
Decompositional, Model-based Learning and its Analogy to Diagnosis

Brian C. Williams and William Millar †

NASA Ames Research Center, MS 269-2
Moffett Field, CA 94305 USA

E-mail: {williams, millar}@ptolemy.arc.nasa.gov

Abstract

A new generation of sensor rich, massively distributed
autonomous system is being developed, such as smart
buildings and reconfigurable factories. To achieve high
performance these systems will need to accurately
model themselves and their environment from sensor
information. Accomplishing this on a grand scale re-
quires automating the art of large-scale modeling. To
this end we have developed decompositional, model-
based learning (DML). DML takes a parameterized
model and sensed variables as input, decomposes it,
and synthesizes a coordinated sequence of “simplest”
estimation tasks. The method exploits a rich analogy
between parameter estimation and consistency-based
diagnosis. Moriarty, an implementation of DML, has
been applied to thermal modeling of a smart building,
demonstrating a significant improvement in learning
rate.

A new generation of sensor rich, massively dis-
tributed, autonomous systems is being developed, such
as networked building energy systems, autonomous
space probes, and biosphere-like life support systems,
that have the potential for profound environmental
and economic change (Williams & Nayak 1996). To
achieve high performance, these immobile robots will
need to develop sophisticated regulatory systems that
accurately and robustly control their complex internal
functions. To accomplish this immobots will exploit
a vast nervous system of sensors to accurately esti-
mate models of themselves and their environment on
a grand scale. Handling these large scale model es-
timation tasks requires high-level reasoning methods
that coordinate a large set of traditional adaptive pro-
cesses. Decompositional, model-based learning (DML)
and its implementation Moriarty address this problem,
providing a high-level reasoning method that generates
and coordinates a set of nonlinear estimation codes, by
exploiting a rich analogy to ATMS-based prime impli-
cant generation(de Kleer 1986) and consistency-based
diagnosis (e.g., (de Kleer & Williams 1987)).

†Caelum Research Corporation.

Large-scale Model-Estimation

Moriarty emerged out of work on the Responsive En-
vironment , an intelligent building control system de-
veloped within the Ubiquitous Computing project at
Xerox PARC, and is currently being developed to sup-
port a biosphere-like habitat for Mars.

optimal
control

thermal
model

s u

pChiller

FSPLYFan
TEXTTTRMRM

XDMPR

TSPLY

XRHT

(model parameters)

Figure 1: Office heating through an airduct.

Environmental control is made difficult by the over-
whelming number of control variables, the tight cou-
pling between control variables, and the slow response
time of room temperature. Model-based control offers
a natural solution, using a global model to adaptively
predict where the optima lies. An informal evalua-
tion of a non-linear, model-based controller using Xe-
rox’s responsive environment testbed suggests that en-
ergy savings in excess of 30% are conceivable (Zhang,
Williams, & Elrod 1993).

The bottleneck is acquiring a model tailored to an
individual building. Generic thermal models are avail-
able for complete buildings (e.g., the DOE2 simulator
models), but these models are complex, containing on
the order of thousands of equations and parameters for
buildings with one hundred or more offices.

The technical challenge involves estimating the val-
ues of these parameters from sensor data, such as ther-
mal conductance through walls and thermal capacity
of an office’s air space. An immobile robot can esti-
mate its parameters by adjusting their values until the

model best fits the sensor data. More precisely,

Definition 1 A system model is a set of algebraic
equations e(c; v) = 0 over constants c and variables
v. An embedded system model is a system model with
unknown parameters p ⊂ c, sensed variables s ⊂ v,
and sensor data D. An estimator (for p) is a function
f(x; p), where x ⊂ s, and such that f(x; p) = 0 follows
from the system model.

Given an embedded system model and estimator
f(x; p), we can estimate p by solving, for example,
the non-linear optimization problem,

p∗ = argmin
p

∑
xi∈Dx

f(xi; p)2.

A broad set of non-linear estimation codes are, of
course, standard tools of the trade, used by physical
scientists to extract parameters of physical phenom-
ena. We make no contribution here to these basic algo-
rithms. We simply note that the performance of these
basic codes on non-linear physical models can quickly
become inadequate as the dimension of the problem
grows.

