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Abstract— This paper considers finite-horizon optimal con-
trol for multi-agent systems subject to additive Gaussian-
distributed stochastic disturbance and a chance constraint.
The problem is particularly difficult when agents are coupled
through a joint chance constraint, which limits the probability
of constraint violation by any of the agents in the system.
Although prior approaches [1][2] can solve such a problem
in a centralized manner, scalability is an issue.

We propose a dual decomposition-based algorithm, namely
Market-based Iterative Risk Allocation (MIRA), that solves the
multi-agent problem in a decentralized manner. The algorithm
addresses the issue of scalability by letting each agent optimize
its own control input given a fixed value of a dual variable,
which is shared among agents. A central module optimizes
the dual variable by solving a root-finding problem iteratively.
MIRA gives exactly the same optimal solution as the centralized
optimization approach since it reproduces the KKT conditions
of the centralized approach. Although the algorithm has a
centralized part, it typically uses less than 0.1% of the total
computation time. Our approach is analogous to a price
adjustment process in a competitive market called tâtonnement
or Walrasian auction: each agent optimizes its demand for risk
at a given price, while the central module (or the market)
optimizes the price of risk, which corresponds to the dual
variable. We give a proof of the existence and optimality of
the solution of our decentralized problem formulation, as well
as a theoretical guarantee that MIRA can find the solution.
The empirical results demonstrate a significant improvement
in scalability.

I. INTRODUCTION

We consider multi-agent systems under unbounded

stochastic uncertainty, with state and control constraints.

Stochastic uncertainty with a probability distribution, such

as Gaussian, is a more natural model for exogenous distur-

bances, such as wind gusts and turbulence [3], than previ-

ously studied set-bounded models [4][5][6][7]. An effective

framework to address robustness with stochastic unbounded

uncertainty is optimization with a chance constraint [8].

A chance constraint requires that the probability of vio-

lating the state constraints (i.e., the probability of failure)

is below a user-specified bound known as the risk bound.

A substantial body of work has studied the optimization

problems with chance constraint mainly for single-agent

systems [1][2][9][10][11].

Users of multi-agent systems typically would like to bound

the probability of system failure rather than the probabilities

of individual agents’ failure; in other words, we need to

impose a joint chance constraint, which limits the probability
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of having at least one agent failing to satisfy any of its state

constraints. In such cases agents are coupled through the

joint chance constraint even if they are not coupled through

state constraints. It is then an important challenge to find

globally optimal control inputs for the multi-agent system in

a decentralized manner while guaranteeing the satisfaction of

the joint chance constraint. There has been past research on

the decentralized optimal control problem with deterministic

plant model [12] or with bounded uncertainty [13]. As far

as we know, no past work has solved the decentralized op-

timization problem under stochastic unbounded uncertainty

with a coupling through a joint chance constraint.

We solve the problem in the following two steps. Firstly,

we find a set of decomposed individual chance constraints

that is a sufficient condition of the original joint chance

constraint. This decomposition allows us to convert chance

constraints into deterministic constraints, though agents are

still coupled through the constraint on the sum of individual

risk bounds. The resulting optimization problem is determin-

istic and convex, so it can be solved in a centralized manner.

Secondly, we formulate a set of decomposed optimization

problems that are solved by individual agents in a distributed

manner. The decomposed problems share a fixed value of a

dual variable of the constraint that couples agents. In order

to be optimal, the dual variable must be a solution to a root-

finding problem, which corresponds to the complementary

slackness condition of the centralized optimization. The root-

finding problem is solved by a central module. The solution

obtained by this decentralized approach, which we call the

decentralized solution, is exactly the same as the globally

optimal solution of the centralized formulation. Moreover, if

the centralized optimization problem has an optimal solution,

a decentralized solution is guaranteed to exist.

Our algorithm, Market-based Iterative Risk Allocation

(MIRA), finds the optimal solution by solving the decom-

posed optimization problem and the root-finding problem it-

eratively and alternatively. Although the root-finding problem

is solved by a centralized module, it typically uses less than

0.1% of the total computation time.

We offer an economic interpretation of our decentralized

approach. The MIRA algorithm can be viewed as a com-

putational market for risk, where the agents’ demand is

for risk, while the user supplies a fixed amount of risk by

specifying the risk bound. The dual value can be interpreted

as the price of risk. The demand of each agent at a given

price is obtained by solving the decomposed optimization

problem. The algorithm looks for the equilibrium price, at

which the supply and the aggregate demand are balanced, by
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iteratively solving the root-finding problem. This process is

analogous to the price adjustment process called tâtonnement

or Walrasian auction in general equilibrium theory [14]. Past

work by Voos [15] has presented successful applications of

the tâtonnement approach to distributed resource allocation

optimization problems.

The major contributions of this paper are: i) the decentral-

ized formulation of a finite-horizon optimal control problem

with a joint chance constraint, ii) the proof of existence and

optimality of the decentralized solution, iii) the proof of the

continuity and monotonicity of the demand function, and iv)

the development of the MIRA algorithm, which is guaranteed

to find the optimal solution whenever it exists.

