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Abstract— This paper presents a novel algorithm for finite-
horizon optimal control problems subject to additive Gaussian-
distributed stochastic disturbance and chance constraints that
are defined over feasible, non-convex state spaces. Our previous
work [1] proposed a branch and bound-based algorithm that
can find a near-optimal solution by iteratively solving non-linear
convex optimization problems, as well as their LP relaxations
called Fixed Risk Relaxation (FRR) problems.

The aim of this work is to significantly reduce the compu-
tation time of the previous algorithm so that it can be applied
to practical problems, such as a path planning with multiple
obstacles. Our approach is to use machine learning to efficiently
estimate the objective function values of FRRs within an error
bound that is fixed for a given problem domain and choice
of model complexity. We exploit the fact that all the FRR
problems associated with the branch-and-bound tree nodes are
similar to each other, both in terms of the solutions as well as
the objective function and constraint coefficients. A standard
optimizer is first used to generate a training data set in the
form of optimal FRR solutions. Matrix transformations and
boosting trees are then applied to generate learning models;
fast inference is performed at run-time for new but similar
FRR problems that occur when the system dynamics and/or the
environment changes slightly. By using this regression technique
to estimate the lower bound of the cost function value, and
subsequently solving the convex optimization problems exactly
at the leaf nodes of the branch-and-bound tree, we achieve 10-35
times reduction in the computation time without compromising
the optimality of the solution.

I. INTRODUCTION

A. Motivation and Overview

We consider the finite-horizon robust optimal control

of dynamic systems under unbounded Gaussian-distributed

uncertainty, with non-convex state constraints. Stochastic

uncertainty with a probability distribution, such as Gaussian,

is a more natural model for exogenous disturbances, such

as wind gusts and turbulence, than previously studied set-

bounded models such as [2]. An effective framework to ad-

dress robustness with stochastic unbounded uncertainty is op-

timization with a chance constraint [3]. A chance constraint

requires that the probability of violating the state constraints

This material is based upon work supported in part by the National
Science Foundation under Grant No. IIS-1017992, by the Boeing Company
under Grant No. MIT-BA-GTA-1, and by the Office of Naval Research
Science of Autonomy program under Contract No. N000140910625. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the view
of the sponsoring agencies.

Ashis Gopal Banerjee is a Postdoctoral Associate at MIT.
ashis@mit.edu

Masahiro Ono is a Ph.D. student at MIT. hiro ono@mit.edu
Nicholas Roy is an Associate professor at MIT. nickroy@mit.edu
Brian C. Williams is a Professor at MIT. williams@mit.edu
*Both authors contributed equally to this work.

(i.e., the probability of failure) is below a user-specified

bound known as the risk bound. The non-convex chance-

constrained optimal control has important applications such

as robust path planning in the presence of obstacles.

In our previous work, we developed two novel methods

called risk allocation [4] and risk selection [1] that decom-

pose a joint non-convex chance constraint into a disjunctive

set of individual chance constraints, which again can be

converted to deterministic constraints. The optimal solution

to the resulting disjunctive convex programming problem is

obtained by using a branch and bound algorithm, where non-

linear convex programming problems are solved repeatedly.

We also introduced a novel LP relaxation of the non-linear

convex programing problem called Fixed Risk Relaxation

(FRR), whose solution gives the lower bound of the cost.

It was empirically shown that the FRR makes the branch-

and-bound algorithm faster by 10-20 times. However, the

computation time is still not fast enough for several problem

domains. For example, it requires about 35 seconds to solve

a path planning problem with 10 time steps and only one

obstacle. We found that most of the computation time is

consumed in solving thousands of FRRs repeatedly.

Now, FRR problems in a particular branch and bound tree

often share multiple common constraints and always contain

the same objective function and number of decision vari-

ables. Uncertainties in the operating conditions may result in

slightly different problems with some changes in the objec-

tive function and constraint coefficient values and generation

of some new constraints and/or deletion of old ones without

altering the number of decision variables. Henceforth, we

refer to problems that contain the same number of decision

variables, similar objective function coefficients, and similar

constraint coefficients with some variation in the number of

equality constraints as a set of similar LP problems.

We observed that the solutions of similar LP problems

are usually quite similar themselves in the sense that most

of the optimum decision variable values do not change

much. Hence, we show that supervised machine learning,

and more specifically, regression, can be used to learn from

the solutions of given feasible FRR problems to predict the

solutions of new but similar LP problems. Fast inference is

then performed over such regression models at run-time to

quickly estimate the LP solutions instead of computing them

using standard optimizations solvers.

