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Abstract

Artificial Intelligence has traditionally used constraint satisfaction and logic to frame
a wide range of problems, including planning, diagnosis, cognitive robotics and
embedded systems control. However, many decision making problems are now being
re-framed as optimization problems, involving a search over a discrete space for
the best solution that satisfies a set of constraints. The best methods for finding
optimal solutions, such as A*, explore the space of solutions one state at a time.
This paper introduces conflict-directed A*, a method for solving optimal constraint
satisfaction problems. Conflict-directed A* searches the state space in best first
order, but accelerates the search process by eliminating subspaces around each state
that are inconsistent. This elimination process builds upon the concepts of conflict
and kernel diagnosis used in model-based diagnosis[1,2] and in dependency-directed
search[3–6]. Conflict-directed A* is a fundamental tool for building model-based
embedded systems, and has been used to solve a range of problems, including fault
isolation[1], diagnosis[7], mode estimation and repair[8], model-compilation[9] and
model-based programming[10].
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1 Introduction

The approach of focusing search based on summaries of logical inconsistency
is a venerable problem solving method within AI. These summaries have gone
under various names, such as nogoods[3], conflicts [11,12,1], elimination sets[6],
or exclusion relations[13]; in this paper we use the term conflict. Past work has
concentrated extensively on using conflicts to find a solution that is consistent
with a set of constraints. Consistency, however, says nothing about the quality
of the solution. Hence, AI is shifting increasingly towards problem formulations
that involve finding a set of best solutions, given a utility function that mea-
sures the quality of the solution. The generalization of conflict-directed search
to optimization is an open research frontier. In this paper we demonstrate
how conflicts, when combined with A* search, provide a powerful method for
finding optimal solutions to discrete constraint satisfaction problems. We call
this method conflict-directed A*.

AI has explored the paradigm of “search through diagnosis and repair”, both as
a fundamental problem solving paradigm[4,5,14,6], and as a strategy for solv-
ing most core AI reasoning tasks, such as planning, scheduling, diagnosis and
qualitative reasoning[15,16,3,12,11,1,17–21]. In this paradigm the diagnosis of
an incorrect solution is summarized by a conflict, which is then used to guide
the repair step. Systematic, backtrack search methods use conflicts to select
backtrack points. These methods include dependency-directed backtracking
[3], intelligent backtracking, conflict-directed backjumping[22] and dynamic
backtracking[6]. Local search methods use conflicts to select local moves that
remove one or more conflicts. Representative examples include Hacker[15] for
planning, Min-Conflict for constraint satisfaction [16], and GSAT or WalkSat
for propositional satisfiability[14,23,24].

Conflict-directed A* builds upon a third approach, which uses conflicts to
solve constraint satisfaction problems by divide and conquer. This approach
plays an integral role in model-based diagnosis[19], and was first introduced
within the General Diagnostic Engine (GDE) [1]. GDE frames diagnosis as
a constraint satisfaction problem that involves finding assignments of modes
to components that are consistent with a device model and a set of observa-
tions. GDE begins by searching in parallel for all conflicts, that is, “smallest”
partial assignments that produce an inconsistency. The set of conflicts are
then combined to produce compact descriptions of all feasible states, called
kernel diagnoses. The key feature of a conflict-directed divide and conquer ap-
proach is its ability to reason intensionally about collections of states, rather
than states individually. This reduces the effective size of the search space
explored.

A significant limitation of this early approach is that many practical applica-
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tions only require one or a few best solutions, rather than all solutions. In this
case, the approach of generating all solutions and all conflicts in parallel can
waste significant effort. This limitation is exacerbated by the fact that the set
of abstract descriptions – conflicts and kernel diagnoses – grows exponential
in the worst case. Hence, in the model-based diagnosis community, GDE’s
approach fell increasingly to the wayside during the 90’s, being replaced by
methods that focus on the small subset of the diagnoses that are likely, by
enumerating the state space in best first order [7,25,8,26]. Research on these
best first enumeration methods have grappled with three key questions:

• Can we use conflicts to effectively reason about classes of states when we
are only interested in a few best solutions, not all solutions?
• Can theories of diagnosis based on conflicts and kernel diagnoses be rigor-

ously unified with theories of diagnosis as best-first search?
• Can general purpose, conflict-directed methods for solving constraint sat-

isfaction problems (CSPs) be unified with informed methods for best-first
search?

