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Context

• Optimal predictive control of dynamic systems
– “What is best sequence of control inputs that takes system state from 

the start to the goal?”

• Constrained optimization approaches have been successful 
(Schouwenaars01,Maciejowski02,Dunbar02,Richards03)

• Non-convex 
feasible region

• Non-holonomic
dynamics

• Discrete-time

Goal region
Initial state
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Optimal Controls are Not Robust to Uncertainty

• Uncertainty arises due to:
– Disturbances
– Uncertain state estimation
– Inaccurate modeling

These are typically described
probabilistically

Planned path

True path

Goal
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Why Probabilistic Uncertainty?

• Two principal ways to represent uncertainty:

1. Set-bounded uncertainty 
(Zhou88,Gossner97,Bemporad99,Kerrigan01)

2. Probabilistic uncertainty
(Bertsekas78, Ma 2005)
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Why Probabilistic Uncertainty?

• Probabilistic representations much richer
– Set-bounded representation subsumed by p.d.f.

• Probabilistic representations often more realistic
– What is the absolute maximum possible wind velocity?

• Probabilistic representations readily available in many cases
– Disturbances
– Uncertain state estimation
– Inaccurate modeling

We deal with probabilistic uncertainty

e.g. Parameter estimation

e.g. Dryden turbulence model
e.g. Particle filter, Kalman filter, SLAM
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Robust Control of Probabilistic Dynamic Systems

• Given probabilistic uncertainty, we want to plan distribution of 
future state in optimal, robust manner

• Chance-constrained formulation: Find optimal sequence of 
control inputs such that p(failure) ≤ δ

Expected path

p(failure) ≤ δ
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Problem Statement

• Design a finite, optimal sequence of control 
inputs u0:T-1 such that system state trajectory 
leaves feasible region with probability at most δ

• System dynamics: ),,( 1:001:0 −−= tttt f νxux

• Cost function: ),( :11:0 TTh xu −

• Feasible region: F

[ ]),( :11:0 TThE xu −

Random variables with known p.d.f.s
(at least approximately)

Random variable with p.d.f. 
to be optimized
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Chance-constrained Control: Prior Work

• Prior work developed chance-constrained Model 
Predictive Control (Li00, VanHessem04)
– Restricted to case of Gaussian uncertainty
– Restricted to control within convex regions

• We extend this work to arbitrary uncertainty 
distributions and non-convex regions

Chance-constrained particle control
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Chance-constrained Particle Control: Intuition

• In estimation, Kalman Filters have been very successful for 
linear systems, Gaussian noise
– State distribution given model and observations can be calculated 

analytically

• More recently, Particle Filters have been successful for 
nonlinear systems, with non-Gaussian noise
– State distribution is approximated by a number of particles
– Convergence of approximation to true distribution as number of 

particles tends to infinity
– Number of particles used determined by available resources

• Idea: Use particles for anytime robust control
– Control the distribution of particles to achieve a probabilistic goal

LB45
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Particles: Probabilistic Properties

• Particles can approximate arbitrary distributions:
– Draw N samples x(i) from a r.v. X with distribution p(x)
– Distribution approximated with delta functions at samples:

• Convergence results:
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Technical Approach

• Question: How can particles be used to solve chance-
constrained probabilistic control problem?

• Chance-constrained particle control:
1. Use particles to sample random variables (noise, initial position, 

disturbances)
2. Calculate future state trajectory for each particle leaving explicit 

dependence on control inputs u0:T-1

3. Express probabilistic optimization problem approximately in 
terms of particles

4. Solve approximate deterministic optimization problem for u0:T-1

Approximate optimization goal tends to true goal as number of 
particles tends to infinity
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Technical Approach

1. Use particles to sample random variables

Obstacle 1

Obstacle 2

Goal Region

Initial state distribution

Particles approximating 
initial state distribution
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Technical Approach

2. Calculate future state trajectory for each particle leaving 
explicit dependence on control inputs u0:T-1

Obstacle 1

Obstacle 2

Goal Region
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Technical Approach

2. Calculate future state trajectory for each particle leaving 
explicit dependence on control inputs u0:T-1

Obstacle 1

Obstacle 2

Goal Region
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Technical Approach

3. Express probabilistic optimization problem approximately
in terms of particles

Fraction of particles 
failing approximates
probability of failure

Sample mean 
approximates 
state mean

Sample mean of cost
function approximates 
true expectation:

Obstacle 1

Obstacle 2

Goal Region
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Technical Approach