In this paper, we present a boosting tree-based approach

to learn a set of functions that map the objective function

and constraints to the individual decision variables of similar

LP problems. Matrix transformations are used to convert
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the objective function vector and constraint equation coef-

ficients to a single predictor variable vector. The decision

variables themselves constitute the response variables. This

formulation enables us to provide absolute worst-case bounds

on the objective function prediction error resulting from

potential approximation errors induced by the regressor,

which are used in the branch and bound framework for

pruning purposes. In order to bias the boosting trees to avoid

predicting infeasible values when feasible solutions exist, we

modify the standard loss function to penalize response values

that lie outside the feasible region of the training set LP

problems as the constant modeled value inside the boosting

tree regions.

We use this regression technique to solve the FRRs

approximately to estimate the lower bound on the overall

cost function and then solve the convex chance-constrained

optimization problems at the leaf nodes exactly in the branch-

and-bound algorithm. This approach significantly reduces the

computation time of the algorithm without compromising the

optimality of the solution. Empirical results show that the

regression-based LP solver enhances the speed of the branch-

and-bound algorithm by 10-35 times, thereby enabling us

to solve chance-constrained path planning problems with

multiple obstacles (up to 5) and long planning time horizons

(up to 30) within a few seconds.

B. Related Work

There is a significant body of work that solves convex

joint chance constrained optimization problems, such as [5],

[6], [7]. On the other hand, to the best of our knowledge,

there are only three prior methods [1], [8], [9] that handle

non-convex chance-constrained optimization. Although the

sampling based method [8] is very general, slow computation

is a major bottleneck. Moreover, it may result in an infeasible

solution due to sampling errors. These issues are addressed

by [9] that used the Boole’s inequality to decompose the

chance constraint into a set of individual chance constraints,

which can be evaluated analytically. Since the set of in-

dividual chance constraints provides a sufficient condition

for the original chance constraint, this approach always

results in a feasible solution. Although it is efficient, the

solution has significant suboptimality since the risk bounds

of the individual chance constraints are arbitrarily fixed.

The state-of-the-art approach proposed by [1] formulated

the risk bounds as explicit optimization parameters in order

to obtain near-optimal solutions. The resulting disjunctive

convex programming problem is solved by a branch-and-

bound algorithm, where convex optimization problems, as

well as FRRs, are solved iteratively. Each single FRR is an

LP which must be solved repeatedly; it is this substantial

computational cost which is addressed in this paper.

In terms of using machine learning to solve optimal

planning and control problems, a lot of work has been done

on reinforcement learning (both in direct and inverse forms)

for problems that can be cast in the form of Markov decision

processes [10], [11]. However, relatively little work has been

done to learn the solutions of problems that are cast in

combinatorial optimization form. Few such representative

work in the planning domain includes application of temporal

difference learning by Zhang and Dietterich [12] and usage

of naı̈ve Bayes and decision trees by Vladušič et al. [13] for

job scheduling problems. Different evolutionary techniques,

such as genetic algorithm, ant colony optimization etc.

have also been used in [14], [15] to solve vehicle routing

problems.

II. REVIEW OF NON-CONVEX CHANCE-CONSTRAINED

OPTIMAL CONTROL PROBLEM

Notation: The following notation is used throughout this

paper except in Section III.
xt : State vector at t′th time step (random variable)

ut : Control input at t′th time step.

wt : Additive disturbance at t′th time step

(random variable)

x̄t := E[xt] : Nominal state at t′th time step

U : Convex feasible set for U

X :=







x0

...

xT






U :=







u0

...

uT−1






X̄ :=







x̄0

...

x̄T







A. Problem Statement

The finite-horizon optimal control problem with a non-

convex chance constraint is formally stated as follows:

Problem 1: Finite-horizon optimal control with a non-

convex chance constraint

For all t = 0, 1, · · · , T ,

min
U∈U

J(X̄, U) (1)

s.t. xt+1 = Axt +But + wt (2)

wt ∼ N (0,Σw) (3)

x0 ∼ N (x̄0,Σx,0) (4)