For example, consider office thermal modeling
(Williams & Millar 1996) in figure 1. Heat flow into
an office through a duct is regulated using a damper to
control airflow via Xdmpr, and a radiator like device,
called a reheat, to control air temperature via Xrht.
Heat also flows from the sun, equipment, through walls
and doorways. The thermal model of a single office
consists of fourteen equations involving seventeen state
variables and eleven parameters. About a third of the
equations are nonlinear, such as,

Fdmpr =

(
ρdmpr(Xdmpr)

Rdct

)√
Pdct,

which relates air flow through the damper to duct pres-
sure and duct air resistance as a function of damper
position. Nine of the state variables are sensed, in-
cluding temperature T , flow rate F , air pressure P ,
damper and reheat valve position X. Seven of the
eleven parameter values are unknown and must be es-
timated. Estimating all seven parameters at once re-
quires solving a 7-dimensional, nonlinear optimization
problem involving a multi-modal objective space. Us-
ing arbitrary initial values, a Levenberg-Marquardt al-
gorithm was applied repeatedly to this problem, but
consistently became lost in local minima and did not
converge after several hours.

Estimation Plans
To estimate parameters of higher dimensional systems
a skilled modeler massages the physical equations into

Rdct

Qrhtmax Crht

σwll Qeqp

Crm

Qslr

Air flw

Rht-Std Rht-Trn

Rm-Nght-Std

Rm-Nght-Trn

Rm-Day-Trn

σwll
Qeqp

Figure 2: Model-estimation plan for a single office.

a tractable set of smaller parameter estimation tasks,
coordinates their invocation and combines their re-
sults. For large modeling tasks that are an interna-
tional priority, such as earth ecosystem modeling, an
army of modelers can be employed at great cost. For
the important, but more modest tasks performed by
immobile robots, this army must be automated if high
performance and robustness are to be achieved. The
open research problem that we address through Mo-
riarty is to automate the modeler’s process of synthe-
sizing these estimation plans. Moriarty automates key
aspects of how a community of modelers decomposes,
simplifies and coordinates large scale model estimation
tasks, and generates code to perform the parameter es-
timation.

The problem of decomposing and coordinating es-
timation tasks is not one that has received signifi-
cant attention in the statistics or machine learning
literature. The classical estimation literature offers a
vast number of techniques, many available as subrou-
tines in Matlab or Splus, for online and offline esti-
mation of various families of linear and nonlinear es-
timation problems, using a variety of different objec-
tive criteria. However these techniques do not gen-
erate the codes that setup and coordinate these sub-
routines. The Bayesian learning community makes ex-
tensive use of graphical models to strongly bias esti-
mation, hence improving convergence (Buntine 1994;
Spiegelhalter & Lauritzen 1990) and qualitative rea-
soning (QR) work exploits monotonicity constraints as
a bias (Kay & Ungar 1993). However, research, for ex-
ample, in graphical models and QR is only beginning
to look at the model decomposition process (Shachter,
Anderson, & Poh 1990; Stolle & Bradley 1996).

An estimation plan for the office model is shown
above in figure 2. Each octagon in the diagram is
an estimation action that is defined by an estimator
of the form y = f(x; p), applied to a subset of the
sensors, parameters, and sensor data. The arc labels
identify those parameters whose values are estimated
in the preceding action. For example, the top octagon
labeled “Air flw” produces an estimate for parameter

Rdct, the air resistance in the duct, using the estimator,

Fext = (ρlkg + ρdmpr(Xdmpr))

√
Pdct

Rdct

derived from three equations in the office model per-
taining to airflow. Note again that an estimator con-
tains only sensed variables. This action exploits pre-
viously estimated parameters as constants (ρlkg and
the coefficients of function ρdmpr(Xdmpr)). The six
estimators in the plan each contain only one or two
unknown parameters, reducing the original seven di-
mensional problem to several problems of at most two
dimensions.

Generating Estimation Plans
Consider a common sense account of the basic steps
Moriarty uses to generate an estimation plan. First,
Moriarty generates a set of possible estimation actions
from the model. It then selects a subset of these ac-
tions sufficient to estimate all parameters, and coor-
dinates the passing of estimated parameter values be-
tween these actions. Possible actions are generated in
two steps: decomposition and simplification.

