
1

Massachusetts Institute of Technology

“Progress Towards Task-Level Collaboration
Between Astronauts and Their Robotic

Assistants”

Robert Effinger, Andreas Hofmann, Prof. Brian Williams

Model-Based Embedded and Robotic Systems Group
Massachusetts Institute of Technology

ISAIRAS 2005

(Videos not included in the repository) Task Level Collaboration with Robotic Assistants

ATRV Rover Testbed Humanoid Simulators

These Robotic Assistants must be able to:

1.) Interpret task level commands

2.) Execute the tasks safely and reliably, even under
disturbances and execution uncertainties

1.) Interpreting task level commands

RMPL := c | act | TPN1 |
TPN1 [lb , ub] |
parallel (TPN1 , TPN2 , …) |
sequence (TPN1 , TPN2 , …) |
choose (TPN1 , TPN2 , …) |
if (c) thennext (TPN1) |
do (TPN1) maintaining (c)

Reactive Model-Based
Programming Language

(Williams et.al., ISAIRAS 01) A [lb , ub]

sequence (TPN1 , TPN2 , …)

parallel (TPN1 , TPN2 , …)

choose (TPN1 , TPN2 , …)

A [lb , ub]

TPN1

TPN2

…

TPN1 TPN2 …

TPN1

TPN2
…

if (c) thennext (TPN1)

c [lb , ub]
[lb , ub]

Tell (c)

Ask (c) TPN1

do (TPN1) maintaining (c)
TPN1

Ask (c)

A [lb , ub]A [lb , ub]

sequence (TPN1 , TPN2 , …)

parallel (TPN1 , TPN2 , …)

choose (TPN1 , TPN2 , …)

A [lb , ub]

TPN1

TPN2

…

TPN1 TPN2 …TPN1 TPN2 …

TPN1

TPN2
…

TPN1

TPN2
…

if (c) thennext (TPN1)

c [lb , ub]
[lb , ub]

Tell (c)

[lb , ub][lb , ub]

Tell (c)

Ask (c) TPN1Ask (c) TPN1

do (TPN1) maintaining (c)
TPN1

Ask (c)

TPN1

Ask (c)

Temporal Plan Network
(Kim, Williams, Abrahmson IJCAI 01) A Motivating Example: Lunar Roving Vehicle Deployment

(*picture courtesy of NASA)

1.) Interpreting task level commands

Apollo LRV Deployment Sequence

(*picture courtesy of NASA)

LRV-deployment-sequence() [5,20] = {
sequence(

R: Remove insulation blanket [1,3],
R: Remove operating tapes [1,3]
parallel(

A: Lower LRV w/braked reel [1,5],
do (

sequence(
R: deploy aft wheels [0.5,2],
R: deploy front wheels [0.5,2]

)
)maintaining (tension on cable)

)
choose(

A: deploy seats & footrests [1,5],
R: deploy seats & footrests [5,10]

)
)

} [5,20]

Ask(tension on deploy cable)

R: Deploy
front wheels

R: Deploy
aft wheels

[0.5,2]
R: Remove
Insulation

Blanket

[1,3]

R: Remove
Operating

Tapes

[1,3]
A: Lower LRV using

braked reel

[1,5]

[0.5,2]

A: Deploy seats
and footrests

R: Deploy seats
and footrests

[1,5]

[5,10]

RMPL

TPN

Abstract Task Decomposition

R: Deploy seats
and footrests

[5,10]

R: Deploy
seats

R: Deploy
footrests

[3,7] [2,3]

R: Deploy left
seat

R: Walk to left side
of LRV

R: Deploy right
seat

[1,2] [1,3] [1,2]

Deploy Seats and Footrests

(*picture courtesy of NASA)

2

Task Level Collaboration with Robotic Assistants

ATRV Rover Testbed Humanoid Simulators

These Robotic Assistants must be able to:

1.) Interpret task level commands

2.) Execute the tasks safely and reliably, even under
disturbances and execution uncertainties

Flexible Execution Times

Simple Temporal Network (STN):

Equivalent Distance Graph Representation:

(Dechter, Meiri, Pearl 91)

[] lTTuTTulTT jiijij −≤−∩≤−⇒∈− ,

[] 5 , 1 ∈− ij TTBegin-
engine-start

[1,5] End-
engine-start

A B
[l,u]

A B

u

-l
STN Distance Graph

Flexible Execution Times
(Dechter, Meiri, Pearl 91)

A B
[1,5]

A B

5

-1

A Simple STN:

d = 0 d = 5

Consistent !