II. PROBLEM STATEMENT

The following notation is used throughout this paper:

S : Risk bound given by the user of the system

δi
n : Individual risk bound for the n’th constraint of the i’th

agent

xi
t : State vector of the i’th agent at the t’th time step

(random variable)

ui
t : Control input of the i’ th agent at the t’ th time step

wi
t : Additive disturbance on i’th agent at the t’th time step

(random variable)

x̄i
t := E[xi

t] : Nominal state of the i’ th agent at the t’ th

time step

Xi :=
[

xiT
0 · · ·xiT

T

]T
, U i :=

[

uiT
0 · · ·uiT

T−1

]T
,

where the superscript T means transpose. A set of variables

for all indices in their range is represented as δ1:I
1:Ni and U1:I ,

for example.

We consider a linear discrete dynamic system with I
agents under Gaussian disturbance. Our problem is formu-

lated as follows:

Problem 1: Multi-agent finite-horizon optimal control

with a joint chance constraint

min
U 1:I

I
∑

i=1

J i(U i) (1)

s.t. xi
t+1 = Aixi

t + Biui
t + wi

t (2)

ui
min ≤ ui

t ≤ ui
max (3)

Pr





I
∧

i=1

Ni

∧

n=1

hiT
n Xi ≤ gi

n



 ≥ 1 − S (4)

wi
k ∼ N (0, Σwi),xi

0 ∼ N (x̄0, Σxi

0

) (5)

(i = 1 · · · I, t = 0 · · ·T − 1, n = 1 · · ·N i)

We assume that J i(·) is a proper convex function.

N (µ,Σ) is a Gaussian distribution with mean µ and

variance Σ. Although we focus on Gaussian-distributed

uncertainty in this paper, our algorithm can be extended

to any additive stochastic uncertainties with quasi-concave

probability distribution.

Our model considers that the multi-agent system has failed

when at least one agent fails to satisfy any of its state

constraints. Therefore, the joint chance constraint (4) requires

that the probability that all state constraints of all agents are

satisfied must be more than 1 − S, where S is the upper

bound of the probability of failure (risk bound). The risk

bound is specified by the user of the system. We assume

that 0 ≤ S ≤ 0.5 in order to guarantee the convexity

of Problem 2 in Section III. This assumption is reasonable

because acceptable risk of failure is much less than 50% in

most practical cases. We assume no coupling through state

constraints in this paper.

Given a risk bound S, the problem is to find the optimal

control inputs U i for all agents that minimize the system

cost
∑I

i=1 J i(U i).

III. CENTRALIZED OPTIMIZATION

This section presents the centralized solution to Problem

1. It is, practically speaking, impossible to solve Problem

1 directly, since the joint chance constraint (4) is very hard

to evaluate due to the difficulty of computing an integral

of multi-variable probability distribution over an arbitrary

region. It is also difficult to handle random variables xi
t as it

is. Building upon past work [1][16], we decompose the joint

chance constraint into individual chance constraints that only

involve single-dimensional distributions. Individual chance

constraints can be turned into deterministic constraints de-

fined on the nominal state x̄i
t. As a result, we obtain the

following approximated optimization problem that does not

contain a joint chance constraint nor random variables:

Problem 2: Centralized optimization with decomposed

chance constraints

min
U 1:I

,δ1:I

1:Ni
≥0

I
∑

i=1

J i(U i) (6)

s.t. x̄i
t+1 = Aix̄i

t + Biui
t (7)

ui
min ≤ ui

t ≤ ui
max (8)

hiT
n X̄

i
≤ gi

n − mi
n(δi

n) (9)

I
∑

i=1

Ni

∑

n=1

δi
n ≤ S (10)

(i = 1 · · · I, t = 0 · · ·T − 1, n = 1 · · ·N i)

Note that new decision variables δ1:I
1:Ni ≥ 0 are introduced.

They represent the risk bounds of individual chance con-

straints (9), whose sum of the individual risk bounds is

bounded by the original risk bound S in (10). We interpret

δ1:I
1:Ni as risk allocation [17]: the total amount of risk S is

allocated to each constraint, and the allocation is optimized

in order to minimize the system cost.

In (9), −mi
n(·) is the inverse of cumulative distribution

function of univariate Gaussian distribution:

mi
n(δi

n) = −

√

2hiT
n ΣXihi

n erf−1(2δi
n − 1) (11)

where erf−1 is the inverse of the Gauss error function. Note

that mi
n(δi

n) is a convex, monotonically decreasing, and non-

negative function for δi
n ∈ (0, 0.5]. It is strictly convex for

δi
n ∈ (0, 0.5). Our assumption that S ≤ 0.5 guarantees δi

n ≤
0.5.
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Lemma 1: A feasible solution to Problem 2 is always a

feasible solution to Problem 1.