In the decomposition step, subsets of the model and
sensors are identified that are sufficiently constrained
to define an estimation problem, and are each turned
into an estimator. For example, the estimator for the
“Air flw” action described above was derived from the
following air flow equations in e(c; v),

Fext = Flkg + Fdmpr,

Flkg =

(
ρlkg

Rdct

)√
Pdct,

Fdmpr =

(
ρdmpr(Xdmpr)

Rdct

)√
Pdct.

In the thermal example, Moriarty’s decomposition step
automatically generates eight possible estimation ac-
tions in total, each containing as few as one parameter
or as many as all seven. Three of these actions are
“Air flw” (with single parameter Rdct), “Rht” (with
two parameters Qrhtmax and Crht), and “Rm” (with
four parameters, σwll, Qeqp, Crm and Qslr(t)). It is
purely coincidental that the parameter sets for these
actions are disjoint.

These three actions are sufficient to estimate all
seven model parameters. If we were to produce an
estimation plan based on this alone, the result would
have a single action for each of the three primary paral-
lel paths in figure 2. While any subset of the possible
actions that estimate all seven parameters could be
chosen to form a plan, the above three actions contain
the fewest parameters individually.

The simplification step is optional, and is not devel-
oped here technically; however, we summarize its result
here, as it makes the coordination step of our exam-
ple more interesting. This step produces one or more
simplified versions of each estimation action that con-
tain fewer parameters, by identifying conditions on the
data such that influences by one or more parameters
become negligible. For example, consider the estima-
tor for action “Rm”:

dTrm

dt
=

C0Fsply (Tsply − Trm)

Crm
+

Qeqp +Qslr(t) + σwll (Text − Trm)

Crm

This estimator is simplified by noticing that solar ef-
fect Qslr(t) is negligible at night time, when the sun
is down (action “Rm-Nght”), while it is significant
during the day (action “Rm-Day-Trn”). Action “Rm-
Nght” is generated from “Rm” by restricting the data
set to data taken at night. This allows Qslr(t) to
be eliminated, reducing the number of parameters in
the estimator from four to the three parameters σwll,
Qeqp and Crm. Six additional estimators are gener-
ated – “Rm-Nght-Std”, “Rm-Nght-Trn”, “Rm-Day-
Std”, “Rm-Day-Trn”, “Rht-Std” and “Rht-Trn” – by
applying similar simplifications to estimators “Rm-
Nght”, “Rm-Day” and “Rht” that focus on transient
and steady state behaviors. Six of the resulting estima-
tors are those appearing in the plan of figure 2. Note
that these simplified estimators are currently generated
manually. The algorithm we are currently developing
to automate this simplification step is based on car-
icatural modeling, described in (Williams & Raiman
1994).

Having generated these possible estimation actions,
the coordination step selects and sequences a subset
of the estimation actions to further simplify the search
performed by each action. The parameter value esti-
mated by an action, such as “Rm-Nght-Std”, can be
fed as a constant to a later action, such as “Rm-Day-
Trn”, reducing the dimensionality of the later action.
Alternatively, an estimated parameter value can be ex-
ploited as an initial bias to the later action, by con-
straining its random restarts for the parameter based
on the confidence in the previous estimate. The first
policy more dramatically reduces the dimensionality
of later actions, while the second policy can enable
more refined estimates. We are currently evaluating
the trade-offs. The plan in figure 2 treats passed pa-
rameter estimates as constants in later actions. For
example, “Rm-Nght-Trn” is left only with Crm as an
unknown parameter.

Moriarty generates a “simplest” estimation plan us-
ing a greedy algorithm. This algorithm determines the

next action to perform as follows: first, the action must
have a minimal (but positive) number of unknown pa-
rameters; second, if two estimators have equal numbers
of new parameters, then the action is selected that con-
tains the fewest number of sensed variables. The first
condition drives the convergence time downwards by
reducing the dimensionality of the search space, while
the second condition improves accuracy, by reducing
the combined sensor error introduced.

The decomposition step automatically generates
eight estimators F1-F8, characterized later in the ex-
periments section. Invoking the greedy algorithm on
these estimators generates a plan with three parallel
actions, “Air-flw”, “Rht” and “Rm”, with one, two
and four parameters, respectively. More interestingly,
given the six estimators mentioned above under de-
composition and simplification, the greedy algorithm
generates the plan shown in figure 2, with each esti-
mator containing at most two unknown parameters.
The remaining sections turn to the details of decom-
position.

