
1

Model-based Autonomy for the
Next Generation of Robotic Spacecraft

Michel Ingham
Lorraine Fesq, John Van Eepoel, Brian Williams

Model-based Embedded and Robotic Systems Group
MIT Space Systems Laboratory

Michael Pekala, David Watson
JHU Applied Physics Laboratory

October 18th, 2002

Objectives

• Define “model-based autonomy”

• Describe model-based executive technology
(Titan)

• Describe application to representative space
mission (ST7-Autonomy concept study)

Objectives

• Define “model-based autonomy”

• Describe model-based executive technology
(Titan)

• Describe application to representative space
mission (ST7-Autonomy concept study)

Model-based Autonomy

Creation of embedded & robotic systems that manage interactions
automatically, by reasoning from models of themselves and their
environment.

• Enabling technology for highly robust spacecraft.

NASA DS-1

Model-based Autonomy

Creation of embedded & robotic systems that manage interactions
automatically, by reasoning from models of themselves and their
environment.

• Enabling technology for highly robust spacecraft.

• Adopts notion of model-based programming.

Embedded Program

State
Plant

Obs Cntrl

Model-based
Embedded Program

State
Plant

Estimated State
Model-based Executive

Obs Cntrl

Model-based Autonomy

Creation of embedded & robotic systems that manage interactions
automatically, by reasoning from models of themselves and their
environment.

• Enabling technology for highly robust spacecraft.

• Adopts notion of model-based programming.

• Automates onboard sequence execution by tightly integrating
goal-driven commanding, fault detection, diagnosis and
recovery.

Mars Entry,
Descent &
Landing

2

Objectives

• Define “model-based autonomy”

• Describe model-based executive technology
(Titan)

• Describe application to representative space
mission (ST7-Autonomy concept study)

Architecture For Model-based Execution

Model-based
Program

Titan Model-based
Executive

Sequencer

Deductive Controller

Control
Program

Plant
Model

Configuration
goals

State estimates

Physical Plant
Flight Control Software

Control actionsObservations

Model-based Execution

Model-based
Program

Model-based
Executive

Sequencer

Deductive Controller

Control
Program

Plant
Model

Configuration
goals

State estimates

Physical Plant
Flight Control Software

Control actionsObservations

Plant model describes behavior
of each component:
– nominal and off-nominal modes
– qualitative constraints
– probabilistic transitions
– costs/rewards

Model-based Execution

Model-based
Program

Model-based
Executive

Sequencer

Deductive Controller

Control
Program

Plant
Model

Configuration
goals

State estimates

Physical Plant
Flight Control Software

Control actionsObservations

RMPL Control program specifies
desired state trajectories:
– encode reactive control sequences

– refer to hidden states as if they were
directly observable & controllable

– include constructs for expressing:
• Concurrent Task Management
• Contingency Handling
• Iteration
• Preemption

...
{when (ground-command = start-playback) donext

{sequence
{do

{always (transmitter-mode = downlinking-data)}
watching (ssr-playback = complete)}

(transmitter-mode = idle)
(downlink-status = succeeded)}}

...

Model-based Execution

Model-based
Program

Titan Model-based
Executive

Sequencer

Deductive Controller

Control
Program

Plant
Model

Configuration
goals

State estimates

Physical Plant
Flight Control Software

Control actionsObservations

Sequencer executes control program:
– takes in activity goals from system-level planner

– each activity invokes an RMPL control program

– conditioned on current state from deductive
controller

– issues configuration goal states to be achieved
by deductive controller

Model-based Execution

Model-based
Program

Titan Model-based
Executive

Sequencer

Deductive Controller

Control
Program

Plant
Model

Configuration
goals

State estimates

Physical Plant
Flight Control Software

Control actionsObservations

Deductive Controller maps from states to sensors/actuators:
– Mode Estimation uses plant model and observations to deduce current state

(mode tracking, fault diagnosis)

– Mode Reconfiguration takes in configuration goals, reasons through plant
model to compute commands that achieve goal (nominal, fault recovery)

3

Model-based Execution

Model-based
Program

Titan Model-based
Executive

SequencerControl
Program

Plant
Model

Configuration
goals

State estimates

Physical Plant
Flight Control Software

Control actionsObservations

Mode
Reconfiguration

Mode
Estimation

ŝ

Objectives

• Define “model-based autonomy”

• Describe model-based executive technology
(Titan)

• Describe application to representative space
mission (ST7-Autonomy concept study)

• 6-month concept definition phase ended January 2002
• autonomy-ready s/c design based on primarily off-the-shelf

components
• mission design highlighting:

– onboard execution of activities normally commanded from ground
– science-driven execution

• software testbed demonstrations of component technologies

New Millennium ST7 Autonomy Mission Concept

Scenario One : Downlink Data Block Activity
– Demonstrate control sequencer operation
– Demonstrate interaction with deductive controller

Scenario Two : Bus Controller Failure
– Demonstrate mode estimation and mode

reconfiguration on more sophisticated plant models

Scenario 1: Downlink Data Block Activity

C&
D

H
OMNI

A

OMNI
B

CMD/TLM
Transmitter Switch

Objective: downlink a block of data from onboard storage to a specified ground station

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Plant Model Overview

DOWNLINKING-
DATA

STREAMING-
RT-TELEM

UNKNOWN

IDLE
go-idle

go-idle

start-streaming

start-
downlinking

stop-
downlinking

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Plant Model Overview

ENABLE-OMNIA

ENABLE-OMNIB
UNKNOWN

STUCK-AT-B

STUCK-AT-A

selectA selectB

4

Downlink Data Block Control Program Overview

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

enable-omnibidle

Initial State:
• omniA in view of ground station
• no ground command received
• omniA in nominal mode (remains so throughout)
• omniB in nominal mode (remains so throughout)
• transmitter in idle mode
• switch set to enable omniB

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

set to mode:
enable-omniAidle

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

• If switch gets stuck in wrong position, fail DownlinkDataBlock activity

fail when mode:
stuck-at-Bidle

C&
D

H
OMNI

A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

• If switch gets stuck in wrong position, fail DownlinkDataBlock activity

• Otherwise, set transmitter to start streaming real-time telemetry so that ground
can establish communication link

enable-omniA
set to mode:

streaming-rt-telem

RT telemetry
stream

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

• If switch gets stuck in wrong position, fail DownlinkDataBlock activity

• Otherwise, set transmitter to start streaming real-time telemetry so that ground
can establish communication link

enable-omniAstreaming-rt-telem

RT telemetry
stream

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

• If switch gets stuck in wrong position, fail DownlinkDataBlock activity

• Otherwise, set transmitter to start streaming real-time telemetry so that ground
can establish communication link

• When start-playback command received from ground, start downlinking data
from onboard storage

start-playback
command

enable-omniA
set to mode:

downlinking-data

5

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

• If switch gets stuck in wrong position, fail DownlinkDataBlock activity

• Otherwise, set transmitter to start streaming real-time telemetry so that ground
can establish communication link

• When start-playback command received from ground, start downlinking data
from onboard storage

data block
downlinking

enable-omniAdownlinking-data

C&
D

H

OMNI
A

OMNI
B

CMD/TLM
Transmitter Switch

Downlink Data Block Control Program Overview

• Set switch to enable appropriate omnidirectional antenna for downlink of
streaming real-time telemetry (based on omni-in-view info from ACS)

• If switch gets stuck in wrong position, fail DownlinkDataBlock activity

• Otherwise, set transmitter to start streaming real-time telemetry so that ground
can establish communication link

• When start-playback command received from ground, start downlinking data
from onboard storage

• When downlink finished, idle transmitter and report success of
DownlinkDataBlock activity

end of data
block playback

set to mode:
idle enable-omniA

Titan Execution Visualization

System-level
Plan Activity

Titan
Export HELIOS

Plant Model
Visualization•Mode estimates

•Configuration goals
•Issued commands

C++ Engine Java Display

Control
Program

Plant
Models

Plant / Simulation

Observations Commands

Titan Execution Visualization

Scenario 2: Bus Controller Failure

• Bus Controller maintains power to the bus, making power
distribution and communications possible.

• Cascading Failure
– Reset Bus Controller
– Power Cycle Bus Controller
– Switch to Redundant Backup Bus Controller

Concept Study Results

• Scenarios address a number of operational use cases

• Highlight desired features for autonomous spacecraft control

• diagnose both single and
multiple faults

• manage completely
unanticipated faults

• recovery by repairing
faulty components

• recovery by using physical
or functional redundancy

• accept high-level activity
goals and decompose into
sequence of configuration
goal states

• accept configuration goals
and generate sequence of
atomic plant commands

Fault operations:Nominal operations:

6

Conclusions

• Model-based execution bridges gap between system-
level planning and real-time commanding

• Robustness in sense-decide-act loop
• Cost reduction / Risk reduction / Mission enabling
• Technology maturation:

MIT
SPHERES

NASA
MESSENGER NASA

Mars Science Lab

Backup Slides

The Case for Spacecraft Autonomy

MESSENGER Mission Cost Breakdown

$31.4

$227.1

$80.5
Phase E

Phase C/D

Phase A/B

Full time operators per spacecraft

0.
8

0.
4 0

Num
be

r o
f

sp
ac

ec
ra

ft0
50

100
150
200
250
300
350
400
450
500

O
pe

ra
tio

ns
 S

ta
ff

Si
ze

 (F
TE

)

100
50

20
10

5
1

1

2

34

1 Iridium
2 Living With a Star
3 Constellation-X
4 Orbiting Wide-angle Light

collectors

COST
Reduction

The Case for Spacecraft Autonomy

COST
Reduction

RISK
ReductionMercury Ve

nu
s

Ea
rth

Ma
rs

Ju
pit

er

Sa
tu

rn

Ur
an

us

Ne
pt

un
e

Pl
ut

o Min
Max

0

100

200

300

400

500

600

700

Ro
un

d
tri

p
Co

m
m

un
ica

tio
ns

 T
im

e (
m

in
ut

es
)

COST
Reduction

RISK
Reduction

The Case for Spacecraft Autonomy

COST
Reduction

RISK
Reduction

Mission
Enabling

Component Library:
• Filter
• Thruster Bus
• Y-Junction
• Balance Orifice
• Regulator
• Fuel Pressure Sensor
• Helium Sensor
• Temperature Sensor
• Oxidizer Tank
• Aux Tank
• GHe Tank
• Basic Thruster
• Main Thruster
• Dual Check Valve
• High Pressure Latch Valve
• Low Pressure Latch Valve
• Pyro Valve

73 Total Components in Model
3-4 States/Component
=> 10^16 Possible System States

7

“Autonomy Rules” in Current Application

Example from MESSENGER
Safing and Fault Protection
Requirements Specification.
(Flight Software Design to

Support 1280 Rules)

ST7-A Autonomy Software Architecture

RMPL Titan

Downlink Data Block Control Program

• Class Definition:
(defclass comm_subsystem ()

(public state transmitter-state transmitter-mode)
(public state switch-state switch-mode)
(public state goal-status downlink-status)
(public state ground-cmd-status ground-command)
(public state omni-view-status omni-in-view)
(public state process-status ssr-playback)

• Method Definition:
(DownlinkDataBlock()
(do-watching (or (downlink-status = failed) (downlink-status = succeeded))

(if-thennext-elsenext (omni-in-view = omniA)
(parallel

(switch-mode = enable-omniA)
(when-donext (or (switch-mode = enable-omniA) (switch-mode = stuck-at-A))

(do-watching (ground-command = start-playback)
(always (transmitter-mode = streaming-rt-telem))))

(when-donext (switch-mode = stuck-at-B) (downlink-status = failed))
(when-donext (ground-command = start-playback)

(sequence
(do-watching (ssr-playback = complete)

(always (transmitter-mode = downlinking-data)))
(downlink-status = succeeded)))

)
;; Similarly for the case where (omni-in-view = omniB)

Set switch to enable appropriate
omnidirectional antenna (based
on omni-in-view info from ACS)

• Class Definition:
(defclass comm_subsystem ()

(public state transmitter-state transmitter-mode)
(public state switch-state switch-mode)
(public state goal-status downlink-status)
(public state ground-cmd-status ground-command)
(public state omni-view-status omni-in-view)
(public state process-status ssr-playback)

• Method Definition:
(DownlinkDataBlock()
(do-watching (or (downlink-status = failed) (downlink-status = succeeded))

(if-thennext-elsenext (omni-in-view = omniA)
(parallel

(switch-mode = enable-omniA)
(when-donext (or (switch-mode = enable-omniA) (switch-mode = stuck-at-A))

(do-watching (ground-command = start-playback)
(always (transmitter-mode = streaming-rt-telem))))

(when-donext (switch-mode = stuck-at-B) (downlink-status = failed))
(when-donext (ground-command = start-playback)

(sequence
(do-watching (ssr-playback = complete)

(always (transmitter-mode = downlinking-data)))
(downlink-status = succeeded)))

)
;; Similarly for the case where (omni-in-view = omniB)

Downlink Data Block Control Program

Set transmitter to start
streaming real-time telemetry

• Class Definition:
(defclass comm_subsystem ()

(public state transmitter-state transmitter-mode)
(public state switch-state switch-mode)
(public state goal-status downlink-status)
(public state ground-cmd-status ground-command)
(public state omni-view-status omni-in-view)
(public state process-status ssr-playback)