Proof: It follows from Boole’s inequality (Pr [
⋃

i Ai] ≤
∑

i Pr [Ai]) that the condition (12), together with (10) and

δn
t ≥ 0, implies the original chance constraint (4) [16]:

∀(i,n) Pr
[

hiT
n X̄

i
≤ gi

n

]

≥ 1 − δn
t (12)

This probabilistic state constraint (12) is equivalent to the

deterministic constraint (9) in Problem 2 [8]. Therefore any

solution that satisfies (9)-(10) also satisfies (4).

Problem 2 has the following two important features:

a) Convexity: Problem 2 is a convex optimization prob-

lem since mi
n(δi

n) is a convex function. Therefore, it can be

solved by a convex optimization solver.

b) Small conservatism: Although the optimal solution

of Problem 2 is not the optimal solution to Problem 1, our

past work [1][2] showed that the conservatism is significantly

smaller than past bounding approaches such as [11][18].

This is explained by the fact that the probability of violating

more than two constraints is smaller than the probability of

violating just one constraint by orders of magnitude in many

practical cases, where S ≪ 1.

Therefore, by solving Problem 2, we can obtain a feasible,

close-optimal solution of Problem 1. Note that agents are still

coupled through (10).

IV. DECENTRALIZED OPTIMIZATION

Although the centralized method presented in the previous

section can solve Problem 2 optimally, its scalability is an

issue.

We propose a decentralized formulation of Problem 2

through dual decomposition, where each agent solves a

decomposed convex optimization problem in a distributed

manner while a central module solves a root-finding problem.

Although this method has a centralized part, its computation

time is negligible compared to the decentralized part. This

claim is empirically validated in Section VII.

A. The Approach

Each individual agent solves the following Problem 3,

which involves a convex optimization:

Problem 3: Decomposed optimization problem for i’th
agent

min
U i

,δi

1:Ni
≥0

J i(U i) + p

Ni

∑

n=1

δi
n (13)

s.t. x̄i
t+1 = Aix̄i

t + Biui
t (14)

ui
min ≤ ui

t ≤ ui
max (15)

hiT
n X̄

i
≤ gi

n − mi
n(δi

n) (16)

(t = 0 · · ·T − 1, n = 1 · · ·N i)

where the constant p ≥ 0 is given by the central module and

shared by all agents. We will show in Section VI that p can

be interpreted as the price of risk. Problem 3 is completely

decoupled from other agents, since it does not include the

coupling constraint (10).

Note that
∑Ni

n=1 δi
n, the total amount of risk the i’th agent

takes, is not bounded. Instead, it penalizes the agent with

a factor of p (13). Given p, each agent finds its optimal

risk allocation δi⋆
1:Ni(p). Since the total amount of risk that

each agent takes is also a function of p, we denote it by

Di(p) :=
∑Ni

n=1 δi⋆
n (p). In Section IV-B, we will give a more

formal definition of Di(p), and prove that it is a single-

valued, continuous, monotonically decreasing function. We

will show in Section VI that Di(p) can be interpreted as the

i’th agent’s demand for risk given the price p.

The central module finds the optimal p by solving the

following root-finding problem except in the case of p = 0:

Problem 4: Root-finding problem for the central module

Find p ≥ 0 where

I
∑

i=1

Di(p) = S. (17)

The central module plays the role of the market of risk,

which decides the price of risk. An important fact is that

the computational complexity of solving Problem 4 is not

affected by the number of agents, since the input to the root-

finding algorithm we use (Brent’s method) is the difference

of the left-hand side and the right-hand side of (17).

The following proposition holds:

Proposition 1: Optimality of decentralized solution

(a) If Problem 3 has an optimal solution (U i⋆, δi⋆
1:Ni) for all

i = 1 · · · I with p⋆ > 0 that is a root of Problem 4, then

(U1:I⋆, δ1:I⋆
1:Ni) is a globally optimal solution for Problem 2.

(b) If Problem 3 has an optimal solution (U i⋆, δi⋆
1:Ni) with

p = 0 for all i = 1 · · · I that satisfies ΣI
i=1D

i(0) ≤ S, then

(U1:I⋆, δ1:I⋆
1:Ni) is a globally optimal solution for Problem 2.

Proof: We prove by showing that (U1:I⋆, δ1:I⋆
1:Ni) and p⋆

satisfy the KKT conditions of Problem 2. Although Problem

3 shares most of the constraints of Problem 2, it misses (10).

Therefore we need to pay attention to the KKT conditions

that are related to (10) and δi
n:

µi
n

dmi
n

dδi
n

+ p = 0 (18)

I
∑

i=1

Ni

∑

n=1

δi
n ≤ S (19)

p





I
∑

i=1

Ni

∑

n=1

δi
n − S



 = 0 (20)

p ≥ 0 (21)

where µi
n and p are the dual variables corresponding to (9)

and (10), respectively. The KKT conditions are the necessary

and sufficient conditions for global optimality of Problem

2 since J i and mi
n are convex functions, and the equality

constraint (7) is linear. The optimal solution of Problem 3

(U i⋆, δi⋆
1:Ni) satisfies (18) because it is also a part of the KKT
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conditions of Problem 3. In the case of (a), δ1:I⋆
1:Ni satisfies

(19) and (20) since p⋆ is a root of (17). In the case of (b),

(19) and (20) are satisfied since ΣI
i=1D

i(0) ≤ S and p = 0.

