
1

June 7, 2005

Massachusetts Institute of Technology

Factored Symbolic Approach to
Reactive Planning

Seung H. Chung
Brian C. Williams

2

Motivation for Reactive Planning

• Reason for Planning
– Anomalies

• Environmental
• System

– May require repair and/or
reconfiguration capabilities.

• Reason for onboard
reactive planning
– Time-critical situations
– Communication time delays
– Situation in which no

communication available

3

Model-base Programs Interact
Directly with States

• Embedded programs interact with
plant sensors and actuators:
– Read sensors
– Set actuators

Complexity: Programmer must
map between state and
sensors/actuators.

• Model-based programs interact
with plant state:
– Read state
– Write state

Simplification: Model-based
executive maps between state
and sensors/actuators.

Embedded Program

S
Plant

Observations Command

Model-based
Embedded Program

S
Plant

Observations Command

Ŝ
Model-based Executive

4

Increase Robustness through
Model-based Programming

• Raised Level of Abstraction
– Code in terms of desired state

evolution
– Fewer lines of code
– Less chance of introducing bugs

• Executable Specification
– Increase robustness by

synthesizing executable code
from the verified specification

– Models are the specification of
the system

– Model-based Executive operates
on the model, i.e. the
specification

– The model-based embedded
program is guaranteed to meet
the specification

Model-based
Embedded Program

S
Plant

Observations Command

Ŝ
Model-based Executive

5

Model-based Executive:
Deductive Controller

Model-based Programming of Intelligent Embedded Systems and Robotic Explorers
[Williams et al., IEEE’03]

Mode
Estimation

Command

Configuration Goals

Observation

Mode
Reconfiguration

State Estimate

System
Model
(CCA)

System

Mode
Reconfiguration

Command

Configuration Goals

control nondeterministic system in a nondeterministic environment

6

Mode Reconfiguration

Model-based Programming of Intelligent Embedded Systems and Robotic Explorers
[Williams et al., IEEE’03]

Goal
Interpreter

Reactive
Planner

Configuration
Goal

Command

Goal State

State Estimate
(Current)

Reactive
Planner Command

Goal State

State Estimate
(Current)

2

7

Past Approaches to Planning

• General-purpose Planner
– Generates a sequence of commands that achieves the goal.
– A sequence of commands lacks robustness within nondeterministic

system and environment.
– Replanning is expansive.

• Universal Planner
– Maps all possible initial states to the appropriate actions.
– State explosion problem

• Assume:
– x components
– in average n number of states per component

• Number of system states: O(nx)
– Must replan if the goal state changes.

8

Recent Advances in Reactive Planning:
BDD-based Universal Planning

• Ordered Binary Decision Diagrams (BDD)
– Compact representation of Boolean functions
– Efficient algorithms for operating on Boolean functions

• Symbolic Model Checking
– Use of BDDs for model checking
– Reduce the state explosion problem
– Has been very successful [Burch et al., IEEE’90]

• Recognized the similarity of Symbolic Model Checking and
Planning [Cimatti et al., ECP’97]
– Reduce the state explosion problem through the use of BDDs.

• BDD-based Universal planners have been developed:
– Strong Plan, Strong Cyclic Plan, Optimistic Planning, Etc.

A = on

A' = on

cmdA = on

1 0

B = on

9

Recent Advances in Reactive Planning:
Burton [Williams & Nayak, IJCAI97]

• Goal-directed plan :
〈Current State, Goal State〉 → Action

• Introduced a decomposition technique that enables
subgoal serialization (i.e. in essence, applies a
divide-and-conquer approach to reactive planning).
– Mitigate the state space explosion problem.
– Enable a compact encoding of a goal-directed plan.

• Only applicable to a limited subset of a planning
problems (i.e. cannot generate a plan for a system
with interdependent components).

10

Factored Symbolic Approach to Reactive
Planning

• Unify the two complementary approaches:
– Address the state space explosion problem at the global

level through decomposition : divide-and-conquer
– Address the state space explosion problem at the

subproblem level though BDD-based planning

• Extend the decomposition technique of [Williams &
Nayak, IJCAI97] to problems with interdependent
components.