Determine STN consistency:

- Calculate the Single Source Shortest Path (polynomial-time algorithm)

Flexible Execution Times

Determine STN consistency:

- Calculate the Single Source Shortest Path (polynomial-time algorithm)

- A continually looping negative cycle indicates an inconsistency in STN

(Dechter, Meiri, Pearl 91)

d = 0 d = 1d = - 4 d = - 3d = - 8

Inconsistent STN !

Two methods to detect a continually looping negative cycle
1.) Check for any d-value to drop below –nC.
2.) Keep an acyclic spanning tree of support, and terminate

when a self-loop is formed. (Cesta, Oddi 96)

(most space efficient)

(most time efficient)

A Simple STN:

A B
[5,1]

A B

1

-5

Incremental Reasoning Algorithm

• Basic Idea:

1.) Keep dependency information for each shortest-path value in
the distance graph (Cesta, Oddi 96)

2.) Use incremental update rules to localize necessary changes to the
distance graph.

a.) 3 Update Rules to change a consistent distance graph.
b.) 3 Update Rules to repair an inconsistent distance graph.

• ITC’s Novel Claims:

1.) A conflict extraction mechanism to guide plan repair
2.) Allow multiple arc-changes
3.) Can repair inconsistent distance graphs incrementally

Performance Improvements
UAV Scenarios

Randomly Generated Plans

Water UAVNF
Z1

NF
Z2

WaterA

WaterB

Fire1

Fire2

Seeker UAV

No-Fly Zone

Legend:

Fire
Water
UAV Base

UAV
Base

Plan Goal: Extinguish All Fires
Vehicles: Two Seeker UAVs

One Water UAV
Resources: Fuel & Water

Comparison of Algorithm Runtime

0

2

4

6

8

10

12

1 10 19 28 37 46 55 64 73 82 91

Number of Activities

A
lg

or
ith

m
 R

un
tim

e
(s

ec
)

Non-incremental
Algorithm

Incremental
Algorithm

Comparison of Algorithm Runtime

0

2

4

6

8

10

12

1 10 19 28 37 46 55 64 73 82 91

Number of Activities

Al
go

rit
hm

 R
un

tim
e

(s
ec

)

Non - incremental
Algorithm
Incremental
Algorithm

3

Robustness To Environmental Disturbances
and Uncertainty – Andreas Hofmann, PhD Thesis

R: Walk to Right Side
of LRV

[5,10]

R: Walk to Right Side of LRV [5,10]

Qualitative Behavior Specification for Locomotion

Left Foot

[t_lb, t_ub]

Gait Poses

l1
r1

l1 r2 r2

l1

l2
r2

CM

Right Foot

1RCM ∈
start finish

right
toe-off

right
heel-strike

left
toe-off

left
heel-strike

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞

⎜
⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

• [Muybridge, 1955]
• Stop-action

photographic study
of human and
animal motion

• Gaits depicted as
sequences of
distinct qualitative
poses

Flexible spatial and temporal constraints

Nominal Walking

• Angular momentum tightly
conserved during normal
walking

0 20 40 60 80 100
−0.04

−0.02

0

0.02

D
im

en
si

o
n

le
ss

 S
p

in
M

ed
ia

l−
la

te
ra

l

0 20 40 60 80 100
−0.01

0

0.01

D
im

en
si

o
n

le
ss

 S
p

in
A

n
te

ri
o

r−
p

o
st

er
io

r

0 20 40 60 80 100
−0.01

0

0.01

Gait Cycle (%)

D
im

en
si

o
n

le
ss

 S
p

in
V

er
ti

ca
l

 A

1y&&
∫ ∫

1y& 1y
+

dk

sety _1
+ pk

-

+
-

sety _1&

• Allows for linearizing
controllers that decouple
state variables and makes
them directly controllable
• [Hofmann, et al; 2004]