We resolve these questions by addressing a family of problems called Opti-
mal Constraint Satisfaction Problems. An optimal CSP is a multi-attribute
decision problem whose decision variables are constrained by a set of finite
domain constraints. We focus on the solution to optimal CSPs whose at-
tributes are preferentially independent, a property shared by most practical
multi-attribute decision problems. An Optimal CSP is differentiated from for-
malisms like Valued[27] and Semi-ring CSPs[28], in that optimal CSPs operate
on hard constraints rather than soft constraints.

In this paper we introduce conflict-directed A*, a method for solving Optimal
CSPs that satisfy preferential independence. 3 Like A*[29], this approach tests
a sequence of candidate solutions in decreasing order of utility. It differs from
A* in that it uses the sources of conflict identified within each inconsistent
candidate to jump over related candidates in the sequence. This approach
is synergistic with constraint optimization research focussed on finding good
heuristics, such as [30–32].

In practice, conflict-directed A* has lead to a dramatic decrease in the num-
ber of states visited over an A* approach that does not exploit conflicts. This
has been demonstrated both on randomized problems and in real world ap-
plication. Variants of this algorithm have been demonstrated on the control
of a variety of embedded and autonomous systems, including the tasks of
repairing a 100 million dollar deep space probe, 6 light minutes from earth
[8,33], and monitoring the health of a robotic astronaut. Variants have also

3 Conflict-directed A* is a generalization of the conflict-directed, best-first search
algorithm introduced in [8], and is an evolution of conflict-directed algorithms in-
troduced in [5,7,25].
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been used to perform such tasks as model compilation [9], diagnosis[1], mode
estimation[7,34,35], and hardware reconfiguration and repair[8–10].

This paper focuses on the pervasive family of discrete constraint optimization
problems. In related research we demonstrate how conflicts extend to the solu-
tion of continuous and mixed discrete – continuous optimization problems and
to branch and bound search. [36] describes a method, called activity analysis,
that solves non-linear, constraint optimization problems by ruling out portions
of the state space that are sub-optimal. In addition, [37] describes a method
that solves mixed logic – linear programs within a branch and bound search
framework, by learning conflicts from both infeasible and suboptimal relaxed
solutions. Finally, [38] describes a method, called decompositional model-based
learning, which uses conflicts to decompose and solve maximum likelihood
problems, such as parameter estimation, state estimation and model-based
learning.

The remainder of this paper is structured as follows. Section 6 introduces
conflict-directed A* informally, both by stepping through its execution on
simple examples, and by highlighting its role in creating model-based systems
that reason at reactive time-scales. Section 2 defines optimal constraint satis-
faction (OCSP) and introduces the property of mutual preferential indepen-
dence. Section 3 provides an overview. It demonstrates how conflict-directed
A* uses conflicts to jump over leading states that are proven inconsistent, and
it demonstrates how optimal CSPs are used at the core of embedded systems
that are self-diagnosing and repairing.

The remaining sections develop the algorithms in detail. Section 4 develops
an algorithm for solving Optimal CSPs, called constraint-based A*, without
using conflicts. Constraint-based A* leverages the property of preferential in-
dependence to focus search tree expansion on only the most promising chil-
dren. Section 5 introduces the core algorithm underlying conflict-directed A*,
called Next-Best-Kernel, which uses A* search to quickly find the region of
state space, called a kernel, that contains the best utility state that resolves
the known conflicts. Section 6 introduces the conflict-directed A* algorithms
for generating single and multiple solutions, by unifying the constraint-based
A* and Next-Best-Kernels algorithms, introduced in the preceding two sec-
tions. Finally, in Section 7 we discuss experimental results that compare the
performance of constraint-based A* and conflict-directed A*, applied to both
randomly generated problems and a representative space application.

4



2 Optimal CSPs

To lay the ground work for our development of conflict-directed A*, we define
optimal constraint satisfaction problem (OCSP) and introduce a pedagogical
example. Recall that a constraint satisfaction problem (CSP) 〈x,Dx, Cx〉 con-
sists of a set of variables xi ∈ x that range over finite domains Dxi ∈ Dx, and
a set of constraints Cx : x → {True, False}. A solution is any assignment to
x that satisfies Cx, that is, for which Cx[x] = True.

