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Abstract— This paper considers finite-horizon optimal con-
trol for dynamic systems subject to additive Gaussian-
distributed stochastic disturbance and a chance constraint on
the system state defined on a non-convex feasible space. The
chance constraint requires that the probability of constraint
violation is below a user-specified risk bound. A great deal
of recent work has studied joint chance constraints, which
are defined on the a conjunction of linear state constraints.
These constraints can handle convex feasible regions, but do
not extend readily to problems with non-convex state spaces,
such as path planning with obstacles.

In this paper we extend our prior work on chance con-
strained control in non-convex feasible regions to develop a new
algorithm that solves the chance constrained control problem
with very little conservatism compared to prior approaches.

In order to address the non-convex chance constrained
optimization problem, we present two innovative ideas in this
paper. First, we develop a new bounding method to obtain a set
of decomposed chance constraints that is a sufficient condition
of the original chance constraint. The decomposition of the
chance constraint enables its efficient evaluation, as well as the
application of the branch and bound method. However, the
slow computation of the branch and bound algorithm prevents
practical applications. This issue is addressed by our second
innovation called Fixed Risk Relaxation (FRR), which efficiently
gives a tight lower bound to the convex chance-constrained
optimization problem. Our empirical results show that the FRR
typically makes branch and bound algorithm 10-20 times faster.
In addition we show that the new algorithm is significantly less
conservative than the existing approach.

I. INTRODUCTION

Notation: The following notation is used throughout this

paper.

xt : State vector at t′th time step (random variable)

ut : Control input at t′th time step.

wt : Additive disturbance at t′th time step

(random variable)

x̄t := E[xt] : Nominal state at t′th time step

∧ := logical AND (conjunction)

∨ := logical OR (disjunction)
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A. Overview and Problem Statement

This paper considers the problem of finite-horizon ro-

bust optimal control of dynamic systems under unbounded

Gaussian-distributed uncertainty, with state and control con-

straints. We assume a discrete-time, continuous-state linear

dynamics model. Gaussian-distributed stochastic uncertainty

is a more natural model for exogenous disturbances such as

wind gusts and turbulence[1], than the previously studied

set-bounded models[2][3][4][5]. However, with stochastic

uncertainty, it is often impossible to guarantee that state

constraints are satisfied, since there is typically a non-zero

probability of having a disturbance that is large enough to

push the state out of the feasible region.

An effective framework to address robustness with

stochastic uncertainty is optimization with chance con-

straints. Chance constraints require that the probability of

violating the state constraints (i.e. the probability of failure)

is below a user-specified bound known as the risk bound.

An example problem is to drive a car to an destination as

fast as possible while limiting the probability of an accident

to 10−7. This framework allows users to trade conservatism

against performance by choosing the risk bound. The more

risk the user accepts, the better performance they can expect.

Previous work [6][7][8][9][10] studied a specific form of

chance constraint called a joint chance constraint, which is

defined on the conjunction of linear state constraints. In other

words, a joint chance constraint requires that the probability

of satisfying all state constraints is more than 1−∆, where ∆
is the risk bound. Below is an example of a joint chance

constraint defined on a conjunction of linear state constraints.

Pr

[

N
∧

i=1

h
T
i X ≤ gi

]

≥ 1 − ∆ (1)

Here h is a vector, and the superscript T means transposition.

A clear limitation of the formulation in (1) is that the

feasible state space needs to be convex, since a conjunction

of linear state constraints defines a convex polytopic state

constraint. However, many real-world problems have a non-

convex state space. For example, the feasible region of a

vehicle path planning problem with obstacles is non-convex.

Another example is when a vehicle has to choose at which

time step to pass through a particular region.

The objective of this paper is to solve an optimization

problem with chance constraints defined over non-convex
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feasible regions, instead of the convex joint chance constraint

in (1). An example of such a non-convex chance constraint

is given in (2). Note that it contains disjunctions as well

as conjunctions. The formal definition of non-convex chance

constraints is given in the next subsection.

Pr
[

((C{1} ∨ C{2}) ∧ C{3}) ∨ C{4}

]

≥ 1 − ∆ (2)

where C{i} is the linear state constraint given by hT
i X ≤ gi.

