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Context – Model Selection

Model Identification 
– Which model best explains a given data set?

1. Parameter adaptation

2. Selection from a finite set of models
• Model Selection
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Example Application

• Aircraft fault diagnosis
– Finite set of models for system dynamics
– Given data, estimate most likely model

• Standard approach: Multiple Model fault detection[1]

– Select between a finite set of stochastic linear dynamic 
systems using Bayesian decision rule

Model 0: Working 
Elevator Actuator
Model 1: Faulty 
Elevator Actuator

Gyros provide 
rotation rate data

Image courtesy of Aurora Flight Sciences

1“Multiple-Model Adaptive Estimation Using a Residual Correlation Kalman Filter Bank”, Hanlon, P. D. and Maybeck, P. S.,
IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, April 2000.
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Control Design for Model Discrimination
• System inputs greatly affect performance of model selection algorithm

• ‘Active’ model selection designs system inputs to discriminate optimally 
between models

• Previous approaches include (Esposito[2], Goodwin[3], Zhang[4])
– Designed inputs have limited power to restrict effect on system
– Maximization of information measure or minimization of detection delay

• We extend these approaches as follows:
1. Design inputs with explicit state and input constraints
2. Bayesian cost function: probability of model selection error

• We present novel method that uses finite horizon constrained optimization 
approach to design control inputs for optimal model discrimination
– Key idea: Minimise probability of model selection error subject to explicit 

input and state constraints

2“Probing Linear Filters – Signal Design for the Detection Problem” Esposito, R. and Schumer, M. A., March 1970.
3“Dynamic System Identification: Experiment Design and Data Analysis” Goodwin, G. C. and Payne, R. L. 1977.
4“Auxiliary Signal Design in Fault Detection and Diagnosis” Zhang, X. J. 1989.
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Problem Statement

• Design a finite sequence of control inputs 
u=[u1…uk] to minimize the probability of model 
selection error
– Between two discrete-time, stochastic linear dynamic models
– Subject to constraints on inputs and expected state

L9
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Example Experiment

• Linearised aircraft model
– Longitudinal dynamics

• Elevator actuator
– Model 0: Actuator functional, B0=[k 0]T

– Model 1: Actuator failed, B1=[0 0]T
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L3 link discrimination to diagnosis
 Lars, 12/8/2005
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LB7 link to aircraft eg
Lars Blackmore, 12/2/2005

L11 link to aircraft eg
 Lars, 12/10/2005

L12 talk about going to hard limits like MPC
 Lars, 12/10/2005

L13 talk about interpretation of information?
 Lars, 12/10/2005
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Example Experiment

1. Let transients decay to zero
2. Request a large elevator displacement

─ Model 0: Actuator is working, large response observed
─ Model 1: Actuator failed, no response

Designed control
input sequence

Model 0 predicted response

Model 1 predicted response
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Key ideas

1. Separate predicted distribution of observations 
corresponding to different models

2. Can view problem as finite horizon trajectory design 
– Planning distribution of future state
– LP, MILP, QP commonly used[5][6]

– Can our cost function work with these formulations?

Choose control 
inputs

y y

),|( 0 uHyp

),|( 1 uHyp

),|( 0 uHyp
),|( 1 uHyp

5”Predictive Control with Constraints”, Maciejowski, J. M., Prentice Hall, England, 2002.
6“Mixed Integer Programming for Multi-Vehicle Path Planning” Schouwenaars, T., Moor, B. D., Feron, E. and How, J. P. 
In Proceedings, European Control Conference, 2001.
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Technical Approach: Assumptions

• Two discrete-time, linear dynamic models, H0 and H1, 
can capture possible behaviors of system
– One of models is true state of world for entire horizon

• Prior information about models:
– Some prior distribution over the two models
– Distribution over initial state conditioned on model

…may be viewed as current belief state from an estimator

• Gaussian process and observation noise

• Bayesian model selection used
– Batch selection
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Technical Approach: Outline

1. Define Bayesian cost function (probability of error)

2. Describe analytic upper bound to cost function

3. Show that upper bound is quadratic in inputs

4. Show that finite horizon problem formulation can 
be solved using Quadratic Programming

LB21
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Trajectory Design Formulation – Cost Function

• Bayesian decision rule:
– Choose H0 if:

• P(error|u)=probability that the wrong model is 
selected:

),|(),|( 10 uyuy HPHP >

Choose H0 Choose H1
R0 R1

)(),|( 00 HPHp uy
)(),|( 11 HPHp uyP(error|u)

y
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Trajectory Design Formulation – Cost Function

• The probability of model selection error is:

• The integral does not have a closed form solution, but an upper
bound exists called the Battacharrya Bound[7]