An Optimal CSP, 〈CSP,y, g, 〉, consists of a CSP = 〈x,Dx, Cx〉, a set of de-
cision variables y ⊂ x, and a cost function g : y → <. 4 We refer to the
remaining variables z = x − y, as non-decision variables and partition the
domain Dx into Dy and Dz. We call the elements of Dy decision states. A
solution y∗ to an OCSP is a minimum cost decision state that is consistent
with the CSP. More precisely, let constraint Cy be the projection of Cx on
to decision variables y, where Cy(y) is consistent for y ∈ Dy if and only if
∃z ∈ Dz.Cx(y; z) is consistent. Then

y∗ = argmaxv∈Dyg(v) such that Cy(v) is consistent.

A natural way of encoding g for an OCSP is through a multi-attribute cost
function, which associates attribute costs gi(vij) to individual variable assign-
ments xi = vij, and uses G to compose them into a global cost. 5 Most
practical multi-attribute decision problems satisfy a property called mutually
preferential independent (MPI). This means that for any subset of the prob-
lem’s decision variables w ⊂ y, our preference between assignments to w are
independent of the particular assignments to the remaining decision variables
y−w. 6 The key consequence of MPI, exploited by algorithms in this paper,

4 We frame an OCSP as one of minimizing cost, to be consistent with the framework
of A* search; however, it is equally valid to think in terms of maximizing utility,
particularly for multi-attribute utility decision problems.
5 More precisely, the cost function g of an OCSP is specified as g = 〈g, G, IG〉,
where each attribute cost gi ∈ g maps Dyi to <, G is a binary function from <×<
to < that is associative and commutative, and IG is the identity of G. G applied to
n attribute costs is defined recursively in the standard manner,

G(u1, u2, . . .un) = G(un, G(u1, u2, . . .un−1)),
G(u1) = G(u1, IG), and
g(y)= G(g1(y1), g2(y2), . . .gn(yn)).

6 Preference is defined as better cost:
Definition 1 Let 〈y, g,CSP〉 be an optimal CSP, and δ1 and δ2 be two sets of
assignments to y. Then δ1 is preferred over δ2 if g(δ1) < g(δ2).
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is that an assignment to y minimizes cost by minimizing the attribute cost gi

of each yi separately.
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Fig. 1. Boolean polycell, with observed values indicated.

A simple example of an OCSP is the task of identifying the most likely, con-
sistent diagnoses of a circuit, called Boolean polycell, consisting of three OR
gates and two AND gates (Figure 1). The inputs and outputs are observed as
indicated in the figure. Each component is in one of two possible modes, good
(G) or broken (U). A good component correctly performs its boolean function.
The behavior of a broken component is “unknown,” it imposes no constraint
[12,1].

The decision variables are component mode variables, y, each of whose domain
consists of {G,U}. A candidate is a mode assignment to y. A diagnosis is a
candidate that is consistent with a set of constraints Cy that model Boolean
polycell and the set of observations. For example, the model includes the
constraint “If O1 = G Then (X = 1 IFF (B = 1 Or C = 1).” Utility is
the candidate probability P (y). We take cost g(y) to be 1/P (y). To keep our
example simple, we use the candidate’s prior probability, and assume that
component failures are independent:

g(y) = −
∏

i

Pi(yi),

The attribute utilities are the component probabilities, and are combined using
multiplication, which satisfies MPI. Assuming that OR gates fail with proba-
bility 1% and AND gates with probability .5%, then the solution to the OCSP
is that O1 is broken, that is {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}.

3 Conflict-directed A* in a Nutshell

This section provides a thumbnail sketch of conflict-directed A*, starting with
a pictorial view, and then elaborating the algorithm, using Boolean polycell
as the driving example.
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3.1 A Pictorial View of Conflict-directed A*

A* is often the method of choice for finding optimal solutions to discrete
state space search problems[29,39]. A* generates and tests states in increasing
order of heuristic cost, as depicted in Figure 2. Note that this can also be
equivalently formulated as search in order of decreasing utility. A* can be
equivalently formulated in terms of maximizing utility. We use both terms,
“cost” and “utility,” in this paper, depending on what offers the most intuitive
explanation for the given topic.

Inconsistent


Consistent


Increasing

Cost


S1
 S2
 S3


S4
 S5
 S6


S7
 S8
 S9


Fig. 2. A* examines all best cost states up to the best consistent state.