There are two difficulties in handling the non-convex

chance constraint. First, evaluating the chance constraint

requires the computation of an integral over a multi-variable

Gaussian distribution over a finite, non-convex region. This

cannot be carried out in closed form, and approximate tech-

niques such as sampling are time-consuming and introduce

approximation error. Second, even if this integral could be

computed efficiently, its value is non-convex in the decision

variables. This means that the resulting optimization problem

is, in general, intractable. A typical approach to dealing with

non-convex feasible spaces is the branch and bound method,

which decomposes a non-convex problem into a tree of

convex problems. However the branch and bound method

cannot be directly applied, since the non-convex chance

constraint cannot be decomposed trivially into subproblems.

In order to overcome these two difficulties, we propose

a novel method to decompose the non-convex chance con-

straint into a set of individual chance constraints, each of

which is defined on a univariate probability distribution.

Integrals over univariate probability distributions can be

evaluated accurately and efficiently, and the decomposition of

the chance constraint enables the branch and bound algorithm

to be applied to find the optimal solution.

While this approach is guaranteed to terminate in finite

time, branch and bound requires many subproblems to be

solved before the global optimum is found. Since in our case

the convex subproblems are non-linear programs, this means

that the overall computation time can be large. This problem

is addressed by our innovation, called Fixed Risk Relaxation

(FRR), which efficiently gives a tight lower bound to each

convex chance-constrained optimization problem. The FRR

is typically a linear or quadratic program, which can be

solved efficiently. Using the bound from FRR we can more

effectively prune the search space of the branch and bound

approach, and our empirical results show that this yields a

factor of 10-20 improvement in computation time.

B. Problem Statement

The open-loop finite-horizon optimal control problem with

a non-convex chance constraint is formally stated as follows,

where we assume that J is a proper, convex function:

min
U

J(X̄, U) (3)

s.t. xt+1 = Axt + But + wt (4)

umin ≤ ut ≤ umax (5)

wt ∼ N (0, Σw) (6)

x0 ∼ N (x̄0,Σx,0) (7)

Pr
[

C{φ}

]

≥ 1 − ∆ (8)

}{�C

}1{C

}1,1{C

}1,1,1{}1,1,1{}1,1,1{ : gXhC T
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v

v

v
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≤
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}2{}2{}2{ : gXhC T
≤

Fig. 1. The tree structure of the example chance constraint (10)

for all t = 0, 1, · · ·T . Eq.(8) is the general form of chance

constraint that allows non-convex state constraints, and C{φ}

represents a possible non-convex set of state constraints.

The set of state constraints C{i} is defined recursively by

the following equation. It is either a linear state constraint, a

conjunctive clause of state constraints, or a disjunctive clause

of state constraints:

C{i} :=







h
T
{i}X ≤ g{i} : linear constraint

∧

j C{i,j} : conjunctive clause
∨

j C{i,j} : disjunctive clause

(9)

where subscript i is a set of indexes. The root state constraint

C{φ} in (8) has an empty index φ, and the children clauses

of C{i} have an additional index j. For example, consider

the following non-convex chance constraint:

Pr
[

((C{1,1,1} ∨ C{1,1,2}) ∧ C{1,2}) ∨ C{2}

]

≥ 1 − ∆. (10)

The state constraints in the non-convex chance constraint in

(10) have the following structure.

C{φ} := C1 ∨ C2, C1 := C{1,1} ∧ C{1,2}

C{1,1} := C{1,1,1} ∨ C{1,1,2}

Intuitively, a set of state constraints can be represented

as a tree. The example state constraints in the non-convex

chance constraint in (10) have the tree shown in Figure 1.

C. Non-convex Chance Constraints

This subsection describes two example path planning

problems, in order to illustrate the need for non-convex

chance constraints.

1) Obstacle Avoidance: When planning a path in an

environment with an obstacle such as Fig. 2-Left, the non-

convex feasible region is approximated by the disjunction

of linear constraints. The probability of penetrating into the

obstacle should be limited to the given bound ∆ at all time

steps within the planning horizon 1 ≤ t ≤ T . In such a

case the chance constraint contains a disjunction of linear

constraints as follows:

Pr

[

T
∧

t=1

4
∨

i=1

h
T
{t,i}X ≤ g{t,i}

]

≥ 1 − ∆ (11)
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Fig. 2. Left: obstacle avoidance, Right: go-through constraint. In both
cases, the chance constraint has disjunctive clauses of linear constraints.