Walking with constrained foot
placement

• When disturbed, sacrifice
tight angular momentum
conservation temporarily
– Until balance restored

• Implemented in controller
through Lagrangian
relaxation
• Orientation goals lower

priority than balance goals

Hybrid executive coordinates controllers
- to sequence biped through qualitative state plan

Model-based
Executive

State Plan

MIMO Nonlinear
Plant

Linearizing Multivariable
Controller

Plant control
inputs

Plant
state

Hybrid Task-level
Executive

SISO
Linear
Systems

Control
parameters

Plant
state

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Lf_2
Rf_2

Plan compilation for efficient execution

Model-based
Executive

State Plan

MIMO Nonlinear
Plant

Linearizing Multivariable
Controller

Plant control
inputs

Plant
state

Hybrid Dispatcher

Qualitative
Control Plan

Plan Compiler

SISO
Linear
Systems

Control
parameters

Plant
state

Compiler:
• Computes tubes of feasible control

trajectories from Qualitative State Plan.

Dispatcher:
• dynamically searches for optimal

control trajectories within tubes.

• Dispatcher “pulls springs” of each state
variable.

4

Qualitative State Plan
Goal Regions

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

Feasible trajectories must
go through goal regions

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

Flow tubes denote all
feasible trajectories

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

Flow tubes denote all
feasible trajectories

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

Flow tubes denote all
feasible trajectories Center of Mass CM

tube constrained by
foot position tubes:

• Foot positions define
support polygon..

• Center of foot Pressure
CP constrained to be
inside support polygon.

• CM coupled to CP.

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

5

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

Center of Mass CM
tube constrained by
foot position tubes:

• Foot positions define
support polygon..

• Center of foot Pressure
CP constrained to be
inside support polygon.

• CM coupled to CP.

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K
M

dt
CMdCMCP tot

2

2

Support
polygons

Center of Mass CM
tube constrained by
foot position tubes:

• Foot positions define
support polygon..

• Center of foot Pressure
CP constrained to be
inside support polygon.

• CM coupled to CP.

Successful execution of activity

• Execution successful if trajectory stays in state tube.
• If trajectory begins in initial region, and no disturbances,

will stay in tube.
• If trajectories of each activity stay in tube,

plan executes successfully.

Disturbance displaces trajectory in state space

• If disturbance not too large, displacement stays in tube.
• Activity still executes successfully.

Disturbance
displaces
trajectory

Disturbance displaces trajectory in state space

• If disturbance too large, trajectory pushed outside tube.
• Goal region not achievable at the required time.
• Plan failure detected immediately leaving more room for

recovery.

Disturbance
displaces
trajectory

Conclusions

ATRV Rover Testbed Humanoid Simulators

These Robotic Assistants must be able to:

1.) Interpret task level commands

2.) Execute the tasks safely and reliably, even under
disturbances and execution uncertainties

with the Reactive Model-based Programming Language

with Temporal Plan Networks, Qualitative State Plans, and Flow Tubes

6

Any Questions?

Any Questions?

Extra Slides

• Given a consistent STN, changing Arc(i,j)’s cost can
have three possible effects on the shortest path.

1. Arc(i,j) change does not affect the shortest path to node j.
2. Arc(i,j) change improves the shortest path to node j.
3. Arc(i,j) change invalidates the shortest path to node j.

3 Update Rules to Change a Consistent
Distance Graph

ji

g

h

EDistance graph d = 7
d=6

d=5

d=5

2

2

3

10 d = 17

d = shortest path value
p = supporting node

p = g p = j

• Keep track of the support for each shortest path value
(Cesta & Oddi 96)

p = s

p = s

p = s

CASE 1

3 ji
d=6

g

h

2

2

3
d=5

d=5

Distance graph

1.) Arc(i,j) change does not affect shortest path

• The cost from node i to node j increases from 2 to 3.

E10d = 7 d = 17
p = g p = j

d = shortest path value
p = supporting node

• No changes are needed.

p = s

p = s

p = s

3

CASE 2

0 ji

g

h

Distance graph

• The cost from node i to node j decreases from 3 to 0.