If a heuristic is admissible, that is, it never overestimates cost, then A* is
guaranteed to return an optimal feasible solution if one exists. A* is efficient in
that it explores no search state with estimated cost greater than the optimum.
However, to guarantee that the solution it returns is optimal, A* visits every
state whose estimated cost is less than the true optimum. This is impractical
for many real world applications, such as model-based systems that perform
best-first search within the reactive control loop [8,9,34,35,10].

Conflict-directed A* accelerates this search process by leaping over many of
these leading inconsistent states. Conflict-directed A* guides its search using
conflicts, which are descriptions of states that are inconsistent with the CSP.
Intuitively, a conflict denotes a set of states, all of which are proven inconsistent
using the same proof. For example, we might deduce from a model that any
state that has a shorted voltage regulator will produce the same symptom,
such as a particular voltage being too low. We say that a state contained by a
conflict manifests the conflict, and a state not contained by a conflict resolves
the conflict.

In Figure 3, conflict-directed A* first selects state S1, which proves inconsis-
tent. This inconsistency generalizes to Conflict 1, which eliminates states S1 -
S3 (Figure 3, upper left). Conflict-directed A* then tests state S4 as the best
cost state that resolves Conflict 1. S4 tests inconsistent and generates Conflict
2, eliminating states S4 - S7 (Figure 3, upper right). Next, conflict-directed A*
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Fig. 3. Conflict-directed A* focuses search using discovered conflicts. Upper left
— lower right represent successive snapshots along a prototypical search. Circles
represent states. Filled in circles have been tested for consistency. Regions in grey
have been ruled out by conflicts. Only state S9 is consistent.

tests state S8, which is the best cost state that resolves both Conflicts 1 and
2. S8 proves inconsistent as well, producing Conflict 3 (Figure 3, lower left).
Finally, the search tests state S9 as consistent and returns it as an optimal
solution (Figure 3, lower left).

In this example conflict-directed A* tested three inconsistent states, while
jumping over five inconsistent states. In real-world examples the savings is
more dramatic. For example, consider the problem of reconfiguring the main
engine system of the Cassini Saturn space probe, which was performed in
simulation by the Livingstone system [40]. The reconfiguration task consists
of finding a minimum-cost set of component modes, such as closing valves
and turning on drivers, that can be shown to thrust the engine system while
maintaining a set of safety constraints. The state space consists of roughly
480 states. Using conflict-directed A*, less than a dozen candidate states are
tested in order to find an optimal solution (Section 7), in contrast to thousands
visited when conflicts are not employed.

3.2 Conflict-directed A* as Generate and Test

Conflict-directed A* performs an interleaved best-first generate and test (Fig-
ure 4). It generates as a candidate, the best valued decision state that resolves
all discovered conflicts. It tests each candidate S for consistency against the
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function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.
Conflicts[OCSP]← {}
OCSP ← Initialize-Best-Kernels(OCSP)
Solutions[OCSP]← {}
loop do

decision-state ← Next-Best-State-Resolving-Conflicts(OCSP)
if no decision-state returned or

Terminate?(OCSP)
then return Solutions[OCSP]

if Consistent?(CSP[OCSP], decision-state)
then add decision-state to Solutions[OCSP]

new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state)
Conflicts[OCSP]←

Eliminate-Redundant-Conflicts(Conflicts[OCSP] ∪ new-conflicts)
Update-Known-Kernels-Based-On-New-Conflicts(OCSP)

end

Fig. 4. Top-level loop of Conflict-directed A*.

CSP using function Consistent?. When S tests inconsistent, Extract-Conflicts
generalizes the inconsistency to one or more conflicts, denoting states that
are inconsistent in a manner similar to S. The candidate is tested using
any suitable CSP algorithm that extracts conflicts. Conflict-directed A* uses
discovered conflicts as a record of known inconsistent states, while prun-
ing redundancy using Eliminate-Redundant-Conflicts. When a new conflict
is discovered, it also updates the search queue of candidates to be explored
using Update-Known-Kernels-Based-On-New-Conflicts. Conflict-directed A*
then uses Next-Best-State-Resolving-Conflicts to jump down to the next best
candidate S ′ that resolves all conflicts discovered thus far. This process repeats
until the desired leading solutions are found or all states are eliminated. 7

The candidate can be tested using any suitable CSP algorithm that extracts
conflicts. The minimal committment to the form of the CSP solved, and the
CSP algorithm applied, makes it easy to augment a range of CSP solvers to
solve Optimal CSP problems. Appendix A discusses requirements and general
implementation issues for the four subprocedures used by Conflict-directed-
A*. Our presentation focuses primarily on the most subtle procedure, Next-
Best-State-Resolving-Conflicts.