2) Going Through a Region (Waypoint): When planning

a path that goes through a region such as Fig. 2-Right, the

set of constraints only has to be satisfied at one time step

during the planning horizon. Therefore, the corresponding

chance constraint is defined on the disjunction of the set of

linear constraints as follows:

Pr

[

T
∨

t=1

4
∧

i=1

h
T
{t,i}X ≤ g{t,i}

]

≥ 1 − ∆ (12)

3) General Path Planning Problem: Typically, a path

planning problem has both obstacles and waypoints, and the

resulting chance constraint has a complicated structure of

conjunctive and disjunctive clauses.

D. Related Work

There is a significant body of work that solves convex

joint chance constrained optimizations, many of which have

been proposed in the context of model predictive control

(MPC). MPC is a closed-loop control approach that, at each

time step, solves a finite-horizon optimal control problem

from the current initial state, executes the first step in the

resulting optimal control sequence, and then resolves at the

next time step. We are not concerned with such receding-

horizon approaches in the present paper, and to the authors’

knowledge, no results exist that guarantee the satisfaction

of chance constraints for a closed-loop receding-horizon

scheme. For early results in this area, we refer the reader

to [11]. However there are a number of results in the MPC

literature that address the finite-horizon chance-constrained

optimal control problem. In the case of Gaussian uncertainty

distributions, linear system dynamics and convex feasible

regions, [12] considered chance constraints on individual

scalar values. The extension from scalar random variables

to joint random variables is essential if we wish to constrain

the probability of failure over the entire planning horizon.

The work of [13], [14] considered chance constraints on

joint random variables, using the result of [15] to show

that the optimization resulting from the chance-constrained

finite-horizon control problem is convex, and can therefore

be solved effectively using standard nonlinear solvers. This

approach is limited, however, by the need to evaluate the

multivariate Gaussian integrals in the constraint functions.

These integrals are approximated through sampling, which

is time-consuming and leads to approximation error.

[16] used a conservative ellipsoidal set bounding approach

to ensure that the chance constraints are satisfied without the

need for the evaluation of multivariate Gaussian integrals.

The key idea is to characterize a region around the state mean

that the state is guaranteed to be in with a certain probability

(the ‘99%’ region) and ensure that this deterministic set

satisfies the constraints. The approach of [16] explicitly

optimized over feedback laws as well as feedforward con-

trols1. An alternative bounding approach is to use Boole’s

inequality to split joint chance constraints over N variables

into N univariate chance constraints, and to ensure that the

probability of violation of each of these is at most δ/N ,

where δ is the specified maximum probability of failure. This

approach was suggested by [8] and [17] for convex feasible

regions. Another bounding approach was proposed by [6],

which does not require that all uncertainty is Gaussian. In

this work, the authors draw n samples or ‘scenarios’ from the

random variables and ensure that the constraints are satisfied

for all of the samples. The bound in the scenario approach

is stochastic, in the sense that n is chosen to ensure that the

chance constraint is satisfied with probability 1 − β, where

β is small and chosen by the user. Bounding approaches

are, however, prone to excessive conservatism whereby the

true probability of constraint violation is far lower than the

specified allowable level. Conservatism leads to excess cost

and can prevent the optimization from finding a feasible

solution at all.

Previous work proposed letting the risk of constraint

violation be an explicit optimization parameter, rather than

being fixed. We refer to this approach as risk allocation.

Risk allocation was introduced in [17] for chance constrained

linear programming, and was applied to finite horizon opti-

mal control in [18], [10], [19]. [17] showed that for convex

polytopic state constraints the problem can be solved as a

single convex optimization problem, and in [19] we showed

that the resulting conservatism is very low.

On the other hand, there are only two prior methods

[9][20] that handle non-convex chance-constrained optimiza-

tion, as far as the authors know. However, although the

sampling based method [9] is theoretically applicable to

any chance-constraints including non-convex ones, its slow

computation prevents its practical use. The other method [20]

fixes the individual risk bounds, and solves the resulting

mixed-integer linear programming. Although the approach

is efficient, the fixed risk bounds introduces unnecessary

conservatism. In the present paper we introduce a new algo-

rithm that uses the risk allocation approach to avoid excessive

conservatism, while still allowing for efficient computation.