Since the cost function of the centralized optimization (6) is a

sum of the individual cost functions (13) and the constraints

(7)-(9) are the same as (14)-(16), the partial derivatives of the

Lagrangians of Problem 2 and 3 respect to U i and Xi are the

same. Therefore, their stationary constraints regarding to U i

and Xi are the same. Problem 2 and 3 also share the same

primary feasibility, dual feasibility, and the complementary

slackness conditions regarding to U i and Xi since (7)-(9)

and (14)-(16) are the same.

Since all KKT conditions of Problem 2 are satisfied

by (U1:I⋆, δ1:I⋆
1:Ni), which satisfies the KKT conditions of

Problem 3 together with p⋆, (U1:I⋆, δ1:I⋆
1:Ni) is an optimal

solution of Problem 2.

Proposition 1 states that if a decentralized solution (i.e.,

solution for Problems 3 and 4) exists, then it is an optimal

solution for the centralized problem (Problem 2). The follow-

ing Proposition 2 guarantees the existence of a decentralized

solution if there is an optimal solution for the centralized

problem.

Proposition 2: Existence of decentralized solution

If Problem 2 has an optimal solution (U1:I⋆, δ1:I⋆
1:Ni),

(a) (U i⋆, δi⋆
1:Ni) is an optimal solution of Problem 3 for all

i = 1 · · · I given p > 0, which is a root of Problem 4, or

(b) (U i⋆, δi⋆
1:Ni) is an optimal solution of Problem 3 for all

i = 1 · · · I with p = 0 and ΣI
i=1D

i(0) ≤ S.

Proof: The KKT conditions of Problem 3 are the

necessary and sufficient conditions for its optimality since

J i and mi
n are convex functions, and the equality constraint

(14) is linear. Since the KKT conditions of Problem 3 are

the subset of the KKT conditions of Problem 2, the optimal

solution of Problem 2 always satisfies all KKT conditions

of Problem 3 for all i = 1 · · · I; hence it is an optimal

solution of Problem 3. When p > 0, it is a root of Problem

4 since the second term of (20) must be zero. When p = 0,

ΣI
i=1D

i(0) ≤ S because (19) is satisfied.

Although the following Lemma 2 is just a contraposition

of Proposition 2, it is useful when checking the feasibility

of Problem 2.

Lemma 2: If both Proposition 2(a) and (b) do not apply,

Problem 2 does not have an optimal solution.

B. Continuity and Monotonicity of Demand Function

Although the existence of a decentralized solution is

established by Proposition 2, it does not tell how to find

it. The objective of this subsection is to prove the continuity

of the demand function Di(p) in order to guarantee that

the root of Problem 4 can be found by a standard root-

finding algorithm, Brent’s method. We will also prove in this

subsection that Di(p) is a monotonically decreasing function.

This feature is very important since it allows us to find the

absence of a root by checking the feasibility conditions at

the boundaries.

We first derive the optimal cost as a function of a risk

bound. Observe that the following optimization problem

gives the same solution as Problem 3:

min
∆i≤0.5

min
U i

,δi

1:Ni
≥0

J i(U i) + p∆i (22)

s.t. (14) − (16)

Ni

∑

n=1

δi
n ≤ ∆i (23)

Therefore, Problem 3 is equivalent to solving the following:

min
∆i≤0.5

J i⋆(∆i) + p∆i (24)

where

J i⋆(∆i) = min
U i

,δi

1:Ni
≥0

J i(U i) (25)

s.t. (14) − (16), (23)

The conditions (14)-(16), (23) define a compact space.

If it is non-empty, (25) has a minimum since J i(U i) is a

proper convex function by assumption. We denote by ∆i
min

the smallest ∆i that makes (14)-(16),(23) non-empty. Then

it is non-empty for all ∆i ≥ ∆i
min since mi

n(δi
n) is a

monotonically decreasing function. Therefore J i⋆(∆i) is a

single-valued function for all ∆i ≥ ∆i
min. Since S ≤ 0.5,

any feasible solution of Problem 2 has ∆i ≤ 0.5. Therefore

we limit the domain of J i⋆(∆i) to [∆i
min, 0.5] without the

loss of generality. The convexity of mi
n(δi

n) is implied by

∆i ≤ 0.5.

Lemma 3: J i⋆(∆i) is a convex, monotonically decreasing

function for its entire domain.

Proof: Let ∆i
1 and ∆i

2 be real numbers that satisfy

∆i
min ≤ ∆i

1 < ∆i
2 ≤ 0.5. Since larger ∆i loosens the

constraint (23) by allowing larger δi
n, J i⋆(∆i

1) ≥ J i⋆(∆i
2).

Therefore J i⋆ is monotonically decreasing.

