
$>$ We deal with probabilistic uncertainty
Why Probabilistic Uncertainty?
보를

- Probabilistic representations much richer
- Set-bounded representation subsumed by p.d.f
- Probabilistic representations often more realistic
- What is the absolute maximum possible wind velocity?
- Probabilistic representations readily available in many cases
- Disturbances \longleftarrow e.g. Dryden turbulence model
- Uncertain state estimation - e.g. Particle filter, Kalman filter, SLAM
- Inaccurate modeling, \qquad e.g. Parameter estimation

Why Probabilistic Uncertainty?

- Two principal ways to represent uncertainty:

1. Set-bounded uncertainty (Zhou88,Gossner97,Bemporad99,Kerrigan01)
$\mathbf{x}_{0} \in S$

2. Probabilistic uncertainty (Bertsekas78, Ma 2005)

$$
p\left(\mathbf{x}_{0}\right)=N\left(\hat{\mathbf{x}}_{0}, \mathbf{P}_{0}\right)
$$

Robust Control of Probabilistic Dynamic Systems 본도․

- Given probabilistic uncertainty, we want to plan distribution of future state in optimal, robust manner
- Chance-constrained formulation: Find optimal sequence of control inputs such that p (failure) $\leq \delta$

Slide 2
LB43 Mention:
Example: UAV path planning using Mixed Integer Linear Programming Lars Blackmore, 8/18/2006

Slide 3
LB5 Relate to UAV example
Lars Blackmore, 8/14/2006
LB18 stress optimal paths particularly bad
Lars Blackmore, 8/15/2006

Slide 4
LB44 Spend a little more time on this
Lars Blackmore, 8/18/2006

Slide 6
LB42 stress the trade of performance vs conservatism
Lars Blackmore, 8/18/2006
L1 mention the 3 challenges
Lars, 8/20/2006

Chance-constrained Particle Control: Intuition

블프를

- In estimation, Kalman Filters have been very successful for linear systems, Gaussian noise
- State distribution given model and observations can be calculated analytically
- More recently, Particle Filters have been successful for nonlinear systems, with non-Gaussian noise
- State distribution is approximated by a number of particles
- Convergence of approximation to true distribution as number of particles tends to infinity
- Number of particles used determined by available resources
- Idea: Use particles for anytime robust control
- Control the distribution of particles to achieve a probabilistic goal
- لlif \qquad 9

Chance-constrained Control: Prior Work

- Prior work developed chance-constrained Model Predictive Control (LiOO, VanHessem04)
- Restricted to case of Gaussian uncertainty
- Restricted to control within convex regions
- We extend this work to arbitrary uncertainty distributions and non-convex regions
> Chance-constrained particle control
- 1 ii

Particles: Probabilistic Properties

- Particles can approximate arbitrary distributions:
- Draw N samples $x^{(i)}$ from a r.v. X with distribution $p(x)$
- Distribution approximated with delta functions at samples:
$p(x) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x^{\prime \prime}}(x)$

$P(X \in S)=\int_{S} p(x) d x \approx \frac{1}{N} \int_{S} \sum^{N} \delta_{x^{(0)}}(x) d x=$ fraction of particles drawn from x
- Convergence results:

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(x^{(i)}\right) \xrightarrow{\text { almos surely }} E[f(X)] \text { as } N \rightarrow \infty
$$

$$
\text { fraction of particles in set } S \xrightarrow{\text { almost surely }} p(X \in S) \underset{\boxed{L B 20}}{\text { as } N} \rightarrow \infty
$$

-

Slide 7

LB37 "state depends on $x_{-} 0$ and v which are...
because they are random variables, $x_{-} t$ is also."
Lars Blackmore, 8/16/2006

Slide 9
LB45 note anytime
Lars Blackmore, 8/18/2006

Slide 10
LB20 these are used in filtering --> I will use for control Lars Blackmore, 8/15/2006

Slide 13
LB21 This is easy to do because all uncertainty has been removed Lars Blackmore, 8/15/2006

Slide 14
LB24 highlight every particle has same control input Lars Blackmore, 8/15/2006
LB38 stress a particle is a _trajectory_
Lars Blackmore, 8/16/200 $\overline{6}$

Slide 15
LB46 MAX failure rate
Lars Blackmore, 8/18/2006

Particle Control for Linear Systems

븐돈
For nonlinear systems, resulting optimization too complex for real-time operation

- In the case of:

1. Linear systems
2. Polygonal feasible regions
3. Piecewise linear cost function
global optimum can be found extremely efficiently using Mixed Integer Linear Programming (MILP)

- Important problems using linear systems, cost function:
- Aircraft control about trim state
- UAV path planning LB33
- Satellite control

LIII \qquad

Particle Control for Linear Systems

브놀
Approximate chance constraints:

- Express feasible region in terms of constraints

LB34

- Introduce binary variables indicating particle success

$$
\begin{gathered}
\forall j \quad \mathbf{a}_{j}^{T} \mathbf{x}^{(i)}-b_{j} \leq C z_{i} \quad z_{i} \in\{0,1\} \quad C \text { large, positive } \\
z_{i}=0 \text { implies all constraints satisfied by particle } i
\end{gathered}
$$

- Constrain sum of binary variables

$$
\frac{1}{N} \sum_{i} z_{i} \leq \delta \Rightarrow \text { at most a fraction } \delta \text { of particles fail }
$$

Wii.