II. DECOMPOSITION OF GENERAL CHANCE CONSTRAINT

There are two difficulties to handle the chance constraint

defined by (8),(9). First, it is very hard to evaluate due

to the difficulty of computing an integral of multi-variable

probability distribution over an arbitrary region. Second, the

1Note however, that the chance constraints are only guaranteed to hold in
finite-horizon (open loop) execution, rather than in receding horizon (closed
loop).
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branch and bound method, which is a standard approach to

non-convex optimization, cannot be directly applied, since

the chance constraint (8) is one single constraint that cannot

be divided. Disjunctions (i.e. non-convexity) only appear

inside of the chance constraint.

Our approach to address these two issues is to decompose

conjunctive and disjunctive clauses of a chance constraint

into a set of individual chance constraints, which are defined

on uni-variable probability distributions. In other words, we

move the conjunctions and disjunctions out of probability.

The resulting set of individual chance constraints are a

sufficient condition of the original chance constraint.

We decompose the chance constraint (8)(9) recursively,

one by one, from top to the bottom of the tree shown in

Fig. 1. Different rules are used to decompose conjunctive

and disjunctive clauses.

A. Decomposition of Conjunctive Clause: Risk Allocation

In this subsection we consider a conjunctive clause of

chance constraints:

Pr

[

N
∧

i=1

Ci

]

≥ 1 − ∆ (13)

where Ci is a linear state constraint, or a set of linear state

constraints. Our approach is to obtain a decomposed form of

chance constraint that is a sufficient condition of (13) using

the union bound or Boole’s inequality:

Pr[A ∪ B] ≤ Pr[A] + Pr[B]. (14)

Observe that, using the Boole’s inequality, the conjunctive

joint chance constraint (13) is implied by the following

conditions.
N
∧

i=1

(Pr[Ci] ≥ 1 − δi) (15)

∀i δi ≥ 0 (16)
N

∑

i=1

δi ≤ ∆ (17)

Note that a chance constraint defined on a conjunction

of state constraints (13) is decomposed to a conjunction

of chance constraints defined on individual state constraints

(15). Each chance constraint in (15) has its own risk bound

δi. Eq.(16) is necessary since δi are probabilities. Eq.(17)

says that the sum of δi is upper-bounded by the original

risk bound ∆. Past work [8] and [20] fixed δ1 · · · δN to

arbitrary values, such as δi = ∆/N . We treat them as

decision variables that are optimized along with U .

The optimization problem of δ1 · · · δN can be viewed as

a resource allocation problem; each chance constraint is as-

signed resource (risk) δi, whose total amount is limited. The

goal of the optimization problem is to find the best allocation

of the resource δ⋆
1 · · · δ

⋆
N that minimizes the cost. Thus we

call δ⋆
1 · · · δ

⋆
N a “risk allocation”. Methods for optimizing the

risk allocation in the case of a single conjunctive clause were

introduced in [10], [17], [19]. We extend this to handle an

arbitrary combination of conjunctive and disjunctive clauses

in this paper.

B. Decomposition of Disjunctive Clause: Risk Selection

In this subsection we consider a disjunctive clause of

chance constraints:

Pr

[

N
∨

i=1

Ci

]

≥ 1 − ∆ (18)

where Ci is a linear state constraint, or a set of linear state

constraints.

The following inequalities always hold:

∀i Pr

[

N
∨

i=1

Ci

]

≥ Pr [Ci] (19)

Therefore, (18) is implied by the following:

N
∨

i=1

(Pr[Ci] ≥ 1 − ∆) (20)

Note that a chance constraint defined on a disjunction of state

constraints (18) is decomposed to a disjunction of chance

constraints defined on individual state constraints (20). All

the individual chance constraints in (20) has the same risk

bound as the original chance constraint ∆.

C. Recursive Decomposition for General Clause

We now show that the two decomposition rules can be

applied recursively to decompose a general clause with

both disjunctive clauses and conjunctive clauses, resulting

in chance constraints on individual state constraints only.