Pr





Ni
∧

i=1

Nj(i)
∨

j=1

hT
i,jX ≤ gi,j



 ≥ 1−∆, (5)

where ∆ ≤ 0.5 is the risk bound that is specified by the

user. We assume that the cost function J is a linear function

of the mean states X̄ and control inputs U . Without loss

of generality, we also assume that the non-convex chance

constraint is in conjunctive normal form as (5), since any

combination of logical conjunctions and disjunctions can be

transformed to conjunctive normal form. The specification of

chance constraints given in equation (5) requires that all Ni

disjunctive clauses of state constraints must be satisfied with

a probability 1−∆. The i’th disjunctive clause is composed

of Nj(i) state constraints. For example, the path planning

problem in an environment with an obstacle illustrated in

Fig. 1 requires the following chance constraint:

Pr





T
∧

t=1

4
∨

j=1

hT
t,jxt ≤ gt,j



 ≥ 1−∆, (6)

where T is the number of time steps in the planning horizon.
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2,2, tt gXh =

4,4, tt gXh =

Goal

1,1, tt gXh =

3,3, tt gXh =

Fig. 1: Path planning with obstacles requires satisfying

disjunctive clauses of linear state constraints (6).

B. Deterministic Approximation

Evaluating whether or not the chance constraint in Prob-

lem 1 has been satisfied requires computing an integral of a

multivariate probability distribution over an arbitrary region,

which can be computationally very costly. Our past work [1]

has shown that a feasible, near-optimal solution to Problem

1 is obtained by solving the following problem, which does

not involve random variables and probabilistic constraints:

Problem 2: Deterministic approximation of Problem 1

min
U∈U,δ1:Ni

>0
J(X̄, U) (7)

s.t. x̄t+1 = Ax̄t +But (8)

Ni
∧

i=1

Nj(i)
∨

j=1

hT
i,jX̄ ≤ gi,j −mi,j(δi) (9)

N
∑

i=1

δi ≤ ∆, (10)

where −mi,j(·) is the inverse of the cumulative distribution

function of the univariate Gaussian distribution with variance

hT
i ΣXhi (note the negative sign):

mi,j(δi) = −
√

2hT
i,jΣXhi,j erf−1(2δi − 1). (11)

erf−1 is the inverse of the Gauss error function and ΣX is

the covariance matrix of X . Note that mi,j(·) is a convex

function for δi ≤ 0.5. Since we assume that ∆ ≤ 0.5, its

convexity is guaranteed from (10). Our approach of solving

Problem 2 instead of Problem 1 is justified since the solution

to Problem 2 is a feasible and near-optimal solution to

Problem 1.

a) Feasibility: The following lemma guarantees that a

solution to Problem 2 is a feasible solution to Problem 1:

Lemma 1: Satisfying the set of constraints (9-10) is a

sufficient condition of the non-convex chance constraints

given in (5).

Proof:

(5) ⇐=
Ni
∧

i=1

Pr





Nj(i)
∨

j=1

hT
i,jX ≤ gi,j



 ≥ 1− δi ∧ (10)

⇐=
Ni
∧

i=1

Nj(i)
∨

j=1

Pr
[

hT
i,jX ≤ gi,j

]

≥ 1− δi ∧ (10)

⇐⇒ (9) ∧ (10).

The first logical implication follows from the Boole’s in-

equality. See [1] for a detailed proof.

b) Near optimality: Although the optimal solution of

Problem 2 is not the optimal solution to Problem 1, our

past work [1] showed that the suboptimality is significantly

smaller than other bounding approaches such as [9]. This is

explained by the fact that the probability of violating more

than two disjunctive clauses of constraints is smaller than

the probability of violating just one by orders of magnitude

in many practical cases, where ∆≪ 1.

Our new algorithm presented in Section IV, as well as

our previous algorithm proposed by [1], optimally solves

Problem 2 in order to obtain a feasible, near-optimal solution

of Problem 1.

C. Disjunctive Convex Programming

Problem 2 is a disjunctive convex programming problem,

which can be solved by a branch-and-bound algorithm. We

proposed a bounding approach in [1], whereby the relaxed

problems are constructed by removing all constraints below

the corresponding disjunction. This approach was used by

[16] and [17] for a different problem known as disjunctive

linear programming.

At each loop of the branch-and-bound algorithm, we pick

i, and assign an index to j. Let ζ(i) be the assignment to j for

the i’th disjunctive clause. We set ζ(i) = φ if an index is not

assigned to the i’th clause. The branch-and-bound algorithm

searches the optimal assignments ζ⋆ by recursively solving

the following convex optimization problem. We denote by

J⋆
CCCO(ζ) its optimized cost function value of the convex

optimization problem given an assignment ζ.