• Method Definition:
(DownlinkDataBlock()
(do-watching (or (downlink-status = failed) (downlink-status = succeeded))

(if-thennext-elsenext (omni-in-view = omniA)
(parallel

(switch-mode = enable-omniA)
(when-donext (or (switch-mode = enable-omniA) (switch-mode = stuck-at-A))

(do-watching (ground-command = start-playback)
(always (transmitter-mode = streaming-rt-telem))))

(when-donext (switch-mode = stuck-at-B) (downlink-status = failed))
(when-donext (ground-command = start-playback)

(sequence
(do-watching (ssr-playback = complete)

(always (transmitter-mode = downlinking-data)))
(downlink-status = succeeded)))

)
;; Similarly for the case where (omni-in-view = omniB)

Downlink Data Block Control Program

If switch gets stuck in
wrong position, fail
DownlinkDataBlock
activity

• Class Definition:
(defclass comm_subsystem ()

(public state transmitter-state transmitter-mode)
(public state switch-state switch-mode)
(public state goal-status downlink-status)
(public state ground-cmd-status ground-command)
(public state omni-view-status omni-in-view)
(public state process-status ssr-playback)

• Method Definition:
(DownlinkDataBlock()
(do-watching (or (downlink-status = failed) (downlink-status = succeeded))

(if-thennext-elsenext (omni-in-view = omniA)
(parallel

(switch-mode = enable-omniA)
(when-donext (or (switch-mode = enable-omniA) (switch-mode = stuck-at-A))

(do-watching (ground-command = start-playback)
(always (transmitter-mode = streaming-rt-telem))))

(when-donext (switch-mode = stuck-at-B) (downlink-status = failed))
(when-donext (ground-command = start-playback)

(sequence
(do-watching (ssr-playback = complete)

(always (transmitter-mode = downlinking-data)))
(downlink-status = succeeded)))

)
;; Similarly for the case where (omni-in-view = omniB)

Downlink Data Block Control Program

When start-playback
command received
from ground, start
playing back data
from onboard storage

8

• Class Definition:
(defclass comm_subsystem ()

(public state transmitter-state transmitter-mode)
(public state switch-state switch-mode)
(public state goal-status downlink-status)
(public state ground-cmd-status ground-command)
(public state omni-view-status omni-in-view)
(public state process-status ssr-playback)

• Method Definition:
(DownlinkDataBlock()
(do-watching (or (downlink-status = failed) (downlink-status = succeeded))

(if-thennext-elsenext (omni-in-view = omniA)
(parallel

(switch-mode = enable-omniA)
(when-donext (or (switch-mode = enable-omniA) (switch-mode = stuck-at-A))

(do-watching (ground-command = start-playback)
(always (transmitter-mode = streaming-rt-telem))))

(when-donext (switch-mode = stuck-at-B) (downlink-status = failed))
(when-donext (ground-command = start-playback)

(sequence
(do-watching (ssr-playback = complete)

(always (transmitter-mode = downlinking-data)))
(downlink-status = succeeded)))

)
;; Similarly for the case where (omni-in-view = omniB)

Downlink Data Block Control Program

When playback finished, report
success of DownlinkDataBlock
activity

Bus Controller Failure Scenario Descriptions

• Assumptions:
– All devices have some feedback allowing detection of anomalous behavior (ex. Report of “no-comm”)
– Two bus controller devices, BC A & B, where BC B is the backup for BC A.

• Scenario A
– Initial State: BC_A = on, BC_B = off
– Observe: Comm-status = NO-COMM!
– Diagnosis: BC_A has a resettable failure
– Recovery: Issue reset command to BC_A
– Observe: Comm-status = COMM!

• Scenario B
– Follow on to Scenario A where last observation is:

• Observe: Comm-status = NO-COMM!

– Diagnosis: BC_A has a power cycleable failure
– Recovery: Issue cycle-power command to BC_A
– Observe: Comm-status = COMM!

• Scenario C
– Follow on to Scenario B where last observation is:

• Observe: Comm-status = NO-COMM!

– Diagnosis: BC_A is now broken
– Recovery: Switch to backup bus controller.
– Observe: Comm-status = COMM!

ON OFF

RESETTABLE

POWER-
CYCLEABLE

BROKEN UNKNOWN

cmd-in =
turn-off

cmd-in =
turn-on

cmd-in =
reset

cmd-in =
turn-off

Bus Controller

Comm-status

Current Bus
Controller State

cmd-in
Reset

Watcher
State

Power-Cycle
Watcher State