We next walk through the execution of the top-level loop of conflict-directed
A* for Boolean polycell, demonstrating how it jumps over most leading can-
didates that are inconsistent, while guaranteeing optimality.

7 Our implementation includes termination conditions such as finding n leading
solutions, finding all solutions within an order of magnitude cost of the leading
solution, or terminating after m states are tested.
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3.2.0.1 First Candidate – All Components Okay: Initially, conflict-
directed A* has no known conflicts, hence all states are under consideration.
It generates

Candidate 1: {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G},

which specifies that all components are working correctly, with probability
.961. Candidate 1 is tested for consistency against the model and observa-
tions (Figure 5, left), using the DPLL propositional satisfiability algorithm[41],
modified to return conflicts. In particular, given that O1 and O2 are good,
DPLL concludes from inputs A−D that X and Y are 1. Next, A1 is Good,
X = 1 and Y = 1 are used to conclude that output F is 1. This prediction
is inconsistent with observation F = 0, hence Candidate 1 is eliminated as a
solution. This inconsistency is generalized to

Conflict 1: {O1 = G,O2 = G,A1 = G},

which is a subset of Candidate 1’s assignments that is sufficient to produce
an inconsistency with the constraints. Conflict 1 is extracted using reductio
ad absurdum, that is, the conjunction O1 = G, O2 = G and A1 = G, imply
F = 1, which conflicts with F = 0, hence the conjunction is inconsistent.
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Fig. 5. Tested candidates, with conflicting components highlighted. Left) Candidate
1: All components okay. Right) Candidate 2: O2 is unknown.

3.2.0.2 Jump to Second Candidate – OR Gate O2 broken: In the
second iteration, conflict-directed A* jumps over any leading candidates con-
taining Conflict 1 as a subset, down to the best candidate resolving Conflict 1.
A candidate resolves a conflict if it does not contain the conflict as a subset. A
conflict is resolved by changing one of the assignments in the conflict to a differ-
ent value, and by including this change in the new candidate. Hence, conflict-
directed A* jumps over state {O1 = G,O2 = G,O3 = U, A1 = G,A2 = G},
which contains Conflict 1 as a subset. It generates the next best state,

Candidate 2: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}
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with probability .0097. Candidate 2 resolves Conflict 1 by changing O2 = G
to O2 = U.

Candidate 2 tests inconsistent, producing

Conflict 2: {O1 = G,A1 = G,O2 = G}.

This is shown on the right of Figure 5, with O1 = U depicted by removing
component O1.

3.2.0.3 The Third Candidate is a Diagnosis – OR Gate O1 broken:
The next consecutive state is

Candidate 3: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G},

with probability .0097, It resolves both Conflicts 1 and 2, by changing assign-
ment O1 = G to O1 = U. Candidate 3 tests consistent (Figure 6, top), and
hence, is our best diagnosis.
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Fig. 6. Candidates 3-5 are diagnoses. Top) Candidate 3: O1 is unknown. Middle)
Candidate 4: A1 is unknown. Bottom) Candidate 5: O2 and A2 are unknown.

3.2.0.4 Finding the Remaining Diagnoses Involves No Search: Up
until this point, conflict-directed A* has tested the consistency of three candi-
dates, one of which is a diagnosis, and has jumped over one candidate. This is
a modest savings over traditional A*. However, the initial phase of the search
is typically invested in discovering conflicts, while the reward is reaped during
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the rest of the search. In this example, after testing the first two candidates,
conflict-directed A* has discovered all conflicts for this example. Hence, at this
point conflict-directed A* has sufficient knowledge to generate all remaining
diagnoses without generating any additional inconsistent candidates.

Continuing the search, the three leading diagnoses are generated by jump-
ing over 19 inconsistent candidates, and by explicitly considering only two
inconsistent candidates (Figure 6). Measuring search efficiency as “Solutions
Found / Candidates Tested,” then traditional A* has efficiency 3

21
= 14%,

while conflict-directed A* has efficiency 3
5

= 60%.