Model Decomposition

The decomposition step determines a set of possible
estimation actions that can be coordinated within an
estimation plan. Estimation actions are generated by
decomposing the model into a set of potentially over-
lapping sub-models, called dissents, and then by gen-
erating an estimator from each dissent. In this sec-
tion we develop DML’s concepts of dissent and support,
and the role they play in the generation of estimation
actions. As discussed later, dissent and support are
inspired by the consistency-based diagnosis concepts
of conflict and environment, respectively (de Kleer &
Williams 1987; de Kleer, Mackworth, & Reiter 1992).

The office example is too complex for pedagogical
purposes. Instead we introduce a modification of the
standard polycell example from diagnosis. This exam-
ple (figure 3) consists of five equations, one for each of
the three multipliers M1, M2, M3 and two adders A1,
A2. M1, for example, denotes the equation x = a× b.
The goal is to estimate unknown parameters b, d, f, s
and t given sensed variables a, c, e, u and v. Variables
x, y and z are dependent.

Recall that an estimation action solves an optimiza-
tion problem that minimizes disagreement between a
subset of the observables and a subset of the model.
For a disagreement to exist the submodel must be
overdetermined, given the sensed variables; that is,
there must be at least two ways of uniquely deter-
mining the same value. We call an overdetermined
submodel a dissent, and a submodel that uniquely de-
termines a variable its support. More precisely,

f t

y

z

a

c

e

x
u

v

b

d

s

M2

A1

M3

A2

M1

Figure 3: Polycell with e = {M1,M2,M3, A1, A2},
p = {b, d, f, s, t} and s = {a, c, e, u, v}.

Definition 2 Given a system model S = 〈e, s〉 with
equations e(c; v) = 0 and sensed variables s, a dissent
of S is a subsystem 〈ed, sd〉 of S, such that ed(c; v) =
0 is overdetermined given sd. 〈ed, sd〉 is a minimal
dissent if no proper subsystem 〈e′, s′〉 of 〈ed, sd〉 exists
such that 〈e′, s′〉 is a dissent of S.

Definition 3 Given system model S = 〈e, s〉 with
variables v, a support for variable vs ∈ v is a sub-
system 〈e′, s′〉 of S, such that 〈e′, s′〉 determines vs,
and no proper subsystem of 〈e′, s′〉 determines vs.

Note that a pair of support for variable vs provides
two means of determining vs. Hence the union of the
pair overdetermine vs, and constitutes a dissent 〈es1 ∪
es2, ss1 ∪ ss2〉. We exploit this fact in the next section
to generate dissents from a set of support.

The goal of decomposition is to generate a set of
“simplest” estimation actions. A minimal dissent cap-
tures the intuition of “simplest” subproblem for two
reasons. First, minimality increases convergence rate,
by minimizing the number of parameters appearing in
each dissent’s equations e(c; v) = 0, and hence the di-
mensionality of the optimization problem. In addition,
minimality improves accuracy by minimizing the num-
ber of sensed variables s per estimation, and hence the
amount of noise introduced.

y

z

a

c

e

x

u

v

{a}

{e}
{M1,M3,A1,A2,a,u,v}

{c}
{M1,M2,A1,a,u}

{M1,a} {u}

{v}
{M1,A1,A2,a,u,v}

{M1,A1,a,u}

b

d

f

s

t

M2

A1

M3

A2

M1

Figure 4: Examples of support in Polycell.

Returning to the example, figure 4 shows several ex-

amples of support for polycell. Note first the trivial
support at each sensed variable: a sensed variable is
its own support. Next, beginning with trivial support
at a, u and v, and moving out towards c and e, a sup-
port is provided for each variable along the way. For
example, y has support {M1, A1, a, u}. Note also that
c and e each have pairs of support. The union of each
pair comprises a (minimal) dissent, D1 and D2 respec-
tively. A final dissent, not shown, results in D1–D3:

D1: {M1,M2, A1, a, c, u} ⇒ b, d, s
D2: {M1,M3, A1, A2, a, e, u, v} ⇒ b, f, s, t
D3: {M2,M3, A2, c, e, v} ⇒ d, f, t

To the left of the arrow is the set of equations and
sensed variables for each dissent. To the right is the
set of parameters mentioned in the dissent’s equations,
hence, those that can be estimated using that dissent.