Problem 3: Convex Chance-Constrained Optimization

J⋆
CCCO(ζ) = min

U∈U,δ1:Ni
>0

J(X̄, U)

s.t. x̄t+1 = Ax̄t +But

Ni
∧

i=1

hT
i,ζ(i)X̄ ≤ gi,ζ(i) −m′

i,ζ(i)(δi)(12)

N
∑

i=1

δi ≤ ∆. (13)

where

m′

i,j(δi) :=

{

−∞ (if j = φ)
mi,j(δi) (otherwise).

By setting m′

i,j to −∞, the state constraint clauses

with unassigned index j are virtually removed. Since the
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constraints are relaxed by removing unassigned clauses,

J⋆
CCCO(ζ) with partially assigned ζ gives an lower bound

to the one with fully assigned ζ.

D. Fixed Risk Relaxation

Since mi,j(δi) is a non-linear function, Problem 3 is a

non-linear convex programming problem, whose solution

time is significantly greater than linear programming (LP)

problems. We proposed a further relaxation of Problem 3 in

[1], namely Fixed Risk Relaxation (FRR), which only has

linear constraints. Since we assume that the cost function J
is linear in this paper, FRR is an LP problem, which can be

solved using any standard optimizer. The FRR of Problem 3

is obtained by fixing all the individual risk bounds δi to ∆,

which is a constant:

Problem 4: Fixed Risk Relaxation of Problem 3

J⋆
FRR(ζ) = min

U∈U

J(X̄, U)

s.t. x̄t+1 = Ax̄t +But

Ni
∧

i=1

hT
i,ζ(i)X̄ ≤ gi,ζ(i) −m′

i,ζ(i)(∆) (14)

Note that the non-linear constraint (12) is turned into a linear

constraint (14) since the nonlinear term m′

i,ζ(i) becomes

constant by fixing δi.
Lemma 2: Problem 4 gives a lower bound to Problem 3:

J⋆
FRR(ζ) ≤ J⋆

CCCO(ζ)

Proof: mi,j(·) is a monotonically decreasing function.

Since δi ≤ ∆, all individual chance constraints (14) of the

Fixed Risk Relaxation are less stricter than (12) .

In the branch-and-bound algorithm, FRRs of the subprob-

lems are solved to obtain lower bounds.

III. REGRESSION-BASED APPROXIMATE LP SOLVER

Although each FRR is an LP problem, most of the compu-

tation time in the branch-and-bound algorithm is consumed

by FRRs since they must be solved repeatedly for different ζ.

This section proposes a novel regression-based approximate

LP solver that has a fixed worst-case error bound for a

given system of similar LP problems and choice of model

complexity, so that the FRR cost J⋆
FRR(ζ) can be estimated

efficiently.

A. Formulating as Regression Problem

A training set of N feasible LP problems

{LP1, . . . , LPN} and their optimum solutions {x∗

1, . . . , x
∗

N}
is generated by solving all the FRRs present in the branch

and bound trees of one or more optimal control problems

using a standard optimizer, where any LPk can be

represented in the standard form as:

min zk = cTk x, (15)

s. t. Akx = bk (16)

x ≥ 0 (17)

Here, ck, x ∈ ℜ
n, Ak ∈ ℜ

mk,n, bk ∈ ℜ
mk ∀k and Ak ∈ As,

bk ∈ bs, ck ∈ cs, where the 3-tuple (As, bs, cs) represents

the similar LP problem space. The decision variable vector

x and the objective function vector ck of all the LP problems

have identical dimensionality n. However, no restrictions are

imposed on the number of equality constraints mk in the

different LP problems.

We are interested in developing a regression model of

this LP system in order to predict the solution of any new

(test) LP problem whose parameters belong to the similar

LP problem space. A separate regressor function is used

for inferring each component of the vector x to avoid the

computational complexity associated with learning multiple

response variables simultaneously. The inter-dependence of

the decision variables is captured by incorporating all the

problem constraints in the predictor variable vector and also

by modifying the loss function suitably (discussed at the end

of this section).