Let λ be a real scalar in [0, 1]. Let also U i⋆
1 and U i⋆

2

be optimal solutions of (25) with ∆i
1 and ∆i

2, respectively.

Since the feasible space defined by (14)-(16), (23) is convex,

λU i⋆
1 +(1−λ)U i⋆

2 is a feasible (but not necessarily optimal)

solution of (25) with λ∆i
1 + (1 − λ)∆i

2. Therefore,

J i⋆(λ∆i
1 + (1 − λ)∆i

2) ≤ J i(λU i⋆
1 + (1 − λ)U i⋆

2 )

≤ λJ i(U⋆
1) + (1 − λ)J i(U⋆

2)

= λJ i⋆(∆1) + (1 − λ)J i⋆(∆2).

The second inequality holds since J i(U i) is a convex

function of U i.

It immediately follows from Lemma 2 that J i⋆(∆i) is

continuous, and differentiable at all but countably many

points.

We then prove the strict convexity for a portion of the

domain of J i⋆ where it is strictly decreasing. We define
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Slope: -p

J i* (    )

D i (p) 0.5

Slope:

Slope:

ipmin−

ipmax−
D i (p)

pipmin0
ipmax

Fig. 1. Sketch of the functions Ji⋆(∆i) and Di(p) (demand function of
i’th agent). Note that in many practical cases ∆i

max = 0.5.

∆i
max as follows:

∆i
max = min

[

0.5, sup
{

∆i
∣

∣ ∂J i⋆(∆i) < 0.
}]

where ∂J i⋆ is the subdifferencial of J i⋆. The inequality

means that all subgradients are less than zero. See Fig. 1

for graphical interpretation.

Lemma 4: J i⋆(∆i) is strictly convex for all ∆i
min ≤ ∆i ≤

∆i
max.

Proof: Fix ∆i
1, ∆i

2, and λ such that ∆i
min ≤ ∆i

1 <

∆i
2 ≤ ∆i

max, 0 < λ < 1. Let (U i⋆
1 , X̄

i⋆

1 , δi⋆
1:Ni,1) and

(U i⋆
2 , X̄

i⋆

2 , δi⋆
1:Ni,2) be optimal solutions of (25) with ∆i

1 and

∆i
2, respectively. Note that X̄

i⋆

j is linearly tied to U i⋆
1 by

(14). Since mi
n(δi

n) in (16) is strictly convex,

hiT
n

(

λX̄
i

1 + (1 − λ)X̄
i

2

)

< gi
n − mi

n

(

λδi⋆
n,1 + (1 − λ)δi⋆

n,2

)

(n = 1 · · ·Ni). (26)

In other words, the constraints (16) are inactive for all n =
1 · · ·Ni at λX̄

i

1 +(1−λ)X̄
i

2 (hence, at λU i⋆
1 +(1−λ)U i⋆

2 )

and λδi⋆
n,1 + (1 − λ)δi⋆

n,2.

Also, the following inequality holds:

J i(λU i⋆
1 + (1 − λ)U i⋆

2 ) ≥ J i⋆(λ∆i
1 + (1 − λ)∆i

2)

> J i⋆(∆i
2) = J i(U i⋆

2 ). (27)

The second inequality follows from the mean-value theorem

and the definition of ∆i
max. Note that by assumption, λ > 0

(hence, λ∆i
1+(1−λ)∆i

2 < ∆i
2) and ∆i

2 ≤ ∆i
max. As for the

first inequality, refer to the proof of Lemma 3. It is implied

by (27) that λU i⋆
1 + (1 − λ)U i⋆

2 is not a globally optimal

solution; hence, it is not a local optimal solution either.

Therefore, there exists a non-zero perturbation δU i to

λU i⋆
1 + (1 − λ)U i⋆

2 that satisfies the constraints (16) with

λδi⋆
1:Ni,1 + (1 − λ)δi⋆

1:Ni,2, and results in strictly less cost.

Hence, we have:

J i⋆(λ∆1 + (1− λ)∆2) ≤ J i(λU i⋆
1 + (1− λ)U i⋆

2 + δU i)

< J i(λU i⋆
1 + (1 − λ)U i⋆

2 ) ≤ λJ i(U⋆
1) + (1 − λ)J i(U⋆

2)

= λJ i⋆(∆1) + (1 − λ)J i⋆(∆2). (28)

Therefore, J i⋆(∆i) is strictly convex for all ∆i
min ≤ ∆i <

∆i
max.

Since J i⋆(∆i) is strictly convex and monotonically de-

creasing, there is a unique minimizer of (24) for p > 0.

When p = 0, the optimal solution of (24) may not be unique.

Then, we define the demand function as follows so that

Di(p) is a single-valued function for all p ≥ 0:

Definition: Demand function

Di(p) :=

{

arg min∆i≤0.5 J i⋆(∆i) + p∆i (p > 0)
∆i

max (p = 0)

This definition is natural since ∆i
max is an optimal solution

for p = 0 if it exists. Moreover, in such a case, ∆i
max is

the smallest optimal solution. This feature is important since

we need to check the condition (19), which is equivalent

to ΣI
i=1D

i(0) ≤ S, against the smallest optimal solution in

order to tell if Proposition 1(b) applies.

