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Temporal Plan Execution 
for Continuous Systems

• Plan temporal and state constraints
• Plant dynamics and actuation limits
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Problem Statement

– Achieve state-space and temporal goals specified in plan
– Achieve robustness by exploiting plan flexibility
– Detect plan failure as early as possible

• Challenges
– High dimensionality
– Actuation limits
– Interaction of limits from plan 

with limits of plant
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Key Innovations
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Roadmap

• Introduction
– Problem statement, innovations

• Background and approach
– Temporal plan execution systems
– Robot trajectory tracking systems
– Flow tubes

• Architecture and implementation
• Results
• Summary

Temporal Plan Execution Systems

- Activity plan consists of events and activities.
- Activities have temporal constraints.
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- Activity plan consists of events and activities.
- Activities have temporal constraints.
- Activity plan compiled into distance, dispatchable graph 

[Muscettola, 1998].
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Temporal plan execution systems

1. Initialize execution windows.
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Temporal plan dispatcher

1. Initialize execution windows.
2. Schedule next event.

- Set event execution time to valid time 
in window

3. Wait until event time.
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1. Initialize execution windows.
2. Schedule next event.

- Set event execution time to valid time 
in window

3. Wait until event time.
4. Update execution windows.
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Temporal plan dispatcher

1. Initialize execution windows.
2. Schedule next event.

- Set event execution time to valid 
time in window

3. Wait until event time.
4. Update execution windows.
5. If no more events, then done, 

else, go to 2.
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High impedance ref. trajectory tracking
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Goal region

Flow tube:  all trajectories 
that satisfy plan goal

- fully exploits plan 
flexibility

- always know if state is 
feasible

[Bradley and Zhao, 1993]
[Frazzoli, 2000]

Extend temporal plan execution

• Extend to hybrid systems through use of flow tubes
• Begin with plan specifying temporal constraints for activities

1 1AS u b -s y s te m  1

[1 0 0 ,  2 0 0 ]

2 1A

S u b -s y s te m  2

2 2A
[7 0 ,  9 0 ] [5 0 ,  1 0 0 ]

[0 ,  2 0 0 ]

Extend temporal plan execution

• Extend to hybrid systems through use of flow tubes
• Begin with plan specifying temporal constraints for activities

• Add continuous state 
constraints 
(CM, foot placement)

• Compute 
flow tubes
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Flow tube computation
Flow tubes computed by 

reachability analysis
[Bradley and Zhao, 1993]
[Bemporad, et al., 2002]
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Flow tube computation
Flow tubes computed by 

reachability analysis
[Bradley and Zhao, 1993]
[Bemporad, et al., 2002]
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Problem:  highly nonlinear system,
18ℜ∈q

Reachability analysis only works for small, linear systems!

Solution:  linearize and decouple plant into set of smaller 
linear systems. sety
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[Hofmann, et al., 2004]
[Khatib, et al., 2004

Abstracted Plant

• Use of abstracted plant presents new challenges.
– Decoupled sub-systems must be synchronized
– Example:  Fwd. movement of CM and swing foot
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Key idea:  goal region arrival time can be adjusted by adjusting parameters
- Range of arrival times is controllable, subject to initial state, actuation 

limits
- Controllable temporal range of an activity:  a key concept in temporal 

plan execution systems 

Roadmap

• Introduction
– Problem statement, innovations

• Background and approach
• Architecture and implementation

– Plan compilation
– Plan execution

• Results
• Summary
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Plan Compilation

1. Compute dispatchable graph [Muscettola, 1998]
– This gives tightest duration bounds for all activities
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Plan Compilation

1. Compute dispatchable graph [Muscettola, 1998]
– This gives tightest duration bounds for all activities

2. For each activity, compute flow tubes, based on duration bounds
– Using reachability analysis with input and state constraints
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Flow Tube Computation

• Flow tube cross section
– Set of states, c, from which goal can be reached in 

duration d
• Flow tube formed by set of cross sections
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Temporal controllability of an initial state

• Initial state is in flow tube over duration range
– Initial state is an element of all cross sections in this 

range 
• For any duration in this range

– Control input can be adjusted so that state is in goal 
region after this duration
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Flow Tube Computation

• Plant dynamics
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Actuation limits

Flow Tube Approximation

• Approximate cross section with polyhedron
• Find y_min, y_max
• Discretize interval [y_min, y_max]
• For each position, find min and max velocity
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Flow Tube Approximations Plan Execution – Temporal plan dispatcher

1. Update execution windows

2. Schedule next event
• to a time consistent with window

3. Wait for event

4. If no more events, done,
else, go to 1
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Plan Execution – Hybrid dispatcher
1. Update execution windows

2. Schedule next event
• to a time consistent with window

3. Find a flow tube consistent with
• Current state
• Activity duration implied by event

4. Wait for event
• Monitor progress to goal
• If out of flow tube, plan has failed
• If in flow tube, adjust control 

parameters, if necessary 
• If in goal, done with activity

5. If no more events, done,
else, go to 1
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Results

Lateral CM with push disturbance
-Blue – 40 N

-Green – 35 N
-Black – 25 N

Discussion

Discussion
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Notes

• In discussion, consider showing video from soccer
– One where player kicks a ball
– One where player gives up on chasing a ball
– This is a key point – emphasize that using plan flexibility 

to respond to disturbances, but also, limits are defined.  
Thus, knowing when to quit is important

Summary
• Requirements for walking task execution 

different from those of periodic walking

Summary
• Requirements for walking task execution 

different from those of periodic walking
– Observe state-space, temporal constraints