We want to learn a set of n regressor functions

fi : (A
s, bs, cs) 7→ xi, 1 ≤ i ≤ n (18)

which are used to estimate the optimum x for any test LP

problem. Any regression model requires a set of predictor

variables (vectors denoted by v) and a set of response

variables (scalars denoted by y). In our case, the optimum

value of each LP decision variable x∗

i acts as the training set

response variable for the corresponding function fi. In order

to generate the predictor variable vector for the training set,

we first transform the system of equalities in (16) to a slightly

different form as given by

A′

kx = b′k (19)

where A′

k ∈ ℜ
m′

k,n and b′k ∈ ℜ
m′

k represent truncated forms

of Ak and bk that only contain the m′

k active constraints

at the optimum solution x∗

k. By introducing a new matrix

Wk, we can transform the above matrix constraint on x to a

vector constraint that is given by

x̂ = (WT
k A′

k)
−1WT

k b′k = dk (20)

where Wk ∈ ℜ
m′

k,n should be non-negative and the product

matrix WT
k A′

k must be non-singular. The form of (20) is

similar to a pseudoinverse solution of (19); Wk is used

instead of A′

k to avoid the problem of singularity for non-

unique x∗.

In order to construct the matrix Wk, let us represent it

as {w1, . . . , wm′

k
}T and A′

k as {a1, . . . , am′

k
}T . We select

each wi = eqi , where eqi ∈ ℜ
n is a unitary vector and

qi ∈ [1, n] denotes the position of the unity element such

that eTqiai 6= 0∀i. This ensures that WT
k A′

k is strongly non-

singular if A′

k is of full rank, as the determinants of all of

the principal submatrices are non-zero.

If multiple choices of qi exist, then we choose qi in such

a manner that at least one non-zero entry exists in every

column of Wk. Ties are broken randomly. This heuristic

enables us to associate relevant constraints for every xi

(constraints where coefficients of xi in A′

k are non-zero),
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weight the corresponding relevant constraint coefficients

equally by unity, perform matrix division, and utilize the

obtained value as the predictor variable vector value for

the particular problem LPk. If a column only contains zero

elements, we eliminate this particular column from both Wk

and A′

k and put di,k = 0, which takes care of the non-

singularity problem for non-unique x∗. The overall choice

of Wk is also useful in bounding the worst-case LP solution

prediction errors, details of which for a slightly different

formulation are given in [18].

Given this transformation (20), the common predictor

variable vector for all the functions f in a problem LPk

is formed by augmenting ck with dk. Thus, effectively, we

are learning fi : v 7→ xi, 1 ≤ i ≤ n, where a specific training

problem predictor variable vector instance is given by

vk = [c1,k, . . . , cn,k
...d1,k, . . . , dn,k]

T (21)

Clearly, the size of vk is always equal to p = 2n for any

value of k. Thus, transformation (20) not only provides a

compact way of encoding all the LP problem parameters

A, b, and c, it also results in a constant predictor variable

vector size that is independent of mk, 1 ≤ k ≤ N . The set

of active constraints is, however, unknown for the test LP

problem. So, the step given by (19) is omitted and the entire

matrix A and vector b is used for generating d. We also

assume that the test LP problem parameters are such that all

the components of the corresponding v vector lie within the

range defined by the training set problems. If this is not the

case, it is hypothesized that the LP problem is potentially

infeasible and a standard optimizer is invoked to validate the

hypothesis and obtain a feasible solution if necessary.

B. Developing Boosting Tree Models

We have developed a modified version of the standard

boosting tree algorithm given in [19] to learn each regressor

function fi. The multivariate regressor function is repre-

sented as a sum of trees T (v; Θm), each of which is given

by

T (v; Θm) =

Q
∑

j=1

γjmI(v ∈ Rjm) (22)

where Θm = {Rjm, γjm} encodes the parameters of the

m-th regression tree having terminal regions Rjm, j =
1, . . . , Q, and the indicator function I is defined as

I(v ∈ Rjm) =

{

1 if v ∈ Rjm,

0 otherwise.
(23)

It can be seen from (22) that the response variable (y) is

modeled as a constant within every tree region Rjm. Using

the additive form, the overall boosted tree can then be written

as the sum of M regression trees

fM (v) =
M
∑

m=1

T (v; Θm) (24)

Two child regions R1 and R2 are created at every internal

parent node of a tree by selecting a splitting variable o, 1 ≤
o ≤ p and a split value s that define a pair of half-planes

R1 = {v | vo ≤ s}, R2 = {v | vo > s} (25)

where vo represents the the oth component of the vector v.