Proposition 3: Continuity and Monotonicity of Demand

Function

(a) Di(p) is a continuous, monotonically decreasing function

for p ≥ 0.

(b) Di(p) = ∆i
max for 0 ≤ p ≤ pi

min, and Di(p) = ∆i
min

for p ≥ pi
max.

Proof: We define pi
min and pi

max as follows:

pi
max = sup

∆i∈(∆i

min
,∆i

max
)

−∂J i⋆(∆i)

pi
min = inf

∆i∈(∆i

min
,∆i

max
)
−∂J i⋆(∆i), (29)

where ∂J i⋆(∆i) is the subdifferential of J i⋆.

We first prove the continuity and monotonicity in

(pi
min, pi

max). Since Di(p) is the optimal solution for (24),

the following optimality condition is satisfied:

−p ∈ ∂J i⋆
(

Di(p)
)

. (30)

It follows from the Conjugate Subgradient Theorem (Propo-

sition 5.4.3 of [19]) that

Di(p) ∈ ∂(J i⋆)⋆(−p)

where (J i⋆)⋆ is the conjugate function of J i⋆. Since the

minimum of J i⋆(∆i) + p∆i is uniquely attained, (J i⋆)⋆ is

differentiable everywhere, and hence continuously differen-

tiable, in (pi
min, pi

max) (Proposition 5.4.4 of [19]). Therefore

Di(p) is continuous in (pi
min, pi

max). Also, since (J i⋆)⋆ is

a convex function (Ch. 1.6 of [19]), Di(p) is monotonically

decreasing in (pi
min, pi

max).
Next, we show that Di(p) = ∆i

max for 0 ≤ p ≤ pi
min.

When ∆i
max < 0.5, it follows from the definition of ∆i

max

and pi
min that ∂J i⋆(∆i

max) = [0,−pi
min]. Therefore, ∆i

max

is an optimal solution of (24) for 0 ≤ p ≤ pi
min, since the

optimality condition (30) is satisfied. This result agrees with

the definition of Di(p) at p = 0. When ∆i
max = 0.5, it

follows from (29) that pi
min < −∂J i⋆(∆i) in (∆i

min, 0.5).
Therefore, the minimum of J i⋆(∆i) + p∆i is attained at

the upper bound of ∆i, which is ∆i = 0.5 = ∆i
max, and

hence Di(p) = ∆i
max. By definition, Di(0) = ∆i

max. The

continuity at p = 0 is obvious.
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Then we show that Di(p) = ∆i
min for p ≥ pi

max. It

follows from (29) that pi
max > −∂J i⋆(∆i) in (∆i

min,∆i
max).

Therefore, the minimum of J i⋆(∆i)+ p∆i is attained at the

lower bound of the domain of J i⋆, which is ∆i = ∆i
min.

Therefore, Di(p) = ∆i
min.

Finally, we prove that Di(p) is continuous at pi
min and

pi
max. Since Di(p) is constant for 0 ≤ p ≤ pi

min and

p ≥ pi
max, we only have to show that it is upper semi-

continuous at pi
min and lower semi-continuous at pi

max.

Consider a sequence pk ∈ (pi
min, pi

max) with pk → pi
min.

It follows from the definition of pi
min (29) and the convexity

of J i⋆ that we can find a sequence Di
k such that

pk ∈ −∂J i⋆
(

Di
k

)

, Di
k → ∆i

max.

Since Di
k satisfies the condition for optimality for pk,

Di(pk) = Di
k. Therefore,

lim
pk→pi

min

Di(pk) → ∆i
max.

Hence, D(p) is continuous at pi
min. In the same way, it is

lower semi-continuous at pi
max.

Therefore, Di(p) is a continuous, monotonically decreas-

ing function for p ≥ 0.

See Fig. 1 for the sketch of Di(p).

V. THE ALGORITHM

Now we present the Market-based Iterative Risk Alloca-

tion (MIRA), that finds the solution for Problems 3 and 4.

Algorithm 1 (see the box below) shows the entire flow of the

MIRA algorithm. Exploiting the fact that risk is a scalar, we

use Brent’s method to efficiently find the root of Problem 4.

A. Obtaining Di(0)(= ∆i
max) (Algorithm 1, Line 1-3)

The algorithm first computes Di(0)(= ∆i
max) in order to

find if Proposition 1(b) applies. It is obtained through the

following process:

Algorithm 1 Market-based Iterative Risk Allocation

1: Each agent computes ∆i
max and ∆i

min;

2: if ΣI
i=1∆

i
max ≤ S then

3: p = 0 gives the optimal solution; terminate;

4: else if ΣI
i=1∆

i
min > S then

5: There is no feasible solution; terminate;

6: else

7: while |
∑

i Di(p) − S| > ǫ do

8: The central module announces p to agents;

9: Each agent computes Di(p) by solving Problem 3;

10: Each agent submits Di(p) to the central module;

11: The central module updates p by computing one

step of Brent’s method;

12: end while

13: end if

1) : Relax Problem 3 by fixing all risk bounds at δi
n =

0.5. This relaxation makes mi
n(δi

n) = 0. The relaxed problem

has only linear constraints, so it can be solved efficiently. If

it does not have a feasible solution, Problem 3 is infeasible,

and Problem 2 is also infeasible (Lemma 2). The algorithm

terminates in this case.