Next, defining an estimation action represented by
a minimal dissent 〈ed, sd〉 involves generating an es-
timator y = f(x; p) and setting up a corresponding
optimization problem. For example, dissent D1 con-
sists of equations M1, M2, A1:

x = a× b

y = c× d

u = x+ y + s.

Solving for u in D1 produces u = a × b + c × d + s,
resulting in the estimation action,

p∗ = argmin
p

∑
〈ai,ci,ui〉T∈D

(ui − [b× ai + d× ci + s])2

where the parameters are p = 〈b, d, s〉T .
As discussed in the next section, to address tractabil-

ity, Moriarty only generates those dissents composed of
equations that are free of simultaneities. Solving this
set of equations, to generate an estimator, is straight-
forward (see (Williams & Millar 1996)).

The Support Maintenance System
To generate support and (minimal) dissents we need
conditions for identifying when a subsystem is uniquely
determined or (minimally) over-determined, respec-
tively. An appropriate choice of conditions hinges upon
the computational price one is willing to pay.

A standard presumption, made by causal ordering
research (e.g., see (Iwasaki & Simon 1986)), and fre-
quently used for analyzing models of nonlinear physical
systems, is that n independent model equations and
exogenous variables uniquely determine n unknowns.

Assumption 1 Given system 〈e, s〉 with variables v,
let 〈e′, s′〉 be any of its subsystems, v′ its variables, n =

|e′|, m = |s′| and l = |v′|. We assume that subsystem
〈e′, s′〉 is (a) overdetermined if n+m > l, (b) dissenting
if n+m = l+ 1, (c) uniquely determined if n+m = l,
and (d) underdetermined if n+m < l.

Note that this condition holds universally for linear
systems, and is true of many physical systems.

The power of this condition is that it is trivial to
evaluate; for example, it is far easier than identifying
minimal dissents with a series of subset tests, or solv-
ing the system of equations. In addition, the condi-
tion doesn’t require knowledge of the form of an equa-
tion, just the variables each equation interacts with.
Moriarty uses this condition to decompose a graph
of interactions into estimation subproblems, without
restriction on, or further knowledge about, the form
of the underlying equations. This is in the spirit of
graphical learning methods, such as (Buntine 1994;
Shachter, Anderson, & Poh 1990).

To generate minimal dissents, recall that a dissent is
the union of two support for some variable. Hence min-
imal dissents can be generated from a set of support,
by computing all such unions, and selecting those that
satisfy condition (b). Furthermore, if the equations of
the system are invertible, then it follows trivially that
all dissents can be generated just from the support of
the sensed variables s.

To generate support we exploit an analogy to the
concept of prime implicant, from propositional logic.
A (theory) implicant for proposition p is a set of lit-
erals whose conjunction entails p, given propositional
theory T. The implicant is prime if the set of literals
is minimal under subset. While a support determines
a variable’s value, an implicant entails a proposition.
The sensed variables of a support are analogous to the
literals of the implicant, and the equations of a sup-
port are analogous to the subset of the theory that,
together with the implicant, entails p.

An assumption-based truth maintenance system (de
Kleer 1986) is an example of a restricted form of prime
implicant algorithm that has proven useful in practice.
The ATMS generates implicants that are comprised of
a distinguished set of literals, called assumptions, given
a theory that is horn. The implicants generated by the
ATMS are referred to as environments.

Moriarty generates candidate support by exploit-
ing the analogy to ATMS environments, and then
uses condition (c) to quickly test that the candidate
is uniquely determined, and hence constitutes a sup-
port. ATMS environments are generated by propagat-
ing them locally through a network of horn clauses,
starting at the literals denoting assumptions, combin-
ing and then propagating a new set of environments
after each traversal of a clause. Analogously, Mo-

riarty generates a support by propagating them lo-
cally through the network of equations, starting at the
sensed variables, combining and then propagating a
new set of support after each traversal of an equation.
A single path of propagation for polycell is shown in
figure 4.

The propagation algorithm is called a support main-
tenance system (SMS), to highlight its analogy to an
ATMS. The SMS uses the function CreateDecomposi-
tion to kick off propagation, by adding to each sensed
variable v a trivial support {v}, indicating that v is in-
dependent. For polycell, this type of support is added
to sensed variables a, c, e, u, and v.

