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Context – Hybrid Systems
• Hybrid discrete-continuous models are convenient for many 

systems
– Failure-prone components (Funiak03, Dearden02)
– Piloted aircraft (Tomlin06)
– Insects (Oh05)

• Example: Switching Linear Dynamic Systems
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Context – Hybrid State Estimation

• Hybrid state estimation aims to determine:

– Applications include fault detection, intent recognition…

• Exact hybrid estimation is intractable (Lerner01)

• Prior work has developed approximate approaches, 
for example:
– Merging (Lerner00)
– Pruning (Hofbaur02)
– Sampling (Doucet00)
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K-Best Hybrid State Estimation

• Full hybrid estimation considers all mode sequences

• K-best enumeration retains the k mode sequences 
with highest posterior probability

• Problem: losing true mode sequence
– Fault detection particularly problematic
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Active Hybrid Estimation

• System inputs greatly affect performance of 
hybrid estimator

• Prior work has used control inputs for optimal 
discrimination between linear dynamic models

• We present a novel method that uses control 
inputs to aid hybrid state estimation
– Key idea: Minimize probability of losing true mode 

sequence subject to explicit input and state 
constraints
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Problem Statement

• Design a finite sequence of control inputs u=[u0…uh]
to minimize p(loss), the probability of losing the true 
discrete mode sequence
– Subject to constraints on inputs and expected state

• For Switching Linear Dynamic Systems
• Zero mean, Gaussian white process and observation noise
• Assume pruning occurs at end of horizon L16
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L16 mention can't calculate in closed form now
 Lars, 12/12/2006
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Summary of Technical Approach

1. Express future mode sequences as multiple 
known time-varying models

2. Bound p(loss) using Multiple-Model bound from 
(Blackmore06)

3. Make bound tractable using efficient pruning 
approach

4. Minimize bound using constrained optimization
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Mode Sequences as Models

• Each mode sequence corresponds to a known 
Linear Time Varying (LTV) model
– Finite number of ‘hypotheses’
– Hybrid estimation picks k most likely hypotheses

• Idea: Use results from (Blackmore06) for multiple-
model discrimination to upper-bound p(loss)
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Bounding p(loss)

• Loss probability upper-bounded by probability that 
true mode sequence is not most likely sequence

• Extend bound in (Blackmore06) to SLDS to give:

Analytic upper bound on p(loss)
• Problem: exponential number of hypotheses
• Solution: find looser bound that considers subset
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Considering a Subset of Sequences

• Full bound with all terms:

• Individual terms can be replaced by looser bound:

• These terms do not depend on u0:T-1
– Need not be considered in optimization

• Challenge:
– Replace terms so resulting bound is as tight as possible
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Considering a Subset of Sequences

• Worst-case difference between Fij(u0:T-1) and Gij is:

• Include in S the mode sequences that maximize: 

• S must include hypotheses with highest prior p(Hi)

• Challenge: efficient enumeration of mode 
sequences with highest prior probability
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xd,0 xd,1 xd,2 xd,3 … xd,h-1 xd,h

Considering a Subset of Sequences

• Idea: Use graph search to find highest priors
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Optimization: Constraints
• As in many trajectory design problems, we may 

want to:

– Ensure fulfillment of task defined in terms of 
expected state

– Bound expected state of the system

– Model actuator saturation

– Restrict total fuel usage

• All of these are linear constraints
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Optimization: Overall Formulation

• Resulting nonlinear optimization
1. Cost function that is nonlinear, nonconvex

2. Constraints that are linear in the control inputs
– E.g.

• Can solve using Sequential Quadratic Programming
– Local optimality

• Now constrained active hybrid estimation possible:
– Use constraints for control, optimization for discrimination
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Simulation Results – Active Approach
• Satellite dynamics linearized about nominal circular orbit (Hill’s equations)

• Motion in two dimensions considered (in-track and radial)

• Sensors:
– Radial and in-track velocity

• Actuators
– Radial and in-track thrusters

• Hybrid model has 4 discrete modes:

• Horizon of 10 time steps, dt = 60s

Mode 0: Nominal (no faults)
Mode 1: Radial velocity sensor failure (zero mean noise observed)
Mode 2: In-track velocity sensor failure (zero mean noise observed)
Mode 3: Radial thruster failure (no response)
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Results: Box-Constrained Maneuver
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Results: Box-Constrained Maneuver
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Results: Displacement Maneuver
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Conclusion

• A novel approach for active hybrid estimation 
– Minimize upper bound on probability of losing true mode 

sequence, subject to constraints on inputs and state
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Questions?
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L7 mention constraints explicitly
 Lars, 12/8/2005
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Summary of Approach

1. Hybrid Estimation calculates approximate belief 
state
– Distribution over k mode sequence
– Continuous distribution conditioned on mode sequence

2. Best first search enumerates s most likely future 
mode sequences

3. Form cost function with s most likely sequences
4. Optimize subject to constraints, using SQP
5. Execute control inputs, while estimating hybrid 

state


