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Kin Context — Hybrid Systems
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» Hybrid discrete-continuous models are convenient for many
. . . . . systems
ACt'Ve ES“ m at| on fO r SW'tCh n g — Failure-prone components (Funiak03, Dearden02)
. . — Piloted aircraft (Tomlin06)
Linear Dynamic Systems ~ Insects (Oh0S)
» Example: Switching Linear Dynamic Systems
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Context — Hybrid State Estimation K-Best Hybrid State Estimation
e =T -
« Hybrid state estimation aims to determine:  Full hybrid estimation considers all mode sequences
p(xc,t ' Xd,t | yJ_'T 1 uO:T—l) ok O ok 0.8
— Applications include fault detection, intent recognition... ok O<O e 0.05
O ok !
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» K-best enumeration retains the k mode sequences
with highest posterior probability

¢ Exact hybrid estimation is intractable (Lerner01)

¢ Prior work has developed approximate approaches,

for example:
— Merging (Lerner00) « Problem: losing true mode sequence
— Pruning (Hofbaur02) — Fault detection particularly problematic
— Sampling (Doucet00)
Active Hybrid Estimation Problem Statement
Pefs meiE

» System inputs greatly affect performance of
hybrid estimator

Design a finite sequence of control inputs u=[u,...u]
to minimize p(loss), the probability of losing the true
discrete mode sequence

— Subject to constraints on inputs and expected state

 Prior work has used control inputs for optimal .
discrimination between linear dynamic models

» We present a novel method that uses control
inputs to aid hybrid state estimation o )
. L - . For Switching Linear Dynamic Systems
— Key idea: Minimize probability of losing true mode . ) . ) )
. P . ero mean, Gaussian white process and observation noise
sequence subject to explicit input and state i )
. « Assume pruning occurs at end of horizon
constraints L1g
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L16 mention can't calculate in closed form now
Lars, 12/12/2006



Summary of Technical Approach

il

1. Express future mode sequences as multiple
known time-varying models

2. Bound p(loss) using Multiple-Model bound from
(Blackmore06)

3. Make bound tractable using efficient pruning
approach

B

Minimize bound using constrained optimization
| LT z
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Summary of Technical Approach

1. Express future mode sequences as multiple
known time-varying models

2. Bound p(loss) using Multiple-Model bound from
(Blackmore06)

3. Make bound tractable using efficient pruning
approach

4. Minimize bound using constrained optimization

Mode Sequences as Models
L=
« Each mode sequence corresponds to a known
Linear Time Varying (LTV) model
— Finite number of ‘hypotheses’
— Hybrid estimation picks k most likely hypotheses

Q<© -
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« ldea: Use results from (Blackmore06) for multiple-
model discrimination to upper-bound p(loss)
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Bounding p(loss)
=T
* Loss probability upper-bounded by probability that
true mode sequence is not most likely sequence
p(loss) = p(true sequence not in top k)
< p(true sequence not most likely hypothesis)

e Extend bound in (Blackmore06) to SLDS to give:

Poss|u)< Y > [P(H,)P(H,)e ()
k(, j) :l(uj *Hi)'izijjzj]A(pj 7pi)+l|nm
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» Analytic upper bound on p(loss)
* Problem: exponential number of hypotheses
* Solution: find looser bound that considers subset

— Summary of Technical Approach
s

1. Express future mode sequences as multiple
known time-varying models v/

2. Bound p(loss) using Multiple-Model bound from
(Blackmore06) v/

3. Make bound tractable using efficient pruning
approach

»

Minimize bound using constrained optimization
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e Considering a Subset of Sequences
.

¢ Full bound with all terms:

P(loss) < ZZ Fi (Ugr )

i
« Individual terms can be replaced by looser bound:
12 12
Gij = P(Hi) P(Hj) 2 Fij (uo;T_l)

» These terms do not depend on U1,
— Need not be considered in optimization

¢ Challenge:
— Replace terms so resulting bound is as tight as possible

P(loss) < z Z Fi (Uor_1) +Z ZG'J
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__ Considering a Subset of Sequences

=i
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P(Hi)llz P(Hj)l/z

¢ Include in S the mode sequences that maximize:
Z z P(Hi)llz P(H j)].12
ieS j>i,jeS

* S must include hypotheses with highest prior p(H;)

« Challenge: efficient enumeration of mode
sequences with highest prior probability

L LI 13

* Worst-case difference between Fj(uo.1;) and Gj;is:
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__ Considering a Subset of Sequences

==
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* Idea: Use graph search to find highest priors

Summary of Technical Approach

LT

1. Express future mode sequences as multiple
known time-varying models v/

2. Bound p(loss) using Multiple-Model bound from
(Blackmore06) v/

3. Make bound tractable using efficient pruning

approach v/
4. Minimize bound using constrained optimization
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Optimization: Overall Formulation
=

¢ Resulting nonlinear optimization
1. Cost function that is nonlinear, nonconvex

P(loss|u) <> > [P(H,)P(H,)e ™)
i

2. Constraints that are linear in the control inputs

R = 7% 5 S TIPS TH

Can solve using Sequential Quadratic Programming
— Local optimality

* Now constrained active hybrid estimation possible:
— Use constraints for control, optimization for discrimination
LT i
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Optimization: Constraints
=L
* As in many trajectory design problems, we may
want to:
— Ensure fulfillment of task defined in terms of 1=
expected state E[)Q] Kask
] <
— Bound expected state of the system ‘E[)ﬁ]‘ _Xmax
<
— Model actuator saturation ‘ui‘ _Umax
k
— Restrict total fuel usage Z]Ui‘ < fuel
i=l
« All of these are linear constraints
| I 16 5y
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- Summary of Technical Approach
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1. Express future mode sequences as multiple
known time-varying models v/

2. Bound p(loss) using Multiple-Model bound from
(Blackmore06) v/

3. Make bound tractable using efficient pruning
approach v/

4. Minimize bound using constrained optimizationv’
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Simulation Results — Active Approach

==
—t

« Satellite dynamics linearized about nominal circular orbit (Hill's equations)
« Motion in two dimensions considered (in-track and radial)

* Sensors:
— Radial and in-track velocity

* Actuators
— Radial and in-track thrusters

« Hybrid model has 4 discrete modes:

Mode 0: Nominal (no faults)

Mode 1: Radial velocity sensor failure (zero mean noise observed)
Mode 2: In-track velocity sensor failure (zero mean noise observed)
Mode 3: Radial thruster failure (no response)

« Horizon of 10 time steps, dt = 60s
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Results: Box-Constrained Maneuver
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Bound on Probability of Pruning
o
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__Results:

Box-Constrained Maneuver

Displacement(m)

Change in Velociy(mmis)

Time(s)

p(loss) <0.12

Conclusion
B

« A novel approach for active hybrid estimation

— Minimize upper bound on probability of losing true mode
sequence, subject to constraints on inputs and state
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Results: Displacement Maneuver
L= S—
Discrimination-optimal Maneuver
- 2 Rt
E
p(loss) <0.10
Fuel-optimal Maneuver
- 2 R
P p(loss) <0.87
o w0 T ED w0 a
Questions?
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L7 mention constraints explicitly
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Summary of Approach

1. Hybrid Estimation calculates approximate belief
state
— Distribution over k mode sequence
— Continuous distribution conditioned on mode sequence
2. Best first search enumerates s most likely future
mode sequences
3. Form cost function with s most likely sequences
4. Optimize subject to constraints, using SQP
5. Execute control inputs, while estimating hybrid
state
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