

Slide 3

LB1 Note that this is not 'find joint angles to follow an endpoint trajectory' Lars Blackmore, 6/6/2006

Kinematic Constraints

- Joint 1 must be distance l_{l} from joint 0

$$
\mathbf{x}_{1}{ }^{(t) T} \mathbf{x}_{1}^{(t)}=l_{1}^{2}
$$

- Joint 2 must be distance l_{2} from joint 1

$$
\left(\mathbf{x}_{2}^{(t)}-\mathbf{x}_{1}{ }^{(t)}\right)^{T}\left(\mathbf{x}_{2}^{(t)}-\mathbf{x}_{1}{ }^{(t)}\right)=l_{2}^{2}
$$

- These are quadratic equality constraints on the desired joint positions
\qquad

Joint Angle Constraints

- Not all joint angles are feasible:

- Many joint angle constraints can be expressed as quadratic constraints also, for example:

$$
\left(\mathbf{x}_{2}^{(t)}-\mathbf{x}_{1}^{(t)}\right)^{T}\left(\mathbf{x}_{2}^{(t)}-\mathbf{x}_{1}^{(t)}\right) \geq l_{1} l_{2} \cos \alpha
$$

Dynamic Constraints

- Use linear constraints to encode highly simplified dynamics
- Cartesian velocity constraints

$$
\frac{\mathbf{x}_{j}{ }^{(t)}-\mathbf{x}_{j}^{(t-1)}}{\Delta t} \leq \mathbf{v}_{\max }
$$

- Encode goal constraint in terms of endpoint position

$$
\mathbf{x}_{2}{ }^{(k)}=\text { goal }
$$

- Encode initial configuration constraint

Slide 7

LB3 Highlight example is 2 joint but general works Lars Blackmore, 6/9/2006

- Optimality
- Minimum control effort can be expressed piecewise
linearly
- Minimum time can be expressed piecewise linearly
- Minimum energy can be expressed quadratically
- Minimum deviation of joint position from centre of
workspace can be expressed quadratically

Conclusion

븐

- Novel approach for manipulator path planning with obstacles
- Constrained optimization formulation appealing
- Guarantees of optimality, completeness
- In practice, solution intractable with existing approaches for large problems
- Advances in quadratic disjunctive programming may make this approach practically effective
- Receding horizon formulation can reduce complexity
$11 i$ \qquad