For example, the chance constraint in the example (10) is

decomposed to individual chance constraints as follows:

Pr
[

((C{1,1,1} ∨ C{1,1,2}) ∧ C{1,2}) ∨ C{2})
]

≥ 1 − ∆

⇐ Pr
[

(C{1,1,1} ∨ C{1,1,2}) ∧ C{1,2}

]

≥ 1 − ∆

∨ Pr
[

C{2}

]

≥ 1 − ∆

⇐ {Pr
[

(C{1,1,1} ∨ C{1,1,2})
]

≥ 1 − δ1

∧ Pr
[

C{1,2}

]

≥ 1 − δ2

∧ δ1 + δ2 ≤ ∆} ∨ Pr
[

C{2}

]

≥ 1 − ∆

⇐ {(Pr[C{1,1,1}] ≥ 1 − δ1 ∨ Pr[C{1,1,2}] ≥ 1 − δ1)

∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆}

∨ Pr[C{2}] ≥ 1 − ∆ (21)

Note that this decomposition introduces conservatism due to

the difference between the left hand side and the right hand

side of the inequalities (14) and (19). However, we claim

that this suboptimality is much less than previous bounding

approaches, such as [8], [16], [20]. We showed empirically

that this is the case for convex constraints in [10] and [19].

In Section V we show that this is also the case for general

non-convex constraints.

III. BRANCH AND BOUND ALGORITHM

We solve the optimization problem (3)-(7) with the decom-

posed chance constraints. That is, instead of (10) we use the
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decomposition in (21) to give:

{(Pr[C{1,1,1}] ≥ 1 − δ1 ∨ Pr[C{1,1,2}] ≥ 1 − δ1)

∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆}

∨ Pr[C{2}] ≥ 1 − ∆ (22)

This is a non-convex optimization problem. Its optimal

solution is found by the following process. First, we find all

possible conjunctive combinations of constraints by choosing

one set of constraints at each disjunction. In the example of

(22), we can find three conjunctive combinations as follows:

Pr[C{1,1,1}] ≥ 1 − δ1 ∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆

Pr[C{1,1,2}] ≥ 1 − δ1 ∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆

Pr[C{2}] ≥ 1 − ∆ (23)

A candidate solution is feasible for the original non-convex

chance constraint (10) if it is feasible for any of the con-

junctive combinations in (23). In [19] we showed that each

of the conjunctive combinations, in general, yields a set of

convex constraints. We therefore propose solving the original

non-convex optimization problem (3)-(7) by searching over

the conjunctive combinations, solving for each conjunctive

combination a convex optimization using the approach of

[19] and returning the best solution from all of the convex

optimizations. Since convex optimization problems can be

solved to global optimality using existing solvers, as long

as the decomposition in Section II does not introduce too

much conservatism, this approach will return solutions close

to the global optimum of the original non-convex chance con-

strained problem. The drawback of this approach is that non-

convex problems often have large numbers of disjunctions,

which lead to a large numbers of conjunctive combinations

and hence many convex optimizations to be solved. This will

lead to large computation times.

To overcome this problem, we avoid having to solve a

convex program for every possible conjunctive combination

using the branch and bound algorithm. Fig. 3 shows the

search tree used by the branch and bound algorithm for

the example problem with the non-convex chance con-

straint (22). The leaf nodes (represented by squares in Fig.

3) represent all conjunctive combination of state constraints,

while branching nodes (represented by circles) correspond

to disjunctions of the non-convex chance constraint. At each

leaf node of the search tree, the algorithm solves a convex

joint chance constrained problem using the approach of [19].

A relaxed problem is solved at each branching node in

order to give the lower bound of all leaf nodes below the

branching node (see Fig. 3). The algorithm searches for the

best solution in a depth-first manner, and if the solution of a

relaxed problem at a branching node is worse than the current

best solution, the branch is pruned. This process ensures that

the globally optimal solution is found, and typically ensures

that a small subset of the nodes are evaluated.

We propose a bounding approach whereby the relaxed

problems are constructed by removing all constraints below

the corresponding disjunction. This approach was used by

[21] and [22] for a different problem known as disjunctive

∆≤+

−≥

−≥

21

2}2,1{

1}1,1,1{

1]Pr[

1]Pr[

��

�

�

C

C

∆≤+

−≥

−≥

21

2}2,1{

1}2,1,1{

1]Pr[

1]Pr[

��

�

�

C

C ∆−≥1]Pr[ 2C

∆≤

−≥

2

2}2,1{ 1]Pr[

�

�C

Relaxed problem

�

( ) 2}2,1{1}2,1,1{1}1,1,1{ 1]Pr[1]Pr[1]Pr[ ��� −≥∧−≥∨−≥ CCC

} ∆−≥∨∆≤+∧ 1]Pr[ 221 C�� } ∆−≥∨∆≤+∧ 1]Pr[ 221 C��

Fig. 3. The search tree of the branch and bound algorithm for the
decomposed non-convex chance constraints (22)

