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Optimal Paths are not Robust
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» Uncertainty arises due to:
— Disturbances
— Uncertain state estimation
— Inaccurate modeling
» Optimal paths are not robust to uncertainty

True path

Plaﬁned path
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Representing Uncertainty
LT

* Probabilistic representations much richer
— Set-bounded representation subsumed by p.d.f.

» Probabilistic representations often more realistic
— What is the absolute maximum possible wind velocity?

» Probabilistic representations readily available in many cases
— Disturbances «+———

—e.g. Dryden turbulence model

— Uncertain state estimation~— e g. Particle filter, Kalman filter, SLAM

- Inaccurate modeling«——— e.g. Parameter estimation

» We deal with probabilistic uncertainty
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Context
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» Optimal path planning for dynamic systems

— “What is best sequence of control inputs that takes system
state from the start to goal?”

* Non-convex
@)’ feasible region
)
e

T » Non-holonomic
dynamics

* Discrete-time

 Prior work has solved problem using Disjunctive LP
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Representing Uncertainty
== —
» Two principal ways to represent uncertainty:
1. Set-bounded uncertainty y

s | @D

2. Probabilistic uncertainty

P(Xe) =N (X, P,)

Robust Control under Probabilistic Uncertainty
B

* Robustness formulated using chance constraints:
— “Ensure that failure occurs with probability at most 6"

« Prior work developed chance-constrained MPC
— Stochastic problem converted to deterministic problem
— Deterministic problem solved using LP or QP
— Restricted to control within convex feasible region

» We extend this work to control within non-convex regions
-> robust path planning with obstacles

— Resulting problem solved using Disjunctive Linear Programming
(DLP) with same complexity as problem without uncertainty




Problem Statement

» Design a finite, optimal sequence of control
inputs u,...u,, such that the expected final
vehicle position is the goal
— Take into account uncertainty such that collision with

any obstacle at a given time step occurs with
probability at most &

Technical Approach: Assumptions
== S

» Assume discrete-time linear stochastic system:

X = AX, +Bu, +w, +v,

-

Noise due to disturbances Noise due to uncertain model

+ Assume that p(w,) and p(v,)are known.

« Initial state x,is unknown, but assume p(x,) is known

» Polytopic obstacles

+ All uncertainty is Gaussian
LT

9

11/27/2006

N, Problem Statement

Expected final position

Expected path
@

Technical Approach: Summary
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1. Convert stochastic problem into deterministic one

2. Show that deterministic problem can be solved
using Disjunctive Linear Programming

Linear Chance Constraints
B

Consider linear chance constraint on an uncertain
multivariate variable X: " p(Ax>b) <J"

AX =b—_%
p(AX>b)= [ p(X)dx
Covariance Ax>b
ellipse of X

E[X]

Probability of constraint violation depends on:
1. Covariance of X

2. Distance of E[X] from constraint

Linear Chance Constraints
B

» So for given covariance P, linear chance constraint is
equivalent to deterministic linear constraint on E[X]

Ensure mean at least distance 4
from constraint to guarantee
/chance constraint satisfied

p(AX>b)<6 <& AE[x]<b-A




Linear Chance Constraints

==
— i

11/27/2006

* How is A calculated?
» Find vector normal fi to constraint line Ax = b

+ The distribution of X projected along N is a
univariate Gaussian with variance A’ PA

» So A can be calculated using a simple lookup of erf,
the Gaussian c.d.f. function
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Obstacle Chance Constraints
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» Extension: use this to ensure that an obstacle is hit with
probability at most &

Constraint j

r 7.

Obstacle i— [p0dx< [ p(x)dx

sur
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* Notice that:

p(collision with obstacle) < p(constraint violated)

» Simply need to ensure that expected state is A away from at
least one of obstacle’s constraints
— Conservatism introduced

Multiple Obstacles
B e
» Must ensure that probability of hitting any obstacle
is at most &

— Probabilities of collision are not mutually exclusive
p(collision with obstacle I or 2) # p(collision w. obs. 1) + p(collision w. obs. 2)

— But can bound probability of collision with any obstacle

p(collision with obstacle 1 or 2) < p(collision w. obs. 1) + p(collision w. obs. 2)

» Constrain probability of hitting each of N obstacles
to be at most 6/N

— Then probability of collision with any obstacle guaranteed
to be at most &

— Additional conservatism introduced
| i is

Robust Path Planning as DLP
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» Important analytic properties:
— Future state distribution is Gaussian
— Future state mean is linear function of control inputs
— Future state covariance is not a function of control inputs

» Hence the constraint:

“Ensure expected state is A away from at least one of obstacle’s
constraints”

— is adisjunctive linear constraint on control inputs u,

» Cost functions such as fuel use can be expressed as
piecewise linear functions of control inputs

» Problem can be posed as a Disjunctive Linear Program

Robust Path Planning as DLP
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e Summary:

— Calculate covariance P, of predicted state at each ¢ in
horizon

— Calculate required margin A, for each ¢ in horizon to
ensure probability of failure less than &

— Pose disjunctive linear program to ensure margin satisfied
T

minimize J =Z

i=1

subjectto v A E[X,] <b,-A,

u;

for each time step ¢ and each obstacle j

— Solve using efficient, readily available solvers
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Results
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» Trade off performance against plan conservatism
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LB2 Work out how to link into the next slide - see next slide
Lars Blackmore, 6/10/2006
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Conclusion

Ml

Robust path planning problem can be solved as DLP

— Essentially same complexity as DLP that does not take into
account uncertainty (one lookup, matrix multiplication per constraint)

The catch?
— The resulting plan is excessively conservative
«  We guarantee p(collision) is less than 8, but in practice, p(collision) is
much less than &
Hence there exists a better solution that still satisfies chance constraint
« If we try to constrain the probability of collision at any time step, we get
very conservative plans

Solution: Ongoing research
1. Particle Control approach approximates distributions using samples
Approximate approach instead of conservative approach
2. Ellipsoidal approximations have been used in the literature to solve
analogous problems
19

Questions?

Backup
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» Conservatism plot