• Extend the BDD-based Universal planning
technique to generate a goal-directed plan.

11

Outline

• Spacecraft telecommunication
system

• Model: Concurrent automata
• Decomposing the Problem:

Transition dependency graph
• Reactive Plan for a

Subproblem: Goal-directed
plan

• Reactive Plan for the Problem:
Decomposed goal-directed
plan

• Executing the Plan

Compute Transition
Dependency

Α

Α Α

Α Α ΑΑ

Α Α ΑΑ

Α

Α Α

ΑΑ

Α

Α

Α

Α

Α Α

Decompose

Serialize
(Topological Order)

Α

Α Α

1

ΑΑ

ΑΑ

2

Α

Α Α

3

Α

4

Compute DGDP

GDPGDP
1

GDPGDP
2

GDPGDP
3

GDPGDP
4

Concurrent Automata
(ΧΑ)

Α

Α Α

Α Α ΑΑ

Α Α ΑΑ

12

Telecommunication Subsystem Example

• Computer
– Controls the devices and sends data to the devices.

• Bus Controller
– Routes the commands and the data to the appropriate devices.

• Transmitter
– Generates a signal that corresponds to the data to be transmitted.

• Amplifier
– Amplifies the signal and transmits it to an antenna.

Bus
ControllerComputer

Antenna

Antenna

AmplifierTransmitter

AmplifierTransmitter

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

3

13

Concurrent Automata (CA)

• Synchronous
– Assume that each automaton performs a single state transition at each time

step.
• Interleaved execution within a time step

– A single main processor executes synchronous activities by interleaving.
– Devices are not synchronized.

off

on

Transmitter Amplifier

B = on
A = off
cmdT = off

B = on
A = off

cmdT = on

off

on

B = on
cmdA = off

B = on
T = on

cmdA = on

off

on

Bus Controller

cmdB = offcmdB = on

14

Interdependent Components

• Turning the transmitter on or off can
generate a noise (i.e. transient signal).

• The transient signal may damage the
amplifier.

• The amplified transient signal may
damage other devices down stream of
the amplifier.

• Constraint on the system:
– The amplifier must be turned off before

the transmitter can be turned on or off.
– The transmitter must be turned on

before the amplifier can be turned on.

off

onTransmitter

Amplifier

B = on
A = off
cmdT = off

B = on
A = off

cmdT = on

off

on

B = on
cmdA = off

B = on
T = on

cmdA = on

15

BDD Encoding of a Concurrent Automaton

A = on

A' = on

cmdA = on

1 0

B = on
off

on

B = on
cmdA = off

B = on
T = on

cmdA = on

T = on

A = on

A' = on

cmdA = on cmdA = on

A' = on

1

B = on

A = on

A' = on

16

Transition Dependency Graph

• Transition Dependency Graph (TDG)
– Vertex: for each automaton
– Edge (v, u): if a transition of the automaton v is conditioned on the state of automaton u.

• Use Strongly Connected Components (SCC) algorithm to find the cyclic
components.

• Compose SCC concurrent automata
– New TDG is acyclic.
– Serialize the subgoals in the inverse topological ordering.

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

17

Subgoal Serialization

• Goal:
– Bus Controller = on
– Transmitter/Amplifier #1 = (on, on)
– Transmitter/Amplifier #2 = (off, off)

• Solve each subgoal sequentially in the inverse topological order

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

18

Composing Strongly Connected CA

• Compose all automata into a single automaton

RSCC = ∧ Ri

Transmitter Amplifier

off

on

B = on
A = off
cmdT = off

B = on
A = off

cmdT = on

off

on

B = on
cmdA = off

B = on
T = on

cmdA = on

B = on
cmdA = off

onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

4

19

Interdependent Concurrent Transitions

One Transition Missing!