CreateDecomposition(〈e, s〉)
/* system model 〈e, s〉 */
Initialize dissents to empty
for each si ∈ s
trivialSupport = {{}, {si}}
AddSupport(si,trivialSupport)

return dissents

After recording a new support, AddSupport tries to
propagate the new support through successive local
equations (partial results for propagating from a are
shown in figure 4). For example, support {a} propa-
gates through M1 to x, creating new support {M1, a}.
In addition, if a non-trivial support is being added to a
sensed variable, then it is turned into a dissent. For ex-
ample, when the support {M1,M2, A1, a, u} is added
to sensed variable c, the dissent {M1,M2, A1, a, c, u}
is generated.

AddSupport(v,〈e, s〉)
/* variable v, support 〈e, s〉 */
Add 〈e, s〉 to the support of v
for each ei ∈ set of equations involving v

if ei 6∈ e then
for each co ∈ CausalOrientations(ei,v)

Propagate(v,〈e, s〉,co)
if e 6= {} and Sensed?(v) then

Add 〈e, s ∪ {v}〉 to dissents

Propagation requires an equation that acts as a con-
duit, a variable to be propagated to (called the effect)
and a set of variables that support this effect (called
the cause). The function CausalOrientations generates
the set of all ways the equation e can be oriented about
a cause variable v to determine a new effect variable y,
from complementary, cause variables x. For polycell,
given cause variable x and equation A1, y or u may be
selected as effects, with the remaining variable and x
acting as the cause.

CausalOrientations(e,v)
/* equation e, cause variable v */
v = set of variables in e

return {〈y, e,x〉|y ∈ v,x = v − {y}, v ∈ x}

The core of the algorithm is Propagate, which passes
a new support through an equation e to effect y. It
uses the function WeaveSupport to take the union of a
newly added support to a variable v, with a support for
each of the other causes (x − {v}), producing a com-
posite subsystem c. Within WeaveSupport, S denotes
a set of new support, S2 is the set of support for one of
the other cause variables, h, and Sc represents the set
of all composite support constructed. Propagate then
adds e to each composite c in Sc to produce candidate
support Sw for effect v. For example, suppose Propa-
gate is given new support {M1, a} for x, and equation
A1, with effect y and causes {u, x}. WeaveSupport se-
lects the support {u} for u, combines this with the new
support to produce {M1, a, u}. Propagate then adds
A1 to produce the new support {M1, A1, a, u} for y.
The effects of each propagate are indicated by arrows
in figure 4.

Note that there are cases where a support being gen-
erated by Propagate or WeaveSupport is thrown away.
First, to avoid circularities, propagate will not propa-
gate through an equation mentioned in the new sup-
port. Likewise, it will not add a composite support to
an effect if the effect is mentioned in that support. For
WeaveSupport note that the union of a set of support
may either be uniquely determined or overdetermined,
depending on the sharing of variables and equations
between the support being combined. The later case
is ruled out by the “Overdetermined?” test, in the
construction of S′c.

Propagate(v,〈e, s〉,〈y, e,x〉)
/* equation e, y its effect, x its causes,
v ∈ x, support 〈e, s〉 */

if e 6∈ e then
Sw = WeaveSupport(v, {〈e, s〉}, e,x)
for each 〈ew, sw〉 ∈ Sw

if y 6∈ set of variables in ew then
AddSupport(y,〈ew ∪ {e}, Sw〉)

end

WeaveSupport(v,S,e,x)
/* equation e, its causes x, v ∈ x,

& its supporters S */
if x is empty, then

return S
else
h = a variable in x
R = x− {h}
if h = v, then

return WeaveSupport(φ,S,e,R)
else
S2 = {〈e, s〉|〈e, s〉 ∈ Support(h), e 6∈ e}

Sc = {〈e ∪ e2, s ∪ s2〉|
〈e, s〉 ∈ S, 〈e2, s2〉 ∈ S2}

S′c = {s|s ∈ Sc,¬Overdetermined?(s)}
return WeaveSupport(v,S′c,e,R)

The SMS is sound, since after weaving support the
SMS checks and records support only if they are
uniquely determined according to condition (c). With
respect to completeness, we return to the analogy. For
an ATMS, the set of environments generated by lo-
cal propagation is incomplete for general clausal the-
ories. However, it is complete for horn clause theo-
ries. Analogously, if a support is a system of simulta-
neous equations, then it will not be identified through
the above local propagation algorithm, since the simul-
taneity represents a codependence between variables.
The algorithm does, however, generate all support that
are simultaneity-free. Soundness and completeness are
evaluated further in (Williams & Millar 1996).

