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Motivation

• Highly complex artifact
• Long autonomous operation in a harsh environment
• Robust operation – fault tolerance

Monitoring and diagnosis capabilities are critical for 
building highly autonomous artifacts that can operate 
robustly in harsh environments of a long period of time.

Advanced Life Support System 
-

BIO-Plex
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Overview

• Probabilistic Hybrid Automata
– Model & Execution

• Concurrent Probabilistic Hybrid Automata
• Hybrid Estimation

– Overview – intuitively & filtering background
– Problem Formulation
– A* Formulation

• Example
• Discussion & Conclusion

4

why Hybrid Mode/State Estimation?

Monitoring and Diagnosis has to track the system’s behavior 
along both its continuous state changes and its discrete 
mode changes and their system-wide interaction.

• operational modes

• failure modes

• estimation and filtering of
continuously valued 
variables
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Hybrid Model

A concurrent Probabilistic Hybrid 
Automata (cPHA) is a hidden 
Markov model, encoded as a set of 
components with modes that exhibit 
a continuously valued dynamical 
behavior that is expressed by 
difference / algebraic equations.

concurrent Probabilistic
Hybrid Automata (cPHA)
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Probabilistic Hybrid Automata

servo valve
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Probabilistic Hybrid Automata

xd mode (discrete state) with domain Xd
xc continuous state with domain 
ud discrete command with domain Ud
uc continuous command with domain  
yc continuous output with domain

F      ................. discrete-time dynamics for each mode
(sampling-period Ts)  

T ................. guarded probabilistic transitions between  modes
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Mode / State Transition
Discrete mode changes and continuously valued evolution of 

the state variables take place at two different rates:

a) continuous evolution is captured at the sampling-rate

b) probabilistic mode changes take place instantly
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Mode / State Transition

State transition: no transition is triggered (x’d,(k) = xd,(k+1)) and time proceeds for
one sampling period:  t(k+1)= t(k) + Ts. . The evolution of the continuous state 
x’c,(k) → xc,(k+1) is captured by the discrete-time dynamic model that holds for x’d,(k).
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Mode Transition State Transition

Mode transition: time proceeds only infinitesimally t’(k)= t(k)+ ε so that the 
evolution of the continuous state xc,(k)→ x’c,(k) can be neglected: x’c,(k)= xc,(k)
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concurrent Probabilistic Hybrid Automata

PHA1 PHA2

PHA3

PHA4

continuous
input uci output / observed

variable yci (cont.)

PHA componentinternal
variable

discrete
input udj

• concurrent PHA components are connected to inputs (continuous and discrete)
and outputs of the cPHA and interconnected by internal variables.

• observed variables = internal variable + additive Gaussian noise
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PHA1 PHA2
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Probabilistic Hybrid Automata

Concurrent Probabilistic Hybrid Automata

A ................ set of PHAs
continuous and discrete command variables 

yc .................  observed continuous variables
vs, vo ............ state disturbances and sensor noise inputs 

characterized by Nx, Ny
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Roadmap

• Probabilistic Hybrid Automata
– Model & Execution

• Concurrent Probabilistic Hybrid Automata
• Hybrid Estimation

– Overview – intuitively & filtering background
– Problem Formulation
– A* Formulation

• Example
• Discussion & Conclusion
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Hybrid Mode / State Estimation

Task Overview:

Hybrid Estimation Problem: Given a cPHA model for a system, a sequence 
of observations and the history of the control inputs generate the leading set 
of most likely states at time-step k
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discrete
input ucj
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Background: Multi-Model Estimation

Hypothesis
Selection 

and 
Data Fusion

Continuous Estimators
(e.g. Kalman Filter Bank)

estimated mode & state {xd , xc }
sensor signals yc
and control inputs uc

advantages: high fidelity estimation of continuous behaviors
noise handling and incipient fault detection

disadvantages: limited to tracking a small number of hypothesis
(limited size of the filter bank)

Hypothesis selection and Data Fusion:
determines the most likely mode and 
continuous state for the system as well as 
provides the initialization for the filter bank.

State Estimator: Static filter bank 
that maintains a trajectory estimate for 
every mode.
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hybrid Mode / State Estimation

Hybrid
Mode

Estimator

Concurrent PHA Model

Continuous Estimators
(e.g. Kalman Filter Bank)

estimated mode & state x = {xd ,xc}
and it’s belief state h[x]sensor signals yc and

control inputs uc , ud

Hybrid State Estimator
Maintains the set of most likely hybrid 
state estimates as a set of trajectories.
A Hidden Markov Model style belief 
state update is used to determine the 
likelihood for each traced trajectory

