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Approach
To extend Dynamic Backtracking to solve Weighted Conditional CSPs, we augment the algorithm 
to appropriately handle activity constraints and soft constraints.  This is accomplished via four 
extensions to the Dynamic Backtracking algorithm:

1.)  A total variable ordering, IO, for searching over conditional variables, and a conditional 
variable instantiation function.

2.) A modified backjumping resolution step which accounts for the conditional variables.

3.) A recursive check to remove deactivated variables from the partial solution when backjumping.
4.) A branch-and-bound search framework augmented to construct minimal suboptimal nogoods.

Results
We benchmarked the CondDB-B+B algorithm against a standard branch-and-
bound algorithm augmented to handle conditional variables (CondBT-B+B).  
We performed two separate experiments.  For the first experiment, the domain 
size was fixed at 3, the maximum depth of activity constraints was fixed at 4, 
and the number of variables was varied from 6 to 20.  For the second test, the 
domain size was fixed at 3, and the depth of activity constraints, n, was varied 
from 1 to 6. 

Test 1.)  Fixed depth of activity constraints and an increasing # of variables.

Test 2.) Fixed domain size and an increasing depth of activity constraints.

Problem Statement
- Many planning and design problems can be characterized as 

optimal search over a constrained network of conditional choices 
with preferences.

- To draw upon the advanced methods of constraint satisfaction to
solve these types of problems, many dynamic and flexible CSP 
variants have been proposed.

- One such variant, the Weighted Conditional CSP (WCCSP), 
employs activity constraints and soft constraints to model both 
conditional dependencies and preferences within a unified 
framework. [1,2]

- So far, however, little work has been done to extend the full suite 
of CSP search algorithms to solve these CSP variants. 

- In this paper, we extend Dynamic Backtracking [3] and similar 
backjumping-based CSP search algorithms to solve WCCSPs by 
utilizing activity constraints and soft constraints in order to 
quickly prune infeasible and suboptimal regions of the search 
space. 

Weighted Conditional CSP (WCCSP)
A WCCSP is a tuple, .)(,,,,,, PfCCCIVI SACI  Where, 

  •   { }niiiI ,,, 21 Κ= , is a set of finite domain variables. 

  •   { }nVVVV ,,, 21 Κ= , are finite domains for each .Ii ∈  

  •   II I ⊆ , is a set of initially active variables. 

  •   CC , is a set of hard constraints that must be satisfied. 

  •   AC , is a set of activity constraints describing the  
        conditions under which each variable becomes active.   
  •   SC , is a set of soft constraints of the form .)(, cfc s  

  •   Where, c  is an assignment of values to variables, and  
       ℜ→)(cf s  is a cost to be incurred if ,Pc∈  where  
        P is the current partial solution (Definition 1). 
  •   ),(Pf assigns a real-valued cost to a partial solution, 
       ,P by summing the costs of each soft constraint which      
       is violated by that partial solution, ∑

∈

=
Pc

s cfPf )()( . 

1.  Set ., IIIP =∅=   Set ∅=iE  for each .Ii∈   (1) Take as input the total variable 
ordering, IO .  (4)    Set the incumbent solution ( )∞∅= ,N . 

 

2.a. (4) If ,ˆ
AIP =  and ),()( NfPf <  P is the new incumbent solution. Set ( ).)(, PfPN =     

 

2.b. (4)  If ,ˆ
AIP =  set ).ˆ,( iPviEE ii −≠∪= Otherwise, select a variable(1)  )(CapplyNextAi =

 (Function 1) and set ∪= ii EE (4) ).,( iPOε  (Definition 8) 
 

3.   Set .ˆ
ii EVL −=   If J is nonempty, choose an element .Lv∈   Add ),( vi to P and return 

to step 2. 
 

4.  If  L  is empty, we must have ;ˆ
ii VE =  let E be the set of all variables appearing in the 

explanations, T, of each elimination explanation, ( )Tvi ,≠  for each  iEv ˆ∈ ,  (2)  plus all 
of the variables appearing in variable i’s activating constraint, AC. (Proposition 4.1, 
OCCSP Backjumping Resolution Step) 
 

5.  If ,∅=E  (4) return the incumbent, N.  Otherwise, let  ),( jvj be the last entry in P such 
that .Ej ∈   Remove ),( jvj  from P and  for each variable Pk∈ which was assigned a 
value after j, remove from kE  any eliminating explanation that involves  j. (3)  Call 
removeUnsupportedVars( j , P ), and set, 

 

∪= jj EE (4) ),( jPOε ( ){ }PEvj j
ˆ, ∩≠∪  

 

 so that jv is eliminated as a value for j because of the values taken by variables in

.P̂E ∩   Now set i = j and return to step 3. 
 

 (1) Extension #1,   (2) Extension #2,   (3) Extension #3,   (4) Extension #4 
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),( kiactiveAC →

AC

{ },,,11 jj vivi == Κ

ki

  •   An activity constraint is an expression of the form  
      ),( kiactiveAC →  where AC  represents an assignment  
       of values to variables, { },,,11 jj vivi == Κ  and is the  

       condition under which variable ki  becomes active.   

applyNextAC( ), Conditional Variable Instantiation Function.   
This function simply scans I from beginning to end and returns the first variable, v , 
which satisfies two conditions:   
 1.)  The variable must not belong to the current partial solution, P. 

(Definition 1) 
2.)  The variable must be on the active variable list, IA.

WCCSP Backjumping Resolution Step: 
Let i  be a variable with domain, },,,,{ 21 mi vvvV Κ=  activity constraint )(iactiveAC → , and let 

mPPP ,,, 21 Κ  be partial solutions that do not include i.  If, 

( ){ } ( ){ } ( ){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ Κ  are all nogoods, then, ACPPP d ∪∪∪∪ Κ21  is 
also a nogood.  Note that the new nogood can be resolved by removing variable i  from the 
problem via conceding any one of its activation conditions, AC .  