• Propagate the improved shortest path.

6
i

E

2.) Arc(i,j) change improves shortest path to j

d=6

2

3
d=5

d=5

10d = 7 d = 17
p = g p = j

16

p = s

p = s

p = s

7

∞
?

40

CASE 3

ji

g

h

2

3

Distance graph

• Increasing Arc(i,j) now invalidates node j’s shortest path.

E

• Reset node j
• Recursively reset nodes dependent upon node j.
• Insert node j’s parents into the queue so that a new path to node j can be

found for node j and all other invalidated nodes.

3.) Arc(i,j) change invalidates shortest path to j

d=6

d=5

d=5

d = 6
p = i

d = 16
p = j

∞
?

7
g

17

j
10

p = s

p = s

p = s

3 Update Rules to repair an Inconsistent
distance graph

• ITC discovers an inconsistency (a negative cycle) by
detecting cyclically dependent backpointers.

D

B

2 3
-1

3 8

-2

-2

-8

d=-3
p=B

d=-1
p=A

d=-10
p=D

S
2d=0

p=none
-1

d=2
p=CA

C
This must be a
negative cycle

cycle:
(A,B,D,C,A)

3 Update Rules to repair an Inconsistent
distance graph

• Now ITC must incrementally repair the inconsistency.

D

B

2 3
-1

3 8

-2

-2

-8

d=-3
p=B

d=-1
p=A

d=-10
p=D

S
2d=0

p=none
-1

d=2
p=CA

C

• Three repair steps:
1.) Reset all nodes in negative cycle.
2.) Recursively reset all nodes that depend on the negative cycle nodes.
3.) Put any parent of a reset node that was not also reset on the Q.

Negative cycle:
(A,B,D,C,A)

∞

∞

∞

∞

?

?

?

?

3 Update Rules to repair an Inconsistent
distance graph

• Now ITC must incrementally repair the inconsistency.

D

B

2 3
-1

3 8

-2

-2

-8

d= ∞
p = ?

d= ∞
p= ?

d=-10
p=D

S
2d=0

p=none
-1

d= ∞
p= ?

A

C

• Change arc cost CD to 10.

• Propagate the new shortest path values

Consistent !

5

13

4

2

A

B

A

S 10

Temporal Plan Network (Kim, Williams, Abrahmson 01)

p1

p2 p3

pL

pR

Redundant
Methods

Start End
beHomeBeforeDark()

imageTargets() driveTo(p3)

[0,30]

[5,10] [5,10]

driveTo(pL) driveTo(p2)

driveTo(pR) driveTo(p2)

[3,6] [2,5]

[20,30] [20,30]

[0,0][0,0]

1

Conflict-Directed Plan Repair

p1

p2 p3

pL

pR

Start End
beHomeBeforeDark()

imageTargets() driveTo(p3)

[0,30]

[5,10] [5,10]

driveTo(pL) driveTo(p2)

driveTo(pR) driveTo(p2)

[3,6] [2,5]

[20,30] [20,30]

[0,0][0,0]

1

Generate New
Candidate Plan

Test
Candidate Plan
For Temporal
Consistency

Inconsistency

Incremental
Updates

8

Conflict-Directed Plan Repair

p1

p2 p3

pL

pR

Start End
beHomeBeforeDark()

imageTargets() driveTo(p3)

[0,30]

[5,10] [5,10]

driveTo(pL) driveTo(p2)

driveTo(pR) driveTo(p2)

[3,6] [2,5]

[20,30] [20,30]

[0,0][0,0]

1

Consistent !

Generate New
Candidate Plan

Test
Candidate Plan
For Temporal
Consistency

Inconsistency

Incremental
Updates

Conclusions

• ITC is an incremental shortest path algorithm that can repair
distance graphs incrementally as the plan changes

• ITC’s Novel Claims:
1.) A conflict extraction mechanism
2.) Allow multiple arc-changes at once
3.) Can incrementally repair inconsistent distance graphs

• Shows an order of magnitude improvement over non -
incremental planning

• Applicable to any plan representation that uses disjunctions of
simple temporal constraints.