Hybrid Mode estimator:
Determines for each trajectory the possible 
transitions, and specifies (dynamically) the 
candidate trajectories to be tracked by the 
continuous state estimators. 
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hybrid Mode/State Estimation
At each time step k, we evaluate for each trajectory:

old estimate:
x(k-1)={xd,(k-1) , xc,(k-1)}, h(k-1)
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hybrid Mode Estimation
At each time step k, we evaluate for each trajectory:

Pt

mode transition:
xd,(k-1) = mi → x’d,(k-1)  = mj

x’(k-1) = {x’d,(k-1) , xc,(k-1)}, 
h’ = Pt h(k-1)

old estimate:
x(k-1)={xd,(k-1) , xc,(k-1)}, h(k-1)
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Transition Probability Po

C12  guards the transition to 
either m3 (nominal transition) 
or to m4 (failure transition):

12 2: 580COC c ppm£

580 cCO2

mean of estimated CO2
concentration

guard boundary

probability PC
of guard C12

transition probability = guard probability * thread probability
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hybrid Mode Estimation
At each time step k, we evaluate for each trajectory:

new estimate
x(k) = {xd,(k) , xc,(k)}, 
h(k) = Po  h’

continuous behavior 
x’c,(k-1) → xc,(k) , xd,(k)= x’d,(k-1)

Pt
Po

old estimate:
x(k-1)={xd,(k-1) , xc,(k-1)}, h(k-1)

mode transition:
xd,(k-1) = mi → x’d,(k-1)  = mj

x’(k-1) = {x’d,(k-1) , xc,(k-1)}, 
h’ = Pt h(k-1)
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Observation Probability Pt

We compare the sensor signal yc(k) with its estimation for 
mode mj using an extended Kalman filter.

→ one extended Kalman filter for each hypothesis

1T
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operation performed by an (extended) Kalman filter:

1) state prediction: xc,(k-1), P(k-1) , uc,(k-1) → x’c,(k), P’(k)
• residual calculation: x’c,(k), P’(k),  yc(k) → r(k) , S(k) , Po
• Kalman filter gain calculation: P’(k) → k(k)
• state estimate refinement: x’c,(k), P’(k), k(k) , r(k) → xc,(k), P(k) 
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mode transition:
xd,(k-1) = mi → x’d,(k-1)  = mj

x’(k-1) = {x’d,(k-1) , xc,(k-1)}, 
h’ = Pt h(k-1)

old estimate:
x(k-1)={xd,(k-1) , xc,(k-1)}, h(k-1)

exponential Explosion
At each time step k, we evaluate for each trajectory:

The number of possible transitions at each time step can be very large:
E.g. a model with 10 components, each of which can transition to 3 successor
modes has 310 = 59049 possible successor modes for each trajectory at each time step!

Po

new estimate
x(k) = {xd,(k) , xc,(k)}, 
h(k) = Po  h’

continuous behavior 
x’c,(k-1) → xc,(k) , xd,(k)= x’d,(k-1)
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Approach:

how do we tackle the exponential
blowup?

• A mode transition of a component is guarded by C(xc,(k),ud,(k))
i.e. it depends on the continuous state, local to the component,
and the component’s discrete command input.

• no discrete interconnection among the components

→ component transitions independent of each other
→ take mode transition of the cPHA component-wise
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Approach:

formulate node expansion as: 
A* search:

Transition Expansion – expand component-wise:
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Overall hybrid Mode Estimation Scheme:

formulate hybrid estimation as: beam search:
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Bio-Plex / Plant Growth Chamber

Airlock Plant Growth Chamber
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Simulation Result

components: 6 
( FR1, FR2, PIV1, PIV2, LS, PGC)
total no of modes: 9600

fringe size: 5,  (400 estimation steps): 
average candidates: 24.3 
max. candidates: 236
filter calculations: 144
filter executions: 9733

average runtime: ~0.3 s/step (PII-400, 128mb) 
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Simulation Result

components: 6 
( FR1, FR2, PIV1, PIV2, LS, PGC), 
total no of modes: 9600

fringe size: 20,  (400 estimation steps): 
average candidates: 90.2 
max. candidates: 856
filter calculations: 242
filter executions: 36050

average runtime: ~1 s/step (PII-400, 128mb) 
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Discussion & Conclusion

Summary
• cPHA - discrete-time dynamics, probabilistic transition
• additive Gaussian noise model - extended Kalman filter
• comparison to multi-model filtering

Future Research
• other noise models - particle filters
• unknown mode - decomposition
• conflict directed search
• hME in the context of generalized state feedback control
• mode estimation - mode reconfiguration

optional slides
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Guard Probability Pco multi-var. -case

e.g. 2nd order system
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Simulation Result

components: 4 (flow regulator, pulse valve, light system, chamber), total no of modes: 480
fringe size: 20, average candidates: 57, filter calculations (total for experiment): 60
average runtime 0.3 s/step (PII-400, 128mb), space used (total): 1MB (program & data)