Simulation Results

브늘

- Task A:

LB47

- Control of Boeing 747 in heavy turbulence
- Aircraft must remain within defined flight envelope
- Longitudinal dynamics linearized about trim state
- Assume inner-loop altitude hold controller
- Minimize fuel use (elevator deflection)
- Uncertainty sources:
- Disturbances due to heavy turbulence (MIL-F-8785C)
- Sensor noise gives rise to attitude uncertainty
$>$ Highly non-Gaussian distributions

Particle Control for Linear Systems

- Future state for each particle:
$x_{t+1}=A \mathbf{x}_{t}+B \mathbf{u}_{t}+v_{t} \quad \mathbf{x}_{t}{ }^{(i)}=A^{t} \mathbf{x}_{0}^{(i)}+\sum_{j=0}^{t-1} A^{t-j-1}\left(B \mathbf{u}_{j}+v_{j}^{(i)}\right)$
- Approximate expected state:

$$
E\left[\mathbf{x}_{T}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{T}^{(i)}
$$

- Approximate expected cost:

$$
E\left[h\left(\mathbf{u}_{o T-1}, \mathbf{x}_{i T}\right)\right] \approx \frac{1}{N} \sum_{i=1}^{N} h\left(\mathbf{u}_{o T-1}, \mathbf{x}_{i T T}^{(i)}\right)
$$

- All of these are linear functions of control inputs

шіг

Particle Control for Linear Systems

- Chance-constrained problem is a MILP
- Decision variables:
- Control inputs (continuous) $\quad \mathbf{u}_{0 . T-1}$
- State trajectory for each particle (continuous) $\quad \mathbf{x}_{1: T}^{(i)}$
- Success indicator for each particle (binary) Z_{i}
- Can be solved to global optimality
- Extremely efficient MILP solvers available

Slide 19
LB33 Mention min time, min fuel
Lars Blackmore, 8/16/2006

Slide 21
LB34 say more complex for nonconvex but won't go into details Lars Blackmore, 8/16/2006

Slide 23
LB47 go faster over this
Lars Blackmore, 8/18/2006

Slide 24
LB48 Mention closed loop with particle filter
Lars Blackmore, 8/15/2006

Slide 30
LB29 maybe show a box here as well Lars Blackmore, 8/16/2006

| - Applications |
| :--- | :--- |
| |
| - Production, operations |
| - Landing site selection |
| - Efficient solutions to more general systems |
| - Switching (hybrid) systems \rightarrow failure tolerant control |
| - Nonlinear systems |
| - Receding horizon results |
| - Robust probabilistic feasibility? |
| - Bias reduction/elimination |
| 31 |

[^0]
Conclusion

배놀
—

- Novel any-time approach to robust probabilistic control with arbitrary probability distributions
- Very general formulation, challenge is tractable optimization
- For linear systems, global optimum can be found efficiently

Complexity

본돌

- Problem is worst-case exponential in:
- Length of planning horizon
- System order
- Number of particles
- Number of constraints
- MILP solution means that worst-case complexity is almost never realized
- With MILP optimization, typical solution time difficult to characterize

Empirical results show for convex F, relatively large problems can be solved in less than a minute

- For non-convex F, even with heuristic pruning approach, medium-sized problems take many minutes
- MILP can use a large amount of time proving that solution is global optimum
- Good feasible solutions can typically be found much more quickly

Hif.

LB23 Lars Blackmore 8/15/2006
Highlight generality, appealing chance-constrained approach, only need to find ways to make optimisation tractable
Lars Blackmore, 8/15/2006

[^0]: Related Work Using Particles
 HES

 - Particles have previously been used in decision making, variously referred to as:
 - Particles (Doucet01,Greenfield03)
 - Simulations (Singh06)
 - Scenarios (Ng00, Yu03, Tarim06)
 - (NgOO) converts a stochastic MDP into deterministic MDP by representing all randomness in initial state
 - (Greenfield03) proposed finite horizon control with expected cost approximated using particles
 - (Doucet01, Singh06) use samples to approximate cost function value and gradient in local optimizer
 - Key contributions of chance-constrained particle control:
 - Use particles to approximate the probability of failure

 Optimization with constraints on probabilities is a novel and powerful tool (e.g. chance-constrained planning)

 - Efficient solution using MILP

 ـliif 35