Analogy to Diagnosis
In addition to the analogy between support and prime
implicants, there exists a strong analogy between
model-estimation and consistency-based diagnosis, and
their respective decomposition methods. Model-
estimation and consistency-based diagnosis problems
identify a set of parameter values and modes, respec-
tively, that minimize disagreement between the model
and the observables. In diagnosis, each mode is dis-
crete and finite. Treating polycell as a diagnosis prob-
lem, the mode variables are M1, M2, M3, A1 and A2,
each with the two modes OK and not-OK. In estima-
tion, parameter values can be a mixture of continuous
and discrete.

Both problems involve measuring a disagreement be-
tween model and observables. In estimation, the dis-
agreement is usually a continuous error defined by a
Euclidean metric. The error is to be minimized by the
estimated parameters. In consistency-based diagnosis,
logical disagreement can be framed using a discrete
metric, which treats the distance between two values
u and v as 1 unless they are equal, in which case the
distance is 0. Diagnosis amounts to searching for a set
of modes that bring the disagreement between model
and observables to 0.

Turning to the decomposition process, a simplest di-
agnostic subproblem is a minimal subset of the com-
ponent models and observed values that are inconsis-
tent. This is loosely the concept of a minimal conflict,
which is a minimal set of components, whose nomi-
nal models disagree with the observables (de Kleer &
Williams 1987).∗ For example, assuming polycell has
the values a = 3, b = 2, c = 3, d = 2, e = 3, f = 2,

∗The subtle, although important, difference is that a

u = 10 and v = 12, then there are two minimal con-
flicts, {M1,M2, A1}, and {M1,M3, A1, A2}.

Shifting to estimation, we replace logical inconsis-
tency (a conflict) with a system being overdetermined
(a dissent). There is an important distinction between
conflict and dissent. The inconsistency indicated by a
conflict is unequivocal, while a dissent merely indicates
the potential for error, hence, our use of a more mild
term – “dissent” – in naming this form of disagreement.
For example, polycell has three dissents, but only two
conflicts. There is no conflict corresponding to dissent
D3. The reason is that the potential for disagreement
in D3, is not realized for the particular values assigned
to the sensed variables in the diagnosis example, hence
no conflict exists.

As we’ve already seen, this analogy continues down
into the concepts of support, environment and their
respective generation. This suggests the opportunity
for developing a rich unification of large-scale model-
based learning and diagnostic methods.

Experiments and Discussion

• • • •
•

• •

•

Trial size

C
ov

er
ge

nc
e

T
im

e
(s

ec
on

ds
)

0 50 100 150 200

0
50

10
0

15
0

•

•

•

•

•
•

•

•

• • • • • • • •• • • • • •
• •

• • • •
•

•

•
•

• • • •
• •

• •

• • • • • • • •• • • • • • • •

F8

F7

F6
F5

F4

F3

F2
F1

Figure 5: Convergence rate vs data size for the gener-
ated estimators F1–F8.

Moriarty implements all of DML except for the op-
tional simplification step, using Mathematica for sym-
bolic manipulation and Splus for statistical analysis.
Consider Moriarty’s performance on the office thermal
example (figure 5) using dissent generation, but with-
out the simplification step. Moriarty generates eight
estimators, F1 – F8, in the decomposition step, and
sequences them to produce 〈F2, F1, F6〉, which cor-
respond to the “Air-Flw,” “Rht,” and “Rm” estima-
tion actions. We compare the performance of the eight

conflict doesn’t include the subset of observed values that
are involved in the inconsistency.

estimators by running them against sensor data sets
ranging in size from 10 to 200, shown above. The y
axis denotes time required to converge on a final esti-
mate of parameters involved in the dissent. The plot
labeled F7 is for the original seven dimensional esti-
mator, while plots F2, F1, and F6 are the three es-
timators in Moriarty’s sequence. Higher dimensional
estimators, like F7, tend to fail to converge given arbi-
trary initial conditions, hence ball-park initial param-
eter estimates were supplied to allow convergence in
the higher dimensional cases. Decomposition leads to
significant speed-up even when good initial estimates
were available. For example, at trial size 200, the origi-
nal estimator requires 166 seconds, while the total time
to estimate all parameters using F2, F1, and F6 is un-
der 9 seconds. This represents a speed up by a factor
of 14.