We select o and s using a greedy stategy to minimize the

residual sum of squares error that solves

min
o,s

[min
γ1

∑

vk∈R1

(rk − γ1)
2 +min

γ2

∑

vk∈R2

(rk − γ2)
2] (26)

where vk is the predictor variable vector corresponding to

LPk and rk is the target value in each tree region. rk is

chosen as the negative gradient of the loss functional that is

given by −∂L(yk, f(vk))/∂f(vk). Here, L(y, f(v)) denotes

any of the standard loss functions, such as L2 or the squared-

error loss, L1 or the absolute-error loss, or the more robust

Huber loss LH [19]. For any choice of o and s, the inner

minimization in (25) is solved by

γ̂1 =

∑

vk∈R1
rk

N1
, γ̂2 =

∑

vk∈R2
rk

N2
(27)

where N1 and N2 denote the number of training data points

in R1 and R2 respectively. Each regressor tree is grown by

binary partitioning until the number of leaf nodes equals or

exceeds the fixed size Q that is chosen a priori. If required,

the tree is then pruned using the technique of cost-complexity

pruning described in [19] to reduce the number of leaf nodes

to Q.

In order to prevent overfitting, we consider a slightly

modified version of (22) in an iterative form as

fm(v) = fm−1(v) + ν

Q
∑

j=1

γjmI(v ∈ Rjm),m = 1, . . . ,M

(28)

where ν ∈ (0, 1) is the shrinkage parameter that controls the

learning rate; the modeling variable is given by

γjm = argmin
γ

∑

vk∈Rjm

L(yk, fm−1(vk) + γ) (29)

We adopt a modified form of the Huber loss function that

heavily penalizes selection of any γjm that lies outside the

common feasible region of all the given LP problems for

which v lie in Rjm. We refer to this as the penalization loss

Lp and represent it as

Lp = LH + hγ′

jm (30)

Here, h is a very large positive number and γ′

jm = {y :
y 6∈ Pc}, where Pc is the common feasible region of all

the LPs whose v ∈ Rjm. Although this modification cannot

guarantee generation of feasible solution for an arbitrary test

LP problem whose feasible solution exists, it significantly

increases the possibility of doing so (shown in Section V).

Infeasibilities are detected based on the significantly higher

predicted FRR cost values and are handled by pruning the

corresponding branch and bound nodes.
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The geometric interpretation of this algorithm is that it

iteratively partitions the predictor variable vector space into

a set of regions (stored as tree leaf nodes), each of which is

an axis-aligned hyperbox. Inference is simply performed by

identifying the region corresponding to the location of the

point specified by the test LP problem predictor vector and

selecting the fixed response variable encoded in the identified

region. Thus, every decision variable vector component can

be obtained efficiently, enabling us to estimate the objective

function quickly by computing the dot product given in (15).

IV. OVERALL ALGORITHM

This section presents the new algorithm that solves Prob-

lem 2 optimally and efficiently. The key idea is to solve

the FRR (Problem 4) by the regression-based approximate

LP solver described in Section III in order to enhance

the computational speed, while solving the convex chance-

constrained optimization (Problem 3) at the leaf nodes of the

branch-and-bound tree exactly in order to obtain the strictly

optimal solution to Problem 2.

The pseudo code is outlined in Algorithm 1. The algorithm

is initialized by an empty assignment (Line 3). For each

assignment ζ, the FRR of the corresponding subproblem is

solved by the approximate LP solver in order to obtain the

estimated lower bound of the optimal cost function value

(Line 7). The approximate LP solver may incorrectly judge

that the problem is infeasible, although such a case occurs

infrequently. In that case, to prevent incorrect pruning of

feasible solutions, the algorithm solves the FRR without

approximation using a standard optimizer. As mentioned

earlier in Section III, a very important property of our

approximate LP solver is that a worst-case bound on the

prediction error is known a priori, which is constant for a

given training data set and regression model and is applicable

for any test FRR that belongs to the same similar LP problem

space. In other words, there exists a positive finite real

number ǫ such that:
∣

∣

∣
ĴFRR(ζ)− J⋆

FRR(ζ)
∣

∣

∣
≤ ǫ,

where ĴFRR(ζ) is the estimated optimal cost of the FRR

given an assignment ζ. Therefore, we can guarantee that the

optimal solution is found by the branch-and-bound algorithm

by pruning the branch only if the estimated cost lower

bound ĴFRR(ζ) exceeds the incumbent by more than ǫ
(Line 8). Otherwise, the branch is expanded by invoking the

function branchAndBound recursively (Line 14). If a branch

is expanded to the leaf (i.e., i = Ni) without being pruned,

the convex chance-constraint optimization problem (Problem

3) is solved exactly (Line 17). If its optimal cost function

value is less than the incumbent, the incumbent and the

optimal solution U
⋆ are updated (Lines 19 and 20). Although

Algorithm 1 uses the approximate LP solver to estimate the

lower bounds on the cost in the branch-and-bound algorithm,

it results in a globally optimal solution of Problem 2 since

the solution U
⋆ is always obtained by solving Problem 3

exactly.