linear programming. For example, the relaxed problem at the

middle left node in Fig. 3 is constructed by removing the first

two constraints Pr[C{1,1,1}] ≥ 1 − δ1 and Pr[C{1,1,2}] ≥
1− δ1. The resulting relaxed problems are also convex joint

chance constrained optimization problems. In this paper we

use this approach to perform bounding, and present results

in Section V. The drawback of this bounding approach is

that, while the number of nodes evaluated is reduced, each

node evaluation requires a non-linear convex program to be

solved. Solution time for a convex non-linear program is on

the order of seconds for problems with 50 state constraints,

which means that computation time is a serious issue. In the

next section we therefore propose an additional bounding

approach that does not require solution of a non-linear

program, and dramatically reduces computation times.

IV. FIXED RISK RELAXATION

In this section we formulate a relaxed optimization prob-

lem, namely Fixed Risk Relaxation (FRR), to efficiently

obtain a lower bound of convex chance-constrained optimiza-

tion problems. FRR is used at both leaf nodes and branching

nodes; at the branching nodes, we solve the FRR of the

relaxed problem described in the previous section, instead

of the relaxed problem itself.

The FRR only has linear constraints. Therefore, when the

objective function (3) is linear or quadratic, which is the

case for many applications, the optimization problem with

FRR are linear/quadratic programs, which can be solved

efficiently.

A. Linearization of Individual Chance Constraints

The only non-linear constraints in the convex chance-

constrained optimization problem are the individual chance

constraints, such as the ones in (22). Below is an individual

chance constraint, which is defined on a single linear state

constraint:

Pr[hT
i X ≤ gi] ≥ 1 − δi

The individual chance constraint, which is defined on a

random variable X , is equivalent to deterministic constraints
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defined on the nominal state X̄ as follows[23]:

h
T
i X̄ ≤ gi − mi(δi) (24)

where −mi(·) is the inverse of cumulative distribution

function of univariable Gaussian distribution with variance

h
T
i ΣXhi. Note the negative sign.

mi(δi) = −

√

2h
T
i ΣXhi erf−1(2δi − 1) (25)

where erf−1 is the inverse of the Gauss error function and

ΣX is the covariance matrix of X .

The deterministic form of chance constraint (24) is non-

linear due to the inverse cumulative distribution function

−mi(·). Our idea is to turn these non-linear constraints into

linear constraints by fixing δi, and hence, making mi(δi) a

constant.

B. Fixed Risk Relaxation

The fixed risk relaxation (FRR) of a chance-constrained

optimization problem is obtained by fixing all individual risk

bounds δi to the original risk bound ∆:

∀i δi = ∆ (26)

Lemma 1: The optimization problem (3)-(7) with the Fixed

Risk Relaxation gives a lower bound on the cost of the

original convex chance-constrained optimization problem.

Proof: It immediately follows from (16) and (17) that

∀i δi ≤ ∆. Since mi(·) is a monotonically increasing func-

tion, all individual chance constraints (24) of the Fixed Risk

Relaxation are looser than the original problem. Therefore,

the cost of the optimal solution of the Fixed Risk Relaxation

is less than or equal to the original problem.

Note that the solution of the optimization problem with

FRR is an infeasible solution to the original problem, since

(26) violates the constraint (17). In a special case where there

is only one individual chance constraint, such as the relaxed

problem in Fig. 3, the Fixed Risk Relaxation is equivalent

to the original problem.

C. Using FRR in Branch and Bound Algorithm

By using the FRR, the Branch and Bound algorithm

can be substantially sped up. In each node of the Branch

and Bound algorithm, the FRR is solved first. If the lower

bound given by the FRR is more than the incumbent, the

node is pruned without solving the original convex chance-

constrained optimization; otherwise, the node is expanded

at the branching nodes, and the original convex chance-

constrained optimization is solved at the leaf nodes.