In addition the sequence requires less data to con-
verge. This is important for self-modeling systems that
use online estimation to quickly track time-varying pa-
rameters. Employing the rule of thumb that the data
set size should be roughly ten fold the dimension of
the parameter space, F7 would require around 70 data
points, while the F2, F1, F6 sequence requires only 40.
The anomalous slow down in the convergence rate of F7
at 25 data points is attributed to insufficient data. Fi-
nally, although not included, parameter accuracy, mea-
sured by the confidence interval of each parameter is
also improved using the generated sequence.

To summarize, a model-based approach is essen-
tial for regulating systems of the size of most immo-
bile robots. Embodying an immobile robot with self-
modeling capabilities requires the use of symbolic rea-
soning to coordinate a large set of autonomic estima-
tion processes. This coordination should mimic the
way in which a community of modelers decompose,
simplify and coordinate modeling problems on a grand
challenge scale. DML automates one aspect of this rich
model decomposition and analysis planning process, by
exploiting an analogy between model estimation, prime
implicant generation and consistency-based diagnosis,
and by introducing the concepts of dissent, support,
and support maintenance system, analogous to con-
flicts, environment and the ATMS. Turning to the fu-
ture, we are beginning to develop Moriarty to support
a “biosphere-like” habitat, called a closed loop ecolog-
ical life support system, and an insitu propellant plant
for NASA’s Mars exploration program.

Acknowledgements

Thanks to Sonia Leach and the Responsive Environ-
ment team at Xerox PARC – Zhang Ying, Scott Elrod
and Joseph O’Sullivan for their support. Jim Kurien

and Pandu Nayak provided valuable feedback.

References
Buntine, W. L. 1994. Operations for learning with
graphical models. Journal of Artificial Intelligence
Research 2:159–225.

de Kleer, J., and Williams, B. C. 1987. Diagnosing
multiple faults. Artificial Intelligence 32(1):97–130.

de Kleer, J., and Williams, B. C. 1989. Diagnosis
with behavioral modes. In Proceedings of IJCAI-89,
1324–1330.

de Kleer, J.; Mackworth, A.; and Reiter, R. 1992.
Characterizing diagnoses and systems. Artificial In-
telligence 56:197–222.

de Kleer, J. 1986. An assumption-based TMS. Arti-
ficial Intelligence 28(1):127–162.

Iwasaki, Y., and Simon, H. 1986. Theories of causal
ordering: Reply to de Kleer and Brown. Artificial
Intelligence 29:63–72.

Kay, H., and Ungar, L. 1993. Deriving monotonic
function envelopes from observations. Seventh Inter-
national Workshop on Qualitative Reasoning.

Shachter, R.; Anderson, S.; and Poh, K. 1990.
Directed reduction algorithms and decomposable
graphs. In Proceedings of the Sixth Conference on
Uncertainty in Artificial Intelligence, 237–244.

Spiegelhalter, D., and Lauritzen, S. 1990. Sequen-
tial updating of conditional probabilities on directed
graphical structures. Networks 20:579–605.

Stolle, R., and Bradley, E. 1996. Automatic construc-
tion of accurate models of physical systems. Annals
of Mathematics and Artificial Intelligence.

Williams, B. C., and Millar, B. 1996. Automated
decomposition of model-based learning problems. In
Proceedings of the Tenth International Workshop on
Qualitative Reasoning, AAAI Technical Report WS-
96-01, 265–273.

Williams, B. C., and Nayak, P. P. 1996. Immo-
bile robots: AI in the new millennium. AI Magazine
17(3):16–35.

Williams, B. C., and Raiman, O. 1994. Decompo-
sitional modeling through caricatural reasoning. In
Proceedings of AAAI-94, 1199–1204.

Zhang, Y.; Williams, B. C.; and Elrod, S. 1993. Model
estimation and energy-efficient control for building
management systems. Technical report, Xerox PARC.