2) : Compute δi⋆
n using the following equation with the

optimal solution X̄
i⋆

obtained from the relaxed problem:

δi⋆
n = cdfi

n(hiT
n X̄

i⋆
− gi

n)

where cdfin(·) is a cumulative distribution function of uni-

variate Gaussian distribution with variance hiT
n ΣXihi

n, or in

other words, the inverse of −mi
n(·).

3) : Obtain Di(0) by:

Di(0) = min



0.5,

Ni

∑

n=1

δi⋆
n





Each agent computes Di(0) and sends it to the central

module. The central module checks if ΣI
i=1D

i(0) ≤ S holds.

If so, the optimal solution of the relaxed problem is the

solution of Problem 2 by Proposition 1(b). Proposition 3

guarantees that there is no positive root of Problem 4, and

hence, the algorithm terminates. Otherwise the algorithm

looks for a solution with p > 0.

B. Obtaining ∆i
min (Algorithm 1, Line 1, 4, and 5)

Each agent also computes ∆i
min by solving the following

convex optimization problem:

∆i
min = min

∆i≤0.5,U i
,δi

1:Ni
≥0

∆i (31)

s.t. (14) − (16), (23)

If ΣI
i=1∆

i
min > S, then it follows from Proposition 3

that ΣI
i=1D

i(p) > S for all p ≥ 0. In this case, since

both Proposition 1(a) and (b) do not apply, there is no

feasible solution (Lemma 2), and the algorithm terminates.

Otherwise, Proposition 3 guarantees that a solution exists in

(0,maxi pi
max]. pi

max can be computed from the solution of

the optimization problem (31).

C. Finding a root for Problem 4 (Algorithm 1, Line 7-12)

If the algorithm has not terminated in the previous steps,

we have ΣI
i=1D

i(0) > S and ΣI
i=1D

i(pi
max) ≤ S. There-

fore, the continuity of Di(p) (Proposition 3) guarantees

that Brent’s method can find a root between (0, maxi pi
max].

Brent’s method provides superliner rate of convergence [20].

It is suitable for our application since it does not require the

derivative of Di(p), which is generally hard to obtain. In

many practical cases, it is more efficient to incrementally

search p that is large enough to make ΣI
i=1D

i(pi
max) ≤ S,

rather than initializing Brent’s method with [0, maxi pi
max].

The algorithm updates (U i⋆, δi⋆
1:Ni) (hence, Di(p)) and

p alternatively and iteratively. In each iteration, each agent

computes Di(p) (Line 9) in a distributed manner by solving

Problem 3 with p, which is given by the central module

(Line 8). Since Problem 3 is a convex optimization problem,
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Fig. 2. Economic interpretation of the decentralized optimization approach
in a system with two agents. Note that we followed the economics
convention of placing the price on the vertical axis. The equilibrium price
is p⋆, and the optimal risk allocation is ∆⋆
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= D1(p⋆) for Agent 1 and

∆⋆

2
= D2(p⋆) for Agent 2.

it can be solved efficiently using interior-point methods. The

central module collects Di(p) from all agents (Line 10) and

updates p by computing one step of Brent’s method (Line

11).

The communication requirements between agents are

small: in each iteration, each agent receives p (Line 8) and

transmits Di(p) (Line 10), both of which are scalars.

The central module can be removed by letting all indi-

vidual agents solve Problem 4 to update p simultaneously.

However, since the computation of p is duplicated among

the agents, there is no advantage of doing so in terms of

computation time.

VI. ECONOMIC INTERPRETATION

The economic interpretation of the distributed optimiza-

tion becomes clear by regarding the dual variable p as the

price of risk.

Each agent takes risk ∆i
n by paying p∆i

n as an additional

cost (see (13) or (24)). It optimizes the amount of risk it

wants to take D(p), as well as the control sequence U i, by

solving Problem 3 with a given price of risk p. Therefore

Di(p) can be interpreted as the demand for risk of the

i’th agent. On the other hand, the upper bound on the total

amount of risk S, which is a constant specified by the user

of the system, can be interpreted as the supply of risk.

The optimal price p⋆ must satisfy the complementary

slackness condition (20). In the usual case where the optimal

price is positive p⋆ > 0, the aggregate demand
∑

i Di(p⋆)
must be equal to the supply S at p⋆. Such a price is called

the equilibrium price. In a special case where the supply

always exceeds the demand for all p ≥ 0, the optimal price

is zero p⋆ = 0. If the aggregate demand always exceeds the

supply for all p ≥ 0, there is no solution that satisfies the

primal feasibility condition (19), and hence the problem is

infeasible. See Fig. 2 for the graphical interpretation.