3.3 Generating the Best Kernel

The key to conflict-directed A* is the ability to efficiently generate, at each
iteration, the next best candidate resolving all known conflicts. This is accom-
plished by mapping known conflicts to partial assignments called kernels. The
best cost state is then extracted from these kernels. Each kernel describes a set
of states that resolve the known conflicts. 8 For example, Conflicts 1 and 2 are
both resolved by changing O1 = G to O1 = U, hence {O1 = U} is a kernel.
We provide the intuitions behind this process in this section, presenting the
details in Sections 4, 5 and 6.

{{A1 = U}, {O1 = U}, {O2 = U}}


{{A1 = U}, {A2 = U}, {O1 = U}}


Constituent Kernels


Kernels


{A1 = U}


{O1 = U}


{A2 = U, O2 = U}


Conflicts


{A1 = G, O1 = G, O2 = G}


{A1 = G, A2 = G, O1 = G}


Fig. 7. Conflict-directed A* maps each conflict to a set of constituent kernels, which
resolve that conflict alone. Kernels are generated by combining the constituents
using minimal set covering.

Our mapping from conflicts to kernels is closely related to the candidate gener-
ation algorithm introduced within the General Diagnostic Engine (GDE) [1].
The first step generates constituent kernels, which resolve each conflict alone.
The second step generates kernels that resolve all conflicts, by computing the
minimal set covering of the constituent kernels. In particular, each combined
kernel has the property that it contains a constituent kernel for every conflict,
hence all conflicts are resolved. The constituent kernels for each of Conflict 1

8 The concept of kernel generalizes from kernel diagnosis[2].
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and 2 are shown at the top of Figure 7, and the three kernels covering the
conflicts are shown at the bottom.

O1=U
 A2=U
 A1=U


O2=U
 O1=U
 A1=U


{{O2 = U}, {O1 = U}, {A1 = U}}


{ {O1 = U}, {A2 = U}, {A1 = U}}


Constituent Kernels


For Conflict 2:


For Conflict 1:


Fig. 8. The search tree created by Conflict-directed A* to identify all kernels. Visited
nodes that are kernels are check marked, while those that are not are crossed off.

Unlike GDE, we only want to generate the kernel containing the best utility
state. This is key, since the number of conflicts is worst case exponential
in the number of decision variables. Our first idea is to view minimal set
covering as a search, and to use A* search to find the kernel containing the
best utility state, while explicitly enumerating as few kernels as possible. The
search tree for Boolean polycell is shown in Figure 8. Its leaves are kernels
and its intermediate nodes are partial coverings. For example, the bottom left
leaf denotes kernel {O1 = U, O2 = U} and its parent denotes {O2 = U}. A
tree node is expanded by selecting the constituent kernels of a conflict that
is unresolved by that node, and creating a child for each constituent kernel
of that conflict. For example, the root node does not resolve Conflict 1 or 2.
Selecting Conflict 1, the children of the root are {O2 = U}, {O1 = U} and
{A1 = U}. Nodes are eliminated when non-minimal, such as the first and
third leaves at the bottom left of the tree.

Next, consider how the best candidate is extracted from a kernel. We generate
the best candidate by assigning the remaining unassigned variables. To ac-
complish this we exploit a property called mutual, preferential independence
(MPI). MPI says that to find the best candidate we assign each variable its
best utility value, independent of the values assigned to the other variables.
For example, initially there are no conflicts and the best kernel is the root
node {}. For this kernel, Candidate 1 assigns the most likely value, G, to
every variable, hence all components are working.

Continuing the process, when Candidate 2 is generated (Figure 9, left), only
Conflict 1 has been discovered, hence the kernels correspond to the constituent
kernels of Conflict 1. Kernel {O2 = U} contains the most likely candidate.
Its estimated probability combines the probability of {O2 = U}, .01, with
an optimistic estimate (i.e., admissible heuristic) of the best probability of
the unassigned variables. By MPI, this heuristic selects the best utility value
for each unassigned variable, .97, resulting in .0097, for the best candidate of
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{}


Fig. 9. Left) Tree expansion for kernel {O1 = U}, producing Candidate 2. Only the
best valued child of the root is expanded, not all children. Right) Tree expansion
for kernel {O1 = U}, producing Candidate 3. When node O2 = U is expanded, its
best child and its next best sibling are created.

{O2 = U}.

A key property of the search is that it only expands the best valued child of
{}, which is {O2 = U}, rather than all children. This is valid because MPI
guarantees that {O2 = U} contains a state whose utility is at least as good as
that of every state contained by the other children, such as {O1 = U}. The
best kernel must be {O2 = U}, or one of its descendants. {O2 = U} resolves
the known conflicts, and hence is a kernel. To maximize utility, the kernel’s
best candidate assigns G to the remaining components, that is, Candidate 2
has only O2 is broken.

