

LB43 Mention:

Example: UAV path planning using Mixed Integer Linear Programming Lars Blackmore, 8/18/2006

Slide 3

LB5	Relate to UAV example Lars Blackmore, 8/14/2006
LB18	stress optimal paths particularly bad Lars Blackmore, 8/15/2006
Slide 4	
LB44	Spend a little more time on this Lars Blackmore, 8/18/2006
Slide 6	
LB42	stress the trade of performance vs conservatism Lars Blackmore, 8/18/2006
L1	mention the 3 challenges Lars, 8/20/2006

- Control the distribution of particles to achieve a probabilistic goal

LB37	"state depends on x_0 and v which are		
	because they are random variables, x_t is also." Lars Blackmore, 8/16/2006		
Slide 9			
LB45	note anytime Lars Blackmore, 8/18/2006		
Slide 10			

LB20 these are used in filtering --> I will use for control Lars Blackmore, 8/15/2006

LB21 This is easy to do because all uncertainty has been removed Lars Blackmore, 8/15/2006

Slide 14

- LB24 highlight every particle has same control input Lars Blackmore, 8/15/2006
 LB38 stress a particle is a _trajectory_
- B38 stress a particle is a _trajectory_ Lars Blackmore, 8/16/2006

Slide 15

LB46 MAX failure rate Lars Blackmore, 8/18/2006

Particle Control for Linear Systems For nonlinear systems, resulting optimization too complex for real-time operation In the case of: Linear systems Polygonal feasible regions Piecewise linear cost function global optimum can be found extremely efficiently using Mixed Integer Linear Programming (MILP) Important problems using linear systems, cost function: Aircraft control about trim state UAV path planning

Satellite control

LB33 Mention min time, min fuel Lars Blackmore, 8/16/2006

Slide 21

LB34 say more complex for nonconvex but won't go into details Lars Blackmore, 8/16/2006

Slide 23

LB47 go faster over this Lars Blackmore, 8/18/2006

Slide 24

LB48 Mention closed loop with particle filter Lars Blackmore, 8/15/2006

LB29 maybe show a box here as well Lars Blackmore, 8/16/2006

Related Work Using Particles
 Particles have previously been used in decision making, variously referred to as: Particles (Doucet01, Greenfield03) Simulations (Singh06) Scenarios (Ng00, Yu03, Tarim06) (Ng00) converts a stochastic MDP into deterministic MDP by representing all randomness in initial state (Greenfield03) proposed finite horizon control with expected cost approximated using particles (Doucet01, Singh06) use samples to approximate cost function value and gradient in local optimizer
 Key contributions of chance-constrained particle control: Use particles to approximate the probability of failure Optimization with constraints on probabilities is a novel and powerful tool (e.g. chance-constrained planning)

Efficient solution using MILP

rizon control with expected	With MILP optimizatio
s to approximate cost al optimizer	 Empirical results show solved in less than a r
trained particle control:	 For non-convex F, even problems take many r
babilities is a novel and powerful ng)	 MILP can use a large optimum Good feasible solution
<u>41</u>	Hill Human and a state of the state

	Complexity
•	Problem is worst-case exponential in: – Length of planning horizon – System order – Number of particles – Number of constraints
•	MILP solution means that worst-case complexity is almost never realized
•	With MILP optimization, typical solution time difficult to characterize
•	Empirical results show for convex <i>F</i> , relatively large problems can be solved in less than a minute
•	For non-convex F, even with heuristic pruning approach, medium-sized problems take many minutes
•	MILP can use a large amount of time proving that solution is global optimum – Good feasible solutions can typically be found much more quickly
	-

LB23 Lars Blackmore 8/15/2006 Highlight generality, appealing chance-constrained approach, only need to find ways to make optimisation tractable Lars Blackmore, 8/15/2006

