consider a simplified spacecraft, consisting of two identical redundant
engines and a science camera

Chart: 8

Control Program

Control program specifies
state trajectories:

• must fire one of the two engines

• set both engines to ‘standby’

• prior to firing engine, camera must be
turned off to avoid plume contamination

• in case of primary engine failure, fire
backup engine instead

OrbitInsert()::

(do-watching ((EngineA = Firing) OR
(EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 9

Hidden State

• Note that states like (EngineA = Standby) are not
DIRECTLY observable or controllable…

• Thinking in terms of such “hidden states” makes the
task of writing the control program much easier

• Model-based Programming provides a way to infer
and control these hidden states

(thrust = zero) AND (power_in = nominal)

last command issued = last command issued = ““standbystandby--cmdcmd””

⇒ (EngineA = Standby)

Given observations…
and command history…
can infer “hidden state”!

Similarly, can use system knowledge to “figure out”
how to achieve this state. [Turn on DriverA]; [Open ValveA]

Chart: 10

Simplified S/C System Model

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

FiringFiring
OnOn

Camera ModelCamera Model

OffOff

component modes…

Chart: 11

Simplified S/C System Model

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

(thrust = full) AND
(power_in = nominal)

FiringFiring

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

OnOn

Camera ModelCamera Model

OffOff(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

component modes…

described by constraints on variables…

Chart: 12

Simplified S/C System Model

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed
offoff--
cmdcmd

standbystandby--
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01
standbystandby--

cmdcmd
firefire--
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff--
cmdcmd

turnonturnon--
cmdcmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

component modes…

described by constraints on variables…

deterministic and probabilistic transitions

Page 3

Chart: 13

Control
Program

Model-based Programming

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer
State

estimates

System
Model

Control
Program

Fundamental principle:
Control programs can be written by asserting and checking STATES which may
be “hidden”, rather than operating directly on observable or control variables…

Chart: 14

Model-based Programming

Control
Program

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer
State

estimates

System
Model

Such a control program is input to a sequencing engine, for onboard execution.

Onboard Sequencer

Chart: 15

Model-based Programming

Control
Program

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer
State

estimates

System
Model

An underlying mode estimation and reactive planning layer uses a model of
the system to deduce the system state from the observations, and to figure out
how to achieve a specified goal state.

Deductive
Mode Estimator &
Reactive Planner

System
Model

Observations Commands

Chart: 16

Model-based Programming

Control
Program

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer
State

estimates

System
Model

An underlying mode estimation and reactive planning layer uses a model of the
system to deduce the system state from the observations, and to figure out how
to achieve a specified goal state.

State
estimates

Configuration
goals

Chart: 17

RMPL Constructs

• constraint

• concurrency

• sequential ordering

• conditional branching

• guarded transition

• iteration

• extended guarded transition

• iterated guarded transition

• preemption

c

(parallel exp1 exp2 …)

(sequence exp1 exp2 …)

(if-thennext-elsenext c then-exp else-exp)

(unless-thennext c exp)

(always exp)

(when-donext c exp)

(whenever-donext c exp)

(do-watching c exp)

Chart: 18

RMPL Model of Computation

• To support efficient execution, RMPL code is compiled
into Hierarchical Constraint Automata (HCA):

(always A)

A

(when-donext c A)

Ac
c
_

(whenever-donext c A)

Ac

(do-watching c A)
MAINTAIN(c)

_

A

c

c

(parallel A B)

A B

(if-thennext-elsenext c A B)

Ac

B
c
_

(unless-thennext c A)

Ac
_

Page 4

Chart: 19

RMPL Control Program

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 20

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 21

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 22

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 23

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 24

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Page 5

Chart: 25

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 26

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 27

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 28

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Chart: 29

Executing HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

Nominal (i.e. fault-free)
orbital insertion scenario

Chart: 30

Executing HCA - Step 1

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• initialize HCA by marking
all start locations

Page 6

Chart: 31

Executing HCA - Step 1

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

EAS

• initialize HCA by marking
all start locations

• assert states from
currently marked locations

Control
Program

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer

State
estimates

System
Model

EBS

CO

Chart: 32

Executing HCA - Step 1

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• initialize HCA by marking
all start locations

• assert states from
currently marked locations

• obtain state update

Control
Program

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer

State
estimates

System
Model

Camera
= Off

Chart: 33

Executing HCA - Step 1

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• initialize HCA by marking
all start locations

• assert states from
currently marked locations

• obtain state update
• take enabled transitions:

• location’s state assignment
achieved

• transition and maintenance
conditions currently hold true

Achieved

X

X

Not yet
Achieved

Not yet
Achieved

Chart: 34

Executing HCA - Step 1

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• initialize HCA by marking
all start locations

• assert states from
currently marked locations

• obtain state update
• take enabled transitions:

• location’s state assignment
achieved

• transition and maintenance
conditions currently hold true

• mark new set of locations

Chart: 35

Executing HCA - Step 2

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• (EngineA = Standby) &
(EngineB = Standby)
achieved in this step

Chart: 36

Executing HCA - Step 2

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• (EngineA = Standby) &
(EngineB = Standby)
achieved in this step

• two execution threads
terminated & two
transitions enabled

Achieved

Achieved

X

X

Page 7

Chart: 37

Executing HCA - Step 3

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• (EngineA = Firing)
asserted in this step, but
not yet achieved

Not yet
Achieved

X

Chart: 38

Executing HCA - Step 4

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

• (EngineA = Firing)
achieved in this step

• maintenance condition
violated, HCA block exited

X

Chart: 39

Model-based Programming

Advantages over traditional approaches to embedded s/w development:

Abstraction:
• straightforward conversion of system engineering knowledge into flight code
• easier to specify desired state than control actions needed to reach it

Powerful inference engines
• e.g. Livingstone (part of DS-1 Remote Agent), Burton
• more flexible and robust than traditional rule-based engines

Modularity
• model-based flight s/w can accommodate late design changes
• allows for transparent upgrading of deductive engines

Model reusability
• over time, build up database of models for subsystems and components
• reduce need for single-use flight code

Verifiability
• state-based control code & system models “readable” by system engineers

Chart: 40

Conclusion

• We have discussed design of M-B Executive, consisting of:
– sequencing layer coded in RMPL & compiled down to HCA
– underlying deductive layer providing ME & RP capabilities, based on

system models expressed in RMPL

• In current implementation, sequencing and deductive layer
are distinct

• Eventual goals:
– integration of both capabilities into a unified system, eliminating

need for separately maintaining control program and system models
– incorporate planning and scheduling capabilities (‘Kirk’ planner,

currently under development)
– accommodate continuous dynamics (Hybrid MPL, currently under

development)

Chart: 41

Backup Slides

Chart: 42

RMPL Overview

• Object-oriented language allowing a domain to be
structured through a component or process hierarchy

• RMPL control programs can be viewed as
deterministic state transition systems, acting on the
plant by asserting and checking constraints in
propositional state logic

• Propositions are assignments of state variables to
values within their domains

• Reactive combinators allow flexibility in expression of
complex system behavior and dynamic relations

• Similar to constructs in Timed CC (Saraswat, et al.)

Page 8

Chart: 43

RMPL

Control program must capture following types of behavior:
• conditional branching
• iteration
• preemption
• concurrency

Chart: 44

Expressiveness of RMPL

• To serve as foundation for model-based execution, RMPL
must provide key features of:

– synchronous programming languages
used in industrial embedded reactive systems
e.g. Esterel, Lustre, Signal

– advanced robotic execution languages
provide robust sequencing for ground-based robots and autonomous s/c
e.g. ESL, RAPs, TDL

