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Motivation

• Would like robotic manipulators to be able to 
operate in cluttered environments

MIT Cooperative 
Construction Testbed

JPL LEMUR: In-space 
Inspection and Assembly
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Problem Statement

• Given an initial configuration, find the optimal path 
that avoids obstacles and ensures that 
manipulator endpoint ends at goal position

LB1
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Current Approaches

• Current manipulator path planning methods plan in 
configuration space

1. Convert feasible region from workspace to configuration space offline

2. Solve planning problem using existing methods
• Potential field methods (Not optimal or complete)
• Probabilistic Roadmaps (Optimal, complete in probabilistic sense)
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New Approach: Key idea
• Recent methods have posed path planning problem for 

aircraft as constrained optimization

• Key ideas:
1. Very simple models of plant are ‘sufficient’

– Double integrator with constraints on velocity and acceleration
– Assume low-level controller can achieve anything within these constraints
– So the state at any future time is a linear function of control inputs

2. Obstacle avoidance can be posed as satisfaction of disjunctive 
linear constraints
Solve efficiently using disjunctive linear programming

• Novel approach for manipulators:
– Plan directly in workspace using constrained optimization approach

• No pre-computation necessary
• Optimal and complete
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Assumptions

• Manipulator in 2D or 3D with arbitrary number
of rotational joints

• Plan in discrete time

• Low velocity, accelerations
– Dynamics can be ignored

• Key challenge: highly nonlinear kinematics
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LB1 Note that this is not 'find joint angles to follow an endpoint trajectory'
Lars Blackmore, 6/6/2006
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Workspace Planning Approach

• Instead of planning joint angles, design finite trajectory 
for each joint in workspace

– Joint 1: 
– Joint 2 (endpoint):

• Solving for joint angles given all joint locations straightforward
• Assume can achieve given joint angle using low level controller
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Kinematic Constraints

• At any time step i, the desired joint positions must be 
kinematically feasible
– Manipulator must be able to achieve the joint positions

• Joint 1 must be distance l1 from joint 0
• Joint 2 must be distance l2 from joint 1

• These are quadratic constraints on the desired joint 
positions
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Kinematic Constraints

• Joint 1 must be distance l1 from joint 0

• Joint 2 must be distance l2 from joint 1

• These are quadratic equality constraints on the 
desired joint positions
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Joint Angle Constraints

• Not all joint angles are feasible:

• Many joint angle constraints can be expressed as 
quadratic constraints also, for example:
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Obstacle Constraints

• Disjunctive linear constraints on joint positions prevents 
collision of joints with obstacles

• Disjunctive linear constraints on intermediate points
prevent collision of links with obstacles
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Dynamic Constraints

• Use linear constraints to encode highly simplified 
dynamics
– Cartesian velocity constraints

• Encode goal constraint in terms of endpoint position

• Encode initial configuration constraint
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LB3 Highlight example is 2 joint but general works
Lars Blackmore, 6/9/2006
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Optimality

• Minimum control effort can be expressed piecewise 
linearly

• Minimum time can be expressed piecewise linearly

• Minimum energy can be expressed quadratically

• Minimum deviation of joint position from centre of 
workspace can be expressed quadratically
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Summary
• Path planning for manipulators with obstacles expressed as 

constrained optimization:

• Now show problem can be approximated as Disjunctive 
Linear Program

– Globally optimal solution can be guaranteed

Linear, inequalityLimited dynamics
Disjunctive linear, 

inequality
Obstacles

Constraint typeModel Component

Quadratic, inequalityJoint limits
Quadratic, equalityKinematics
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DLP Solution

• Disjunctive Linear Programming encoding

• Main challenge: quadratic constraints
– Can be approximated using disjunctive linear constraints

Linear, inequalityLimited dynamics
Disjunctive linear, 

inequality
Obstacles

Constraint typeModel Component

Quadratic, inequalityJoint limits
Quadratic, equalityKinematics ?

?
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DLP Solution

• Approximating quadratic constraints

• Challenge: adding edges increases # disjunctions
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Preliminary Results

• 3-D intractable
– Approximate spherical constraints introduce very large 

number of disjunctive linear constraints

• 2-D solution to global optimum tractable for 
relatively small problems
– Length of horizon and # joints drive complexity

• Will show typical results from 2-D
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Preliminary Results
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Conclusion

• Novel approach for manipulator path planning with obstacles

• Constrained optimization formulation appealing
– Guarantees of optimality, completeness

• In practice, solution intractable with existing approaches for 
large problems

• Advances in quadratic disjunctive programming may make 
this approach practically effective

• Receding horizon formulation can reduce complexity
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Questions?