The iterative optimization process of MIRA is analo-

gous to the price adjustment process called tâtonnement or

Walrasian auction in the general equilibrium theory [14].

Intuitively, the price is raised when there is excess demand
∑

i Di(p) − S > 0, and it is lowered when there is excess

supply
∑

i Di(p)−S < 0 until the supply and the aggregate

demand are balanced.

VII. SIMULATION

A. Result

Fig. 3 shows the average computation times of 100 runs

of the MIRA algorithm with 2 to 128 agents, compared

against the centralized approach that directly solves Problem

2. Demands for risk are computed parallelly in each agent.

The computation time of the centralized algorithm quickly

grows as the problem size increases. Although MIRA, the

proposed algorithm, is slower for the problems with less than

eight agents, it outperforms the centralized algorithm when

the number of agents is more than eight. The exponential fits

to the average computation time of MIRA and the centralized

approach are 15.2e0.0160n and 0.886e0.328n, respectively,

where n is the number of agents. MIRA has a 20 times

smaller exponent than the centralized approach, which means

a significant improvement in scalability.

A counterintuitive phenomenon observed in the result is

that MIRA also slow down for large problems, although not

as significantly as the centralized algorithm. This is because

iterations must be synchronized among all agents. When

each agent computes its demand for risk by solving the non-

linear optimization problem, the computation time diverges

from agent to agent. In each iteration, all agents must wait

until the slowest agent finishes computing its demand. As a

result, MIRA slows down for large problems, as the expected

computation time of the slowest agent grows. Our future

work is to develop an asynchronous algorithm to improve

scalability.

The computation time of the central module (CM), which

is shown in Figure 4, is at most 0.1% of the total computation

time of MIRA. Figure 4 also shows that the number of

iterations are almost constant. Moreover, the computational

complexity of the root finding algorithm used for the CM

does not increase with the number of agents. As a result,

the computation time of the CM (Figure 4) grows less sig-

nificantly than the computation time of the entire algorithm

(Figure 4). Therefore, the existence of the central module

does not harm the scalability of MIRA. The growth in the

computation time of the CM is mainly due to computational

overhead of handling the data from multiple agents.

B. Implementation and Setting

In the decentralized approach (MIRA), a convex optimiza-

tion solver SNOPT is used to solve Problem 3 (computation

of Di(p)), and the Matlab implementation of Brent’s method

(fzero) is used to find the root p⋆ of Problem 4. In the

centralized approach, Problem 2 is solved by SNOPT. Since

it is hard to set exactly the same optimality tolerances for

centralized and decentralized approaches, we set a stricter

tolerance for the decentralized approach than the centralized

approach. Specifically, the optimality tolerance of SNOPT is

defined in terms of the complementary slackness normalized

by dual variables p
‖π‖

∣

∣

∣

∑I
i=1 Di(p) − S

∣

∣

∣
< ǫ, where π is the

vector of all dual variables. In the decentralized approach, we
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set the tolerance of fzero as

∣

∣

∣

∑I
i=1 Di(p) − S

∣

∣

∣
< ǫ. This tol-

erance is stricter than the previous one since p/‖π‖ ≤ 1. We

set ǫ = 10−6. Simulations were conducted on a machine with

Intel(R) Core(TM) i7 CPU clocked at 2.67 GHz and 8GB

RAM. MIRA is simulated by a single processor; however,

we counted the computation time of the agent that is slowest

to compute the demand in each iteration, so that the result

shown in Fig. 3 corresponds to the computation time when

running MIRA with parallel computing. Communication

delay is not simulated in our result.

C. Parameters used

The planning window is 1 ≤ t ≤ 5. The Parameters are

set as follows:

Ai =

[

1 1
0 1

]

, Bi =

[

0.5
1

]

, xi
0 =

[

0.5
0

]

,

umin = −0.2, umax = 0.2, hi
n = − [1 0]

Σwi =

[

0.001 0
0 0

]

, J i =
5

∑

t=1

(ui
t)

2

The bound of the state constraints gi
n is generated by a

random walk starting from gi
0 = 0, and gi

n+1−gi
n is sampled

from a uniform distribution in [−0.3, 0.3].

VIII. CONCLUSION

We presented a decentralized approach to a finite-horizon

optimal control problem with a joint chance constraint,

where each agent solves a decomposed convex optimization

problem (Problem 3) in a distributed manner while a central

module solves a root-finding problem (Problem 4). The

proofs of the existence and optimality of the decentralized

solution (Propositions 1 and 2) , as well as the continuity

and monotonicity of the demand function (Proposition 3),

were given. We developed the Market-based Iterative Risk

Allocation (MIRA) algorithm, which is guaranteed to find

the optimal solution whenever it exists. The empirical re-

sults demonstrated a significant improvement in scalability

compared to the centralized algorithm.
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