Algorithm 1 Non-convex Chance Constrained Optimal Con-

trol with Regression-based LP Solver

1: global Incumbent,U⋆

2: Incumbent←∞
3: ζ(i)← φ for i = 1 · · ·Ni

4: branchAndBound(1, ζ)

5: return U
⋆

function branchAndBound(i, ζ)

6: global Incumbent,U⋆

7: Solve Problem 4 approximately by the regression-based

LP solver

8: if J⋆
FRR(ζ) ≥ Incumbent+ ǫ then

9: //Prune this branch; Do nothing.

10: else

11: if i < Ni then

12: for j = 1 · · ·Nj(i) do

13: ζ(i)← j
14: branchAndBound(i+ 1, ζ) //Expand

15: end for

16: else

17: Solve Problem 3

18: if J⋆
CCCO(ζ) < Incumbent then

19: Incumbent← J⋆
CCCO(ζ)

20: U
⋆ ← U //Update the optimal solution

21: end if

22: end if

23: end if

V. RESULTS

All the results presented in this section are obtained

on an Intel Core2 Duo CPU, having 2.00 GHz processor

speed and 2.9 GB of RAM, in Ubuntu 9.0.4 OS, using

C++ as the programming language and IBM ILOG CPLEX

Optimization Solver Academic Edition version 12.2 as the

optimization solver. The total number of regression trees, M ,

is always chosen as 1000, the number of leaf nodes in any

tree, Q, as 16, and the shrinkage factor, ν, as 0.1.

We tested our approach on 2D path planning problems

under Gaussian uncertainty with a single chance constraint,

involving obstacle avoidance and finding paths through way-

points at desired time instants. A discrete-time, point-mass

dynamics model is used for the vehicle, which always starts

from [1,1] and heads to a rectangular goal location with

center at [12,12]. The system matrices are given by

A =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









and

B =









∆t2/m 0
0 ∆t2/m

∆t/m 0
0 ∆t/m
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TABLE I: Performance evaluation on different planning

problem scenarios. The proposed algorithm uses regression

for approximately solving FRRs whereas the previous al-

gorithm solves FRRs exactly using CPLEX optimizer. All

the reported data are for average values; standard deviation

values are not presented as they are of the order of 0.1% of

the average.

Performance metric
Scenario number

1 2 3 4

Previous algorithm comp. time (s) 135.21 219.76 79.99 80.15
Proposed algorithm comp. time (s) 7.51 8.14 6.15 5.73

Speed-up 18X 27X 13X 14X
Cost (using both algorithms) 4.23 5.86 3.45 3.60

Theoretical LP solution error (%) 4.2 4.1 3.5 3.6
Observed LP solution error (%) 3.3 3.4 2.7 2.7

Incorrect feasible predictions (%) 0.5 0.7 0.4 0.5

where m is the mass of the vehicle. The risk bound, ∆, is

always set to 0.01, the time interval, ∆t, to 0.5 and m to

1.0. The control inputs (forces along the X and Y axes)

are bounded by umin = [−5,−5] and umax = [5, 5]. The

disturbance covariance matrix is given by

Σw =









σ2
x 0 0 0
0 σ2

y 0 0
0 0 0 0
0 0 0 0









where σx, σy ∈ [0.1, 0.001]. The cost is the total control

effort during the planning horizon T as given by J(X,U) =
∑T

t=1(| ux,t | + | uy,t |). Although this cost function is not

linear, we linearize it by introducing slack variables.

Table I enumerates the performance of our algorithm for

four different planning scenarios. Scenario 1 deals with plan-

ning in an environment consisting of two obstacles, scenario

2 with avoiding two obstacles and passing through two

waypoints at specified time instants, scenario 3 with different

levels of disturbances (Gaussian distribution variance) in

the vehicle location, and scenario 4 with varying maximum

limits on the vehicle acceleration respectively. One obstacle

and one waypoint are used in the last two scenarios. All the

obstacles and waypoints are rectangular except in the case

of scenario 1. T is always selected as 20 in all the scenarios;

σx and σy are both chosen to be 0.01 in all the scenarios

excepting 3 and umin and umax are taken to be -2.5 and 2.5

respectively in the first three scenarios.