≠
onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

B = on
cmdA = off

off

on

B = on
A = off
cmdT = off

B = on
A = off

cmdT = on

off

on

B = on
cmdA = off

B = on
T = on

cmdA = on

A = off A = on
B = on
T = on

cmdA = on

T = offT = on

B = on
A = off

cmdT = off
T = off
A = on

T = on
A = off

B = on
cmdT = off
cmdA = on

20

A = off A = on
B = on
T = on

cmdA = on

T = offT = on

B = on
A = off

cmdT = off
T = off
A = on

T = on
A = off

B = on
cmdT = off
cmdA = onHazard!

Simultaneous Commanding

• Both the transmitter and the amplifier depend on one another for the
transition.

• The transmitter must be commanded “off” and the amplifier must be
commanded “on” precisely at the same time.

• Due to concurrency via interleaving, simultaneous commanding cannot
be guaranteed.

• If the amplifier were commanded on first, and then the transmitter is
commanded off, the amplifier can be damaged.

21

Assuring Proper Execution of Interdependent
Transitions

• Enforce concurrency as interleaving:
– For a given transition, the interdependent state constraints

become the pre- and post-conditions.
– No change to all other automata that are not independent.

Amplifier

Transmitter

A = off A = on
B = on
T = on

T = offT = on

B = on
A = off

cmdA = on

cmdT = off

T = on
A = off

T = on
A = on

B = on

T = off
A = off

T = on
A = off

B = on

cmdA = on

cmdT = off

22

Assuring Proper Execution of Interdependent
Transitions

• Inconsistencies are automatically detected when conjoining
the transition relations in BDDs.

RSCC = ∧ Ri

• Similar to the Graphplan mutual exclusion rule.
– Interference:

• One transition deletes the precondition and/or effect of another.
– Competing Needs:

• Inconsistent preconditions

T = on
A = off

T = on
A = on

B = on

T = off
A = off

T = on
A = off

B = on

cmdA = on

cmdT = off
T = off
A = on

T = on
A = off

B = on
cmdT = off
cmdA = on

23

Goal-directed Plan

• Goal-directed Plan 〈s,a,s’〉 :
〈s, s’〉 → a
– s : current state
– s’ : goal state
– a : first action/intermediate

subgoals in a trajectory that
eventually leads to s’

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current

OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

B = on
cmdA = off

• Executing a goal-directed plan
guarantees:
– Progress toward the goal.
– Finite number of actions to

achieve the goal.
– Optimal (shortest) trajectory

under nominal conditions.

24

n steps

Computing Goal-Directed Plan:
COMPUTEGDP(T)

• Iteratively search backward breath-first for the goal-directed
rules.
– Find 〈s,a,s’〉 that can reach s’ within 1 step
– Find 〈s,a,s’〉 that can reach s’ within 2 steps
– …
– Find 〈s,a,s’〉 that can reach s’ within n steps

1 step
2 steps3 steps

… n-1 steps

5

25

Generating Goal-Directed Plan

• 〈s,a,s’〉 that can reach s’ within 1 step

Transition Relation

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current

OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

B = on
cmdA = off

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

idle

B = on
cmdT = off

B = on
cmdA = off idle

26

Generating Goal-Directed Plan

• 〈s,a,s’〉 that can reach s’ within 2 steps
– To the previous GDP add 〈s,a,s’〉 that can reach s’ in 2 steps:

• s: current state
• s’: goal state that can be reached in 2 steps
• a: first control action that must be commanded to eventually reach s’

onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

B = on
cmdA = off

B = on
cmdT = on

Goal
Current

OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = offOffT, OnA

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

idle

B = on
cmdT = off

B = on
cmdA = off idle

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = off

27

Generating Goal-Directed Plan

• 〈s,a,s’〉 that can reach s’ within 3 steps
– To the previous GDP add 〈s,a,s’〉 that can reach s’ in 3 steps:

• s: current state
• s’: goal state that can be reached in 3 steps
• a: first control action that must be commanded to eventually reach s’

onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

B = on
cmdA = off

Goal
Current

OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = offOffT, OnA

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

idle

B = on
cmdT = off

B = on
cmdA = off idle

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off

28

Generating Goal-Directed Plan

• 〈s,a,s’〉 that can reach s’ within 4 steps
– No new 〈s,a,s’〉 exists that can reach s’ in 4 steps.
– When the fixed-point is reached, generating the plan is complete.

onT
onA

onT
offA

offT
offA

offT
onA

B = on
cmdT = off

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = on

B = on
cmdA = off

Goal
Current

OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = offOffT, OnA

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

idle

B = on
cmdT = off

B = on
cmdA = off idle

B = on
cmdT = on

B = on
cmdA = off

B = on
cmdA = off

29

Computing
Decomposed Goal-directed Plan

• For each automaton
compute a GDP.

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

30

Size of DGDP

• Given
– Number of concurrent automata : n
– Average number of states in each automaton : m
– Number of strongly connected components : l
– Average number automata in a strongly connected component : w
– Number of states for one composed automaton : O(mw)
– Size of a GDP : O(m2w)
– Size of DGDP : O(l · m2w)

• Approximately linear in the number of components
– Assume m and w are constant.
– O(l · m2w) is linear in l < n.

• Use of BDD makes each GDP even more compact.

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

6

31

Execution

• Achieve subgoals incrementally in the inverse topological
order → subgoal serialization ordering

1. Transmitter/Amplifier #2
2. Transmitter/Amplifier #1
3. Bus Controller

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

32

Execution Example
• Current State:

– B = off
– T/A #1 = (off, off)
– T/A #2 = (off, off)

• Goal State:
– B = off
– T/A #1 = (on,on)
– T/A #2 = (off, off)

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

cmdB = on

33

Execution Example
• Current State:

– B = on
– T/A #1 = (off, off)
– T/A #2 = (off, off)

• Goal State:
– B = off
– T/A #1 = (on,on)
– T/A #2 = (off, off)

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

cmdT = on

34

Execution Example
• Current State:

– B = on
– T/A #1 = (on, off)
– T/A #2 = (off, off)

• Goal State:
– B = off
– T/A #1 = (on,on)
– T/A #2 = (off, off)

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

cmdA = on

35

Execution Example
• Current State:

– B = on
– T/A #1 = (on, on)
– T/A #2 = (off, off)

• Goal State:
– B = off
– T/A #1 = (on,on)
– T/A #2 = (off, off)

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

cmdB = off

36

Execution Example
• Current State:

– B = off
– T/A #1 = (on, on)
– T/A #2 = (off, off)

• Goal State:
– B = off
– T/A #1 = (on,on)
– T/A #2 = (off, off)

Goal

cmdB = on idle

idle cmdB = off

Current
On

Off

On Off

Bus Controller

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail

OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

Done!

7

37

DGDP Execution Capability

• Time complexity of one execution cycle.
– GDP rule lookup is polynomial execution.
– DGDP execution is O(l), where l is the number of GDPs.

• DGDP is capable of real-time repair and reconfiguration.
– Repair capability is necessary when anomalies occur during

execution time (e.g. T/A #1 fails into a reparable state).
– Reconfiguration capability is necessary when goal-states change

quickly (e.g. turn on T/A #2 instead).

B = on
cmdT = on

Goal

B = on
cmdT = on

B = on
cmdA = on idle

idle B = on
cmdA = off

Current
OnT, OnA

OnT, OffA

OffT, OffA

OnT, OnA OnT, OffA

idle

B = on
cmdT = off

B = on
cmdA = off

OffT, OffA

fail

fail

fail
OffT, OnA

B = on
cmdA = off

B = on
cmdA = off

B = on
cmdA = off idleOffT, OnA

Transmitter & Amplifier

Computer

Antenna

Antenna

Bus
Controller

AmplifierTransmitter

AmplifierTransmitter

1

2

3

38

Conclusion

• Factored Symbolic approach to Reactive Planning
enables:
– Compact decomposed goal-directed plan compilation

through:
• Decomposition
• BDD encoding

– Real-time execution capabilities:
• Reactive repair
• Reactive reconfiguration
• Approximately linear in the number of components

• Possible Extension
– Add probability and utility using ADD