V. SIMULATIONS

A. Problem Settings

We tested our methods on two 2-D path planning

problems: Obstacle Avoidance problem, and Go-Through-

Waypoints problem. Fig. 4 shows the example results of the

Obstacle Avoidance and the Go-Through-Waypoints prob-

lem. A vehicle starts from [0, 0], and heads to the rectangular

goal region with its center at [1.05, 1.05] and the edge length

0.1. In the Obstacle Avoidance problem, a rectangular obsta-

cle with its edge length 0.6 is placed at a random location

within the square region with its corners at [0, 0], [1, 0],
[1, 1], and [0, 1]. In the Go-Through-Waypoint problem, two

rectangular waypoints (regions) with their edge length 0.1 are

placed at random locations within the same square region.

The risk bound is set to ∆ = 0.001 for both problems. The

following discrete-time dynamics model is used.

A =









1 0 ∆t 0
0 1 0 ∆t
0 0 1
0 0 0 1









B =









∆t2/2m 0
0 ∆t2/2m

∆t/m 0
0 ∆t/m









∆t = 0.5, m = 1

umin = [−0.5,−0.5] , umax = [0.5, 0.5]

wt is sampled from a zero-mean Gaussian distribution with

variance.

Σw =









10−5 0 0 0
0 10−5 0 0
0 0 0 0
0 0 0 0









The cost is the total control input during the planning horizon

1 ≤ t ≤ T :

J(X̄, U) =
T

∑

t=1

(|ux| + |uy|) .

B. Results

Fig. 4 shows the solutions given by the proposed al-

gorithm. The circles represent three standard deviations of

the distribution of vehicle locations, while the plus marks

(‘+’) represent the nominal location at each time step. The

resulting probabilities of constraint violation in the examples

are 1 − Pr
[

C{φ}

]

= 0.000938 for the Obstacle Avoid-

ance problem, and 0.000991 for the Go-Through-Waypoints

problem, both of which satisfy the given chance constraint

1−Pr
[

C{φ}

]

≤ 0.001. These results show that our proposed

method successfully guides the vehicle to the goal while

respecting the chance constraint in both problems. In Fig.

4-Top, it appears that the path cuts across the obstacle.

This is due to the discretization of the plant dynamics; the

optimization problem only requires that the vehicle locations

at each discrete time step satisfies the constraints, and does

not care about the state in between. This issue can be

addressed by a constraint tightening method[24].

Table I compares the performance of three algorithms

on the Obstacle Avoidance problems and the Go-Through-

Waypoints problem. The three algorithms are Branch and

Bound with optimized risk allocation and Fixed Risk Re-

laxation (FRR) (the proposed algorithm), the Branch and

Bound with optimized risk allocation but without the FRR,
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Fig. 4. Example simulation results. Top: Obstacle Avoidance problem, Bot-
tom: Go-Through-Waypoints problem. The circles represent three standard
deviations of the distribution of vehicle locations.

and our previous method [20] that uses a fixed risk allo-

cation. Although [20] only deals with obstacle avoidance

problems, we have extended the approach here to Go-

Through-Waypoints problems in order to be compared with

the algorithm proposed in the present paper. The values

in the table are the averages of 20 runs with random

locations for the obstacle and waypoints. The probability of

constraint violation (1 − Pr
[

C{φ}

]

) is evaluated by Monte-

Carlo simulation with 106 samples.

a) Conservatism: As discussed in Section II, satisfac-

tion of the decomposed chance constraints is a sufficient

condition for satisfaction of the original chance constraint

(8). Conservatism is introduced by the difference between

the two sides of the inequalities (14) and (19).

The results show that the conservatism of our proposed

method is significantly smaller than the fixed risk allocation

method. In almost all problems of interest, the chance con-

straint is active. This means that when the solution is exactly

optimal, the probability of constraint violation 1−Pr
[

C{φ}

]

is equal to the risk bound ∆, which is set to ∆ = 0.001 in our

simulations. Table I shows that the probability of constraint

violation of our proposed algorithm is very close to ∆. On

the other hand, the fixed risk allocation method [20] has non-

negligible conservatism; its probability of constraint violation

is less than the half of the given risk bound. This significant

conservatism is due to the fixed individual risk bounds (risk

allocation).

We cannot evaluate the suboptimality in terms of the cost

function, since the exactly optimal solution is unavailable.