4. Solve approximate deterministic optimization 
problem for u0:T-1

Obstacle 1

Obstacle 2

Goal Region

t=0

t=1

t=2

t=3

t=4
10% of particles fail 
in optimal solution

δ = 0.1
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Convergence

– As N ∞, approximation becomes exact

Obstacle 1

Obstacle 2

Goal Region
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Convergence

– As N ∞, approximation becomes exact

Obstacle 1

Obstacle 2

Goal Region

10% probability of 
failure
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Particle Control for Linear Systems

• For nonlinear systems, resulting optimization too complex 
for real-time operation

• In the case of:
1. Linear systems
2. Polygonal feasible regions
3. Piecewise linear cost function
global optimum can be found extremely efficiently using Mixed Integer 

Linear Programming (MILP)

• Important problems using linear systems, cost function:
– Aircraft control about trim state
– UAV path planning
– Satellite control

LB33
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Particle Control for Linear Systems

• Future state for each particle:

• Approximate expected state:

• Approximate expected cost:

• All of these are linear functions of control inputs
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Particle Control for Linear Systems

• Approximate chance constraints:
– Express feasible region in terms of constraints

– Introduce binary variables indicating particle success

– Constrain sum of binary variables
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Particle Control for Linear Systems

• Chance-constrained problem is a MILP

• Decision variables:
– Control inputs (continuous)

– State trajectory for each particle (continuous)

– Success indicator for each particle (binary)

• Can be solved to global optimality

• Extremely efficient MILP solvers available
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Simulation Results

• Task A:
– Control of Boeing 747 in heavy turbulence
– Aircraft must remain within defined flight envelope
– Longitudinal dynamics linearized about trim state
– Assume inner-loop altitude hold controller
– Minimize fuel use (elevator deflection)

• Uncertainty sources:
– Disturbances due to heavy turbulence (MIL-F-8785C)
– Sensor noise gives rise to attitude uncertainty

Highly non-Gaussian distributions

LB47
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Simulation Results

10% of particles 
break envelope

Initial particles 
generated using 
particle filter

Flight envelope

Num particles = 100, Planning horizon = 20 steps, dt = 2s, δ = 0.1
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Simulation Results

• Convergence of failure probability:
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Simulation Results

• Conservatism vs. performance

Maximum Probability of Failure
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Simulation Results

• Solution time vs. number of particles

Number of Particles

So
lu

tio
n 

Ti
m

e 
(s

)

28

Simulation Results

• Task B:
– 2-D Control of Unmanned Air Vehicle 
– Environment contains obstacles to be avoided
– Linear dynamics model (Schouwenaars01)
– Minimize fuel use

• Uncertainty sources:
– Wind disturbances
– Initial state uncertainty

Highly non-Gaussian distributions
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Simulation Results
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• Maximum probability of failure: 0.04

Num particles = 50, planning horizon = 10 steps, dt = 1s, δ = 0.04
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Simulation Results
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• Maximum probability of failure: 0.02

Num particles = 50, planning horizon = 10 steps, dt = 1s, δ = 0.02
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Future Work

• Applications
– Production, operations
– Landing site selection

• Efficient solutions to more general systems
– Switching (hybrid) systems failure tolerant control
– Nonlinear systems

• Receding horizon results
– Robust probabilistic feasibility?

• Bias reduction/elimination

LB23
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Conclusion

• Novel any-time approach to robust probabilistic 
control with arbitrary probability distributions
– Very general formulation, challenge is tractable optimization
– For linear systems, global optimum can be found efficiently
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Questions?
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Backup
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Related Work Using Particles
• Particles have previously been used in decision making, 

variously referred to as:
– Particles (Doucet01,Greenfield03)
– Simulations (Singh06)
– Scenarios (Ng00, Yu03, Tarim06)

• (Ng00) converts a stochastic MDP into deterministic MDP by 
representing all randomness in initial state

• (Greenfield03) proposed finite horizon control with expected 
cost approximated using particles

• (Doucet01, Singh06) use samples to approximate cost 
function value and gradient in local optimizer

• Key contributions of chance-constrained particle control:
– Use particles to approximate the probability of failure

• Optimization with constraints on probabilities is a novel and powerful 
tool (e.g. chance-constrained planning)

– Efficient solution using MILP
36

Complexity
• Problem is worst-case exponential in:

– Length of planning horizon
– System order
– Number of particles
– Number of constraints

• MILP solution means that worst-case complexity is almost never realized

• With MILP optimization, typical solution time difficult to characterize

• Empirical results show for convex F, relatively large problems can be 
solved in less than a minute

• For non-convex F, even with heuristic pruning approach, medium-sized 
problems take many minutes

• MILP can use a large amount of time proving that solution is global 
optimum
– Good feasible solutions can typically be found much more quickly
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Bias

Num Particles = 2
δ = 0.5

Expected position of furthest right particle = 0.7

Sampled particles

1

1

x0

p(x0)

Optimal direction

u u*

0.5