When Candidate 3 is generated (Figure 9, right), Conflict 1 and 2 have been
discovered. Node {O2 = U} does not resolve Conflict 2, and is expanded
by creating its best child {O2 = U, O1 = U}. This is a kernel, whose best
candidate has probability .01 × .098 = .00098.

At this point it is no longer valid to just expand the best child of {O2 =
U}. Conflict 2 pruned out one or more of the states below node {O2 = U},
hence we are no longer guaranteed that {O2 = U} contains a state that is
as good as its sibling – this sibling may now contain the next best kernel. To
achieve completeness we also expand its next best sibling, which is {O1 = U},
with probability .0097. The next best sibling has higher probability than the
best child, and hence the sibling is selected next. It is a kernel, and produces
candidate 3,which is our most likely diagnosis.

An important property of the search strategy is the distinctive pattern of
expanding a node at every step by creating its best child and its next best
sibling. This strategy has the effect of growing the search queue to the modest
size of at most 2N after visiting N nodes.

Often we will want to continue the search, for example, to find the set of most
likely diagnoses that cover most of the probability density space. To accomplish
this we need the capability to systematically explore the states within the
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kernels in best first order. This is more complicated than extracting the best
state of the best kernel, as demonstrated above. We develop this complete
strategy in Section 6.

3.4 Self-Repairing Systems That Reason Reactively

Conflict-directed A* is at the core of our approach to creating a new generation
of model-based autonomous and embedded systems that achieve robustness
by reasoning extensively at reactive time scales. In this section we outline the
link between conflict-directed A* and model-based embedded systems.

Embedded systems, such as automobiles, power networks and building con-
trol systems, have dramatically increased their use of computation to achieve
unprecedented levels of robustness, with little human support. These systems
must operate robustly for years with minimum attention. An extreme example
of this class of embedded systems is a fleet of intelligent space probes, which
autonomously explores the nooks and crannies of the solar system. These em-
bedded systems may need to radically reconfigure themselves in response to
failures, and then navigate around these failures during their remaining oper-
ation.

The space of potential failures that an embedded system may be faced with
over its lifespan is far too large for a programmer to successfuly pre-enumerate.
Current hand coded systems achieve tractability by severly limiting the num-
ber of faults covered. In addition, the injection of undetected software bugs
has caused significant system loss, such as the failure of the Mars Polar Lan-
der. Instead, an embedded system should be able to automatically diagnose
and plan courses of action for itself.

Our solution is a paradigm, called model-based programming, in which every-
day embedded systems and explorers are programmed by specifying strategic
guidance in the form of a few high-level control behaviors, called model-based
programs[42]. These behaviors specify the system’s intended state evolution,
while abstracting away the detailed problem of controlling, estimating, di-
agnosing or repairing these states. These specifications look like traditional
embedded programs, except that, while traditional programs read sensed vari-
ables and write control variables, model-based programs are allowed to read
and write hidden variables.

A model-based program is executed by automatically generating a control se-
quence that moves the physical plant to the states specified by the control
program (Figure 10). We call these specified states configuration goals. Pro-
gram execution is performed using a model-based executive, consisting of a
control sequencer and a deductive controller. The control sequencer repeat-
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Fig. 10. Architecture for a model-based executive.

edly generates the next configuration goal, based on the control program and
plant state. The deductive controller then generates a sequence of control ac-
tions that achieve this goal, based on knowledge of the current plant state and
model. The deductive controller is responsible for estimating the plant’s most
likely current state, based on observations from the plant (mode estimation),
and for issuing commands to move the plant through a sequence of states that
achieve the goals (mode reconfiguration).

Fire backup

engine


Valve fails

stuck closed

Valve fails


stuck closed


Open four

valves


Open four

valves


a)
 b)


c)
 d)


Fig. 11. Diagnosis and repair sequence for a simplified Cassini spacecraft. Pyro
valves have horizontal bars through them. A valve is closed if filled in, otherwise, it
is open. The faulty valve is circled.

For example, consider the problem of controlling the Cassini spacecraft as
it inserts itself into Saturn’s orbit. One configuration goal generated during
this manuever is to achieve the state of engine thrusting. A series of idealized
schematics of the main engine subsystem of Cassini are