Optimum solutions of feasible FRRs arising in 16 different

problem instances are used as the training data set and the

FRRs occurring in 4 new instances are utilized for testing

purposes in each of the four scenarios. The locations of the

obstacles and the waypoints are varied randomly in the first

two scenarios, whereas the values of the location disturbance

variance and the maximum acceleration are altered randomly

in the next two scenarios, keeping the obstacle and waypoint

locations fixed. The generated trajectories for one of the

training and test problem instances for scenario 1 are shown

in Fig. 2.
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(a) Sample training problem

2 4 6 8 10 12

2

4

6

8

10

12

(b) Test problem

Fig. 2: Generated trajectories for planning with obstacle

avoidance using non-convex chance constrained optimal

control algorithm. The obstacles are displaced in the test

problem from their locations in the sample training problem,

showing that regression models learnt from different but

similar problems can be utilized to compute the optimum

solutions for new problems.
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FRRs solved exactly using CPLEX optimizer

FRRs solved approximately using boosting trees

Fig. 3: Computation time comparison for varying number of

obstacles. Note that the plot is in semi-log scale and error

bars are not shown as they are negligibly small.

Table I shows that significant speed-up is obtained by

using the proposed algorithm as compared to the previous

one for all the different scenarios. At the same time, identical

cost (objective) function values are returned by both the

algorithms. This fact clearly indicates that the optimality of

the overall branch and bound algorithm is strictly preserved,

even though its LP subproblems are solved approximately.

The average estimation errors of the objective values of

the LP subproblems lie between (2.5-3.5)%, which are

always within the theoretically-predicted values. This shows

the effectiveness of using the theoretical worst-case bound

during pruning. The number of incorrectly predicted feasible

solutions for infeasible FRRs is also quite small, indicating

the fact that only a few branches are not pruned when they

should have been.

Figures 3 and 4 show the enhanced effect of computational

speed-up for greater number of obstacles and longer planning

time horizons respectively. The values of σx, σy , umin,
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FRRs solved exactly using CPLEX optimizer

FRRs solved approximately using boosting trees

Fig. 4: Computation time comparison for varying planning

time horizons. Note that the plot is in semi-log scale and

error bars are not shown as they are negligibly small.

umax, as well as the number of training and test problem

instances are identical to those used for the scenarios in Table

I. T is chosen as 20 for all the problem instances in Fig. 3,

only one obstacle is present for the problem instances in

Fig. 4, no waypoints are present, and all the obstacles are

rectangular.

It may be noted here that although solving FRRs approx-

imately using regression does not prevent the exponential

growth in computational time, it does reduce the rate of ex-

ponential growth. This happens because the regression infer-

ence time remains the same (for identical model complexity)

at the internal nodes of the branch and bound trees in all

the problem instances, unlike the CPLEX optimizer, whose

running time increases significantly with the number of

constraints and decision variables. The plots are not extended

any further as the trends do not change and the computation

time of the proposed algorithm also becomes significantly

more than a few seconds, thereby rendering the approach

less useful for practical applications. Again, it should be

noted here that even though individual FRR problems are

solved approximately, we ensure that we obtain an optimal

solution to the overall control problem by conservatively

pruning branches and invoking the exact convex optimization

solver at the leaf nodes.

VI. CONCLUSIONS

We present a novel regression-based approximation tech-

nique for solving Fixed Risk Relaxation LP problems that

occur in the tree nodes of a branch and bound-based non-

convex, chance constrained finite horizon optimal control al-

gorithm. Similarity of the solutions and the objective function

and constraint coefficients of the LP problems are exploited

to develop boosting tree models over which fast inference

can be performed. Matrix transformations are applied to

construct predictor variable vectors with desirable properties

that enable us to come up with absolute worst-case bounds

on the solution prediction errors. Such errors bounds are

used to prune branches conservatively and exact convex

optimization is used at the leaf nodes of the branch and

bound trees to obtain optimal solutions. Empirical results

demonstrate significant computational speed-up over our

previous algorithm that relied on standard optimizers to solve

the individual FRR problems. Future work would include

validating this approach on real robotic hardware platforms.
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