Nonetheless, we can observe in Table I that the proposed

approach results in a better cost than the fixed risk allocation

method.

b) Computation time: The cost of reduced conser-

vatism is the increased computation time. However, the

results show that the FRR significantly enhances the com-

putation speed of the Branch and Bound algorithm in both

problems. As shown in Table I, although the algorithm with

FRR always results in the exactly same solution as the one

without FRR, its computation is 10-20 times faster. Note

that the advantage of FRR is smaller on the Go-Through-

Waypoints problem than on the Obstacle Avoidance problem.

This is due to the shallow depth of the search tree. Typically,

the advantage of using FRR is more significant in a problem

with deep search tree such as the obstacle avoidance problem.

Since a problem with a deep search tree typically requires

larger computation time, it can be said that the advantage of

using FRR is more significant in difficult problems.

TABLE I

COMPARISON OF COMPUTATION TIME, PROBABILITY OF CONSTRAINT

VIOLATION, AND COST OF THREE ALGORITHMS. THE VALUES ARE THE

AVERAGES OF 20 RUNS WITH RANDOM LOCATION OF OBSTACLE AND

WAYPOINTS. THE SECOND ROW SHOWS THE RESULTING PROBABILITY

OF CONSTRAINT VIOLATION. THE RISK BOUND IS SET TO ∆ = 0.001.

Optimized risk allocation Fixed risk
allocationw/ FRR w/o FRR

Obstacle Avoidance problem

Comp. time [sec] 35.97 875.38 2.56

PCV* 9.975 × 10−4 2.829 × 10−4

Cost 0.352 0.357

Go-Through-Waypoints problem

Comp. time [sec] 25.53 283.32 0.656

PCV* 9.784 × 10−4 4.061 × 10−4

Cost 0.576 0.585
*PCV = Probability of constraint violation

VI. CONCLUSION

We proposed two innovative ideas to solve non-convex

chance constrained optimization problem efficiently with

small suboptimality. The first is the recursive decomposition

technique of a chance constraint (Section II), which enables

its efficient evaluation, as well as the application of the

branch and bound method. The second is the Fixed Risk

Relaxation (Section IV), which makes the branch and bound

algorithm significantly faster by giving lower bounds to

convex chance-constrained optimization problems efficiently.

The validity and efficiency of our method was demonstrated

by simulations.
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Ph.D. dissertation, Linköping Studies in Science and Technology,
2003.

[5] Y. Kuwata, A. Richards, and J. How, “Robust receding horizon control
using generalized constraint tightening,” Proceedings of American

Control Conference, 2007.
[6] G. C. Calafiore and M. C. Campi, “The scenario approach to robust

control design,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, 2006.

[7] D. H. van Hessem, “Stochastic inequality constrained closed-loop
model predictive control with application to chemical process oper-
ation,” Ph.D. dissertation, Delft University of Technology, 2004.

[8] A. Nemirovski and A. Shapiro, “Convex approximations of chance
constrained programs,” SIAM Journal on Optimization, vol. 17, pp.
969–996, 2006.

[9] L. Blackmore, “A probabilistic particle control approach to optimal,
robust predictive control,” in Proceedings of the AIAA Guidance,

Navigation and Control Conference, 2006.
[10] M. Ono and B. C. Williams, “Iterative risk allocation: A new approach

to robust model predictive control with a joint chance constraint,” in
Proceedings of 47th IEEE Conference on Decision and Control (CDC-

08), 2008.
[11] J. A. Primbs, “Receding horizon control of constrained linear systems

with state and control multiplicative noise,” in Proceedings of the

American Control Conference, 2007.
[12] A. Schwarm and M. Nikolaou, “Chance-constrained model predictive

control,” AlChE Journal, vol. 45, pp. 1743–1752, 1999.
[13] P. Li, M. Wendt, and G. Wozny, “Robust model predictive control

under chance constraints,” Computers and Chemical Engineering,
vol. 24, pp. 829–834, 2000.

[14] ——, “A probabilistically constrained model predictive controller,”
Automatica, vol. 38, pp. 1171–1176, 2002.

[15] P. Kall and S. W. Wallace, Stochastic Programming. Wiley, 1994.
[16] D. van Hessem, C. W. Scherer, and O. H. Bosgra, “LMI-based closed-

loop economic optimization of stochastic process operation under state
and input constraints,” in IEEE Conference on Decision and Control,
Orlando, FL, Dec. 2001.
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