
1

Pseudocode
Dynamic Backtracking for the WCCSP:

Extending Dynamic Backtracking to Solve Weighted Conditional CSPs
Robert Effinger and Brian Williams

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

Approach
To extend Dynamic Backtracking to solve Weighted Conditional CSPs, we augment the algorithm
to appropriately handle activity constraints and soft constraints. This is accomplished via four
extensions to the Dynamic Backtracking algorithm:

1.) A total variable ordering, IO, for searching over conditional variables, and a conditional
variable instantiation function.

2.) A modified backjumping resolution step which accounts for the conditional variables.

3.) A recursive check to remove deactivated variables from the partial solution when backjumping.
4.) A branch-and-bound search framework augmented to construct minimal suboptimal nogoods.

Results
We benchmarked the CondDB-B+B algorithm against a standard branch-and-
bound algorithm augmented to handle conditional variables (CondBT-B+B).
We performed two separate experiments. For the first experiment, the domain
size was fixed at 3, the maximum depth of activity constraints was fixed at 4,
and the number of variables was varied from 6 to 20. For the second test, the
domain size was fixed at 3, and the depth of activity constraints, n, was varied
from 1 to 6.

Test 1.) Fixed depth of activity constraints and an increasing # of variables.

Test 2.) Fixed domain size and an increasing depth of activity constraints.

Problem Statement
- Many planning and design problems can be characterized as

optimal search over a constrained network of conditional choices
with preferences.

- To draw upon the advanced methods of constraint satisfaction to
solve these types of problems, many dynamic and flexible CSP
variants have been proposed.

- One such variant, the Weighted Conditional CSP (WCCSP),
employs activity constraints and soft constraints to model both
conditional dependencies and preferences within a unified
framework. [1,2]

- So far, however, little work has been done to extend the full suite
of CSP search algorithms to solve these CSP variants.

- In this paper, we extend Dynamic Backtracking [3] and similar
backjumping-based CSP search algorithms to solve WCCSPs by
utilizing activity constraints and soft constraints in order to
quickly prune infeasible and suboptimal regions of the search
space.

Weighted Conditional CSP (WCCSP)
A WCCSP is a tuple, .)(,,,,,, PfCCCIVI SACI Where,

 • { }niiiI ,,, 21 Κ= , is a set of finite domain variables.

 • { }nVVVV ,,, 21 Κ= , are finite domains for each .Ii ∈

 • II I ⊆ , is a set of initially active variables.

 • CC , is a set of hard constraints that must be satisfied.

 • AC , is a set of activity constraints describing the
 conditions under which each variable becomes active.
 • SC , is a set of soft constraints of the form .)(, cfc s

 • Where, c is an assignment of values to variables, and
 ℜ→)(cf s is a cost to be incurred if ,Pc∈ where
 P is the current partial solution (Definition 1).
 •),(Pf assigns a real-valued cost to a partial solution,
 ,P by summing the costs of each soft constraint which
 is violated by that partial solution, ∑

∈

=
Pc

s cfPf)()(.

1. Set ., IIIP =∅= Set ∅=iE for each .Ii∈ (1) Take as input the total variable
ordering, IO . (4) Set the incumbent solution ()∞∅= ,N .

2.a. (4) If ,ˆ
AIP = and),()(NfPf < P is the new incumbent solution. Set ().)(, PfPN =

2.b. (4) If ,ˆ
AIP = set).ˆ,(iPviEE ii −≠∪= Otherwise, select a variable(1))(CapplyNextAi =

 (Function 1) and set ∪= ii EE (4)).,(iPOε (Definition 8)

3. Set .ˆ
ii EVL −= If J is nonempty, choose an element .Lv∈ Add),(vi to P and return

to step 2.

4. If L is empty, we must have ;ˆ
ii VE = let E be the set of all variables appearing in the

explanations, T, of each elimination explanation, ()Tvi ,≠ for each iEv ˆ∈ , (2) plus all
of the variables appearing in variable i’s activating constraint, AC. (Proposition 4.1,
OCCSP Backjumping Resolution Step)

5. If ,∅=E (4) return the incumbent, N. Otherwise, let),(jvj be the last entry in P such
that .Ej ∈ Remove),(jvj from P and for each variable Pk∈ which was assigned a
value after j, remove from kE any eliminating explanation that involves j. (3) Call
removeUnsupportedVars(j , P), and set,

∪= jj EE (4)),(jPOε (){ }PEvj j
ˆ, ∩≠∪

 so that jv is eliminated as a value for j because of the values taken by variables in

.P̂E ∩ Now set i = j and return to step 3.

 (1) Extension #1, (2) Extension #2, (3) Extension #3, (4) Extension #4

0

500

1000

1500

2000

2500

5 10 15 20
of variables

of

 s
ea

rc
h

tre
e

no
de

s

CondBT-B+B
CondBT-B+B + h

CondDB-B+B
CondDB-B+B + h

0

1000

2000

3000

4000

5000

2 4 6 8 10 12 14 16 18 20
 # of variables

of

 s
ea

rc
h

tre
e

no
de

s

CondBT-B+B
CondBT-B+B + h
CondDB-B+B
CondDB-B+B + h

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
Maximum depth of nested activity constraints

of

 se
ar

ch
 tr

ee
 n

od
es

CondBT-B+B
CondBT-B+B + h
CondDB-B+B
CondDB-B+B + h

0

200

400

600

800

1000

0 1 2 3 4 5 6
 Maximum depth of nested activity constraints

of

 se
ar

ch
 tr

ee
 n

od
es

CondBT-B+B

 CondBT-B+B + h

CondDB-B+B

CondDB-B+B + h

References
[1] Miguel, I. 2001. Dynamic Flexible Constraint Satisfaction and Its
Application to AI Planning. PhD diss., The Univ. of Edinburgh.

[2] Keppens, J., 2002. Compositional Ecological Modelling via Dynamic
Constraint Satisfaction with Order-of-Magnitude Preferences. Ph.D. Thesis.
Univ. of Edinburgh.

[3] Ginsberg, M. 1993. Dynamic Backtracking. Journal of Artificial Intelligence
Research 1:25--46.

[4] Effinger, R. 2006. Optimal Temporal Planning at Reactive Time Scales via
Dynamic Backtracking Branch-and-Bound. S..M.Thesis., MIT.

[5] Gelle, E. and Faltings, B. 2003. Solving mixed and conditional constraint
satisfaction problems. Constraints, 8(2):107–141.

[6] Sabin, M. 2003. Towards More Efficient Solution of Conditional CSPs.
Ph.D. diss. The Univ. of New Hampshire.

),(kiactiveAC →

AC

{ },,,11 jj vivi == Κ

ki

 • An activity constraint is an expression of the form
),(kiactiveAC → where AC represents an assignment
 of values to variables, { },,,11 jj vivi == Κ and is the

 condition under which variable ki becomes active.

applyNextAC(), Conditional Variable Instantiation Function.
This function simply scans I from beginning to end and returns the first variable, v ,
which satisfies two conditions:
 1.) The variable must not belong to the current partial solution, P.

(Definition 1)
2.) The variable must be on the active variable list, IA.

WCCSP Backjumping Resolution Step:
Let i be a variable with domain, },,,,{ 21 mi vvvV Κ= activity constraint)(iactiveAC → , and let

mPPP ,,, 21 Κ be partial solutions that do not include i. If,

(){ } (){ } (){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ Κ are all nogoods, then, ACPPP d ∪∪∪∪ Κ21 is
also a nogood. Note that the new nogood can be resolved by removing variable i from the
problem via conceding any one of its activation conditions, AC .