• For Gaussian distributions p(y|H0,u)~N(µ0,Σ0) and p(y|H1,u)~N(µ1,Σ1):

• Take logarithm:
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7 “Pattern Classification” , Duda, R., Hart, P., Stork, D., 2000
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Trajectory Design Formulation – Cost Function

• Important analytic properties:
1. Expected observations µ0 and µ1 are known linear

functions of the inputs u
2. The covariances Σ0 and Σ1 are not functions of the 

inputs
3. Covariances and priors do not affect optimization

• Cost function for trajectory design problem:

• Cost function is quadratic in the inputs
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Trajectory Design Formulation -
Constraints

• As in many trajectory design problems, we may 
want to:

– Ensure fulfillment of task defined in terms of 
expected state

– Bound expected state of the system

– Model actuator saturation

– Restrict total fuel usage

• All of these are linear constraints

maxuui ≤
max][ xxE i ≤

   
1
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i ≤∑

=

task][ xxE i =
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Trajectory Design Formulation - Summary

• What we have is a Quadratic Program:
1. Cost function that is quadratic in the control inputs

2. Constraints that are linear in the control inputs
– E.g.

• Quadratic Programs can be solved efficiently

• Now constrained active model discrimination possible:
– On-line, while fulfilling defined task and ensuring safety
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Simulation Results – Active Approach
• Elevator failure scenario

• Linearised, discrete-time longitudinal dynamics

• Pitch rate observed

• Horizon of 40 time steps
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Results: Constrained Input and State

Battacharrya bound: 0.0036        QP solution time: 0.22s

E[θ|H1]
Expected pitch angle
(faulty actuator)

E[θ|H0]
Expected pitch angle
(working actuator)

E[θ|H0]
Expected pitch rate
(working actuator)

.

E[θ|H1]
Expected pitch rate
(faulty actuator)

.

E[y|H0]
Expected observation
(working actuator)

E[y|H1]
Expected observation
(faulty actuator)

u
Optimised control input
(desired elevator angle)

L7
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Results: Manually Generated Sequence

• Typical pilot-generated identification sequence

Battacharrya bound: 0.16

E[y|H0]
Expected observation
(working actuator)

E[y|H1]
Expected observation
(faulty actuator)

u
Manual control input
(desired elevator angle)
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Results: Altitude Change Maneuver

Battacharrya bound: 0.34    (Fuel Optimal)
0.0046 (Discrimination Optimal)

udisc
Optimised control input
(discrimination optimal)

ufuel
Optimised control input
(fuel optimal)

Expected altitude
(working actuator, 
discrimination optimal)

Expected altitude
(working actuator,
fuel optimal)

Expected altitude
(faulty actuator)

LB12
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Limitations

• Linear systems only
– Linearise about an equilibrium point
– Feedback linearization

• Not directly minimising the probability of error
– No guarantees about tightness of bound
– Low upper bound sufficient in many cases

• Two models only
– Battacharrya bound does not apply to more than two hypotheses
– Submission soon on generalized approach
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Conclusion

• Novel algorithm for model discrimination 
between any two linear systems

• On-line solution possible due to efficient 
Quadratic Programming formulation

• Arbitrary linear state and control constraints can 
be incorporated
– Fulfill specified task defined in terms of system state
– Guarantee safe execution
– Maintain state within linearisation region
… while optimally detecting failures

22

Questions?

23

Backup
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Results: Constrained Elevator Angle

Battacharrya bound: 0.0021              QP solution time: 0.19s

• Optimized sequence drives aircraft at Short Period 
Oscillation (SPO) mode
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Alternative Criteria

• Battacharyya bound

• Baram’s Distance
• KL divergence

• ‘Symmetric’ KL divergence

• Information
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Concave Quadratic Programming

• “An Algorithm for Global Minimization of Linearly Constrained 
Concave Quadratic Functions” Kalantari, B. and Rosen, J. B. 
Mathematics of Operations Research, Vol. 12, No. 3. August 
1987

• O(N) Linear Programs must be solved

• Each LP typically O(NM) number of simplex ops

• M = # constraints

• N = size of QP = (# output variables) x (horizon length)

27

Open-loop vs Closed-loop

• Design is open loop

• But can be used within an MPC closed-loop 
framework

• Efficient QP solution makes this possible
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Cost Criterion

• Can be handled in very similar manner, assuming 
detector is cost-optimal
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Unbounded Objective Function

• An optimal solution of negative infinity cannot occur 
with bounded u if either covariance > 0

• We can get a p(error) of zero for bounded u if:
– One of the priors is zero
– One of the covariances has zero determinant

• Otherwise for bounded u we cannot.


