

Slide 3

L3	link discrimination to diagnosis
	Lars, 12/8/2005

Slide 4

LB7	link to aircraft eg Lars Blackmore, 12/2/2005
L11	link to aircraft eg Lars, 12/10/2005
L12	talk about going to hard limits like MPC Lars, 12/10/2005
L13	talk about interpretation of information? Lars, 12/10/2005
Slide 5	
L9	put in a picture? Lars, 12/8/2005

Slide 8

L2 mention what y, H and u are Lars, 12/8/2005

Slide 10

LB25 cut this? Lars Blackmore, 12/5/2005

Slide 11

L14 mention what y,H and u are Lars, 12/8/2005

Slide 14

L8	explain what I mean by safety
	Lars, 12/8/2005

Slide 16

L7 mention constraints explicitly Lars, 12/8/2005

Slide 18

LB12	up to now, plan is safe but now go to task fulfillment
	Lars Blackmore, 12/2/2005

Concave Quadratic Programming

- "An Algorithm for Global Minimization of Linearly Constrained Concave Quadratic Functions" Kalantari, B. and Rosen, J. B. Mathematics of Operations Research, Vol. 12, No. 3. August 1987
- O(N) Linear Programs must be solved
- Each LP typically O(NM) number of simplex ops
- M = # constraints

• N = size of QP = (# output variables) x (horizon length)

Open-loop vs Closed-loop Design is open loop But can be used within an MPC closed-loop framework Efficient QP solution makes this possible

Unbounded Objective Function

- An optimal solution of negative infinity cannot occur with bounded **u** if either covariance > 0
- We can get a p(error) of zero for bounded **u** if: - One of the priors is zero
 - One of the covariances has zero determinant
- Otherwise for bounded **u** we cannot.