

- Compilation and Execution of Model-based Programs
- Future work

Chart 2

-SALPAS	Hidden State	3
	like (EngineA = Standby) ar ervable or controllable	e not
Given observations and command histo can infer "hidden st	Ory last command issued = "sl	andby-cmd"
how to achieve this	s state. [Turn on DriverA]; [Open	ValveA]
task of writing th	s of such "hidden states" ma le control program much eas ogramming provides a way t e hidden states	sier
Chart 9		

	L Constructs	
constraint	c	
concurrency	(parallel exp1 exp2)	
 sequential ordering 	(sequence exp1 exp2)	
 conditional branching 	(if-thennext-elsenext c then-exp else-exp)	
 guarded transition 	(unless-thennext c exp)	
iteration	(always <i>exp</i>)	
 extended guarded transition 	(when-donext c exp)	
 iterated guarded transition 	(whenever-donext c exp)	
preemption	(do-watching c exp)	

200	2 414
Orbitneer():	MAINTAIN (ÉAR OR E → (AS) → (Edetable → (AS) → (Edetable EAR (Engrad - Standy) → (ES) → (Edetable EAR (Engrad - Fring) → (C) → (Edetable - Standy) → (C) → (Edetable - Standy) → (Edetable - Standy)

¹⁻ Model-based Programming
Advantages over traditional approaches to embedded s/w development:
Abstraction: • straightforward conversion of system engineering knowledge into flight code • easier to specify desired state than control actions needed to reach it Powerful inference engines • e.g. Livingstone (part of DS-1 Remote Agent), Burton
more flexible and robust than traditional rule-based engines Modularity model-based flight s/w can accommodate late design changes allows for transparent upgrading of deductive engines
Model reusability • over time, build up database of models for subsystems and components • reduce need for single-use flight code
Verifiability • state-based control code & system models "readable" by system engineers
Chart 39

	RMPL Overview	5
	ented language allowing a doma I through a <i>component or proces</i>	
<i>determinis</i> plant by <i>a</i>	ntrol programs can be viewed as stic state transition systems, acti sserting and checking constrain nal state logic	ng on the
	ons are assignments of state var thin their domains	iables to
	combinators allow flexibility in ex system behavior and dynamic re	
 Similar to 	constructs in Timed CC (Sarasv	vat et al)

SA