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Context

• Optimal path planning for dynamic systems
– “What is best sequence of control inputs that takes system 

state from the start to goal?”

• Prior work has solved problem using Disjunctive LP

• Non-convex 
feasible region

• Non-holonomic
dynamics

• Discrete-time
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Optimal Paths are not Robust

• Uncertainty arises due to:
– Disturbances
– Uncertain state estimation
– Inaccurate modeling

• Optimal paths are not robust to uncertainty

Planned path

True path

Goal
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Representing Uncertainty

• Two principal ways to represent uncertainty:

1. Set-bounded uncertainty

2. Probabilistic uncertainty
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Representing Uncertainty

• Probabilistic representations much richer
– Set-bounded representation subsumed by p.d.f.

• Probabilistic representations often more realistic
– What is the absolute maximum possible wind velocity?

• Probabilistic representations readily available in many cases
– Disturbances
– Uncertain state estimation
– Inaccurate modeling

• We deal with probabilistic uncertainty

e.g. Parameter estimation

e.g. Dryden turbulence model
e.g. Particle filter, Kalman filter, SLAM
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Robust Control under Probabilistic Uncertainty

• Robustness formulated using chance constraints:
– “Ensure that failure occurs with probability at most δ”

• Prior work developed chance-constrained MPC
– Stochastic problem converted to deterministic problem
– Deterministic problem solved using LP or QP
– Restricted to control within convex feasible region

• We extend this work to control within non-convex regions 
robust path planning with obstacles

– Resulting problem solved using Disjunctive Linear Programming 
(DLP) with same complexity as problem without uncertainty
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Problem Statement

• Design a finite, optimal sequence of control 
inputs u0…uk-1 such that the expected final 
vehicle position is the goal
– Take into account uncertainty such that collision with 

any obstacle at a given time step occurs with 
probability at most δ
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Problem Statement

p(failure) ≤ δ

Expected path

Expected final position
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Technical Approach: Assumptions

• Assume discrete-time linear stochastic system:

• Assume that           and          are known.

• Initial state x0 is unknown, but assume p(x0) is known

• Polytopic obstacles

• All uncertainty is Gaussian
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Technical Approach: Summary

1. Convert stochastic problem into deterministic one

2. Show that deterministic problem can be solved 
using Disjunctive Linear Programming
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Linear Chance Constraints

• Consider linear chance constraint on an uncertain 
multivariate variable X:

• Probability of constraint violation depends on:
1. Covariance of X
2. Distance of E[X] from constraint
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Linear Chance Constraints

• So for given covariance P, linear chance constraint is 
equivalent to deterministic linear constraint on E[X]

bAx =

∆

⇔≤>      )( δbAxp ∆−≤ bxA ][E

Ensure mean at least distance ∆
from constraint to guarantee 
chance constraint satisfied
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Linear Chance Constraints

• How is ∆ calculated?

• Find vector normal     to constraint line

• The distribution of      projected along      is a 
univariate Gaussian with variance

• So ∆ can be calculated using a simple lookup of erf, 
the Gaussian c.d.f. function
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Obstacle Chance Constraints

• Extension: use this to ensure that an obstacle is hit with 
probability at most δ

• Notice that:
p(collision with obstacle) ≤ p(constraint violated)

• Simply need to ensure that expected state is ∆ away from at 
least one of obstacle’s constraints
– Conservatism introduced
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Multiple Obstacles

• Must ensure that probability of hitting any obstacle 
is at most δ
– Probabilities of collision are not mutually exclusive

p(collision with obstacle 1 or 2) = p(collision w. obs. 1) + p(collision w. obs. 2)

– But can bound probability of collision with any obstacle
p(collision with obstacle 1 or 2) ≤ p(collision w. obs. 1) + p(collision w. obs. 2)

• Constrain probability of hitting each of N obstacles 
to be at most δ/N
– Then probability of collision with any obstacle guaranteed 

to be at most δ
– Additional conservatism introduced LB2
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Robust Path Planning as DLP

• Important analytic properties:
– Future state distribution is Gaussian
– Future state mean is linear function of control inputs
– Future state covariance is not a function of control inputs

• Hence the constraint:
“Ensure expected state is ∆ away from at least one of obstacle’s 

constraints”
– is a disjunctive linear constraint on control inputs u1…t

• Cost functions such as fuel use can be expressed as 
piecewise linear functions of control inputs

Problem can be posed as a Disjunctive Linear Program
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Robust Path Planning as DLP

• Summary:
– Calculate covariance Pt of predicted state at each t in 

horizon
– Calculate required margin ∆t for each t in horizon to 

ensure probability of failure less than δ
– Pose disjunctive linear program to ensure margin satisfied

– Solve using efficient, readily available solvers
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Results

• Trade off performance against plan conservatism
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LB2 Work out how to link into the next slide - see next slide
Lars Blackmore, 6/10/2006
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Conclusion

• Robust path planning problem can be solved as DLP
– Essentially same complexity as DLP that does not take into 

account uncertainty (one lookup, matrix multiplication per constraint)

• The catch?
– The resulting plan is excessively conservative

• We guarantee p(collision) is less than δ, but in practice, p(collision) is 
much less than δ

• Hence there exists a better solution that still satisfies chance constraint
• If we try to constrain the probability of collision at any time step, we get 

very conservative plans

• Solution: Ongoing research
1. Particle Control approach approximates distributions using samples

• Approximate approach instead of conservative approach
2. Ellipsoidal approximations have been used in the literature to solve 

analogous problems
20

Questions?
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Backup

• Conservatism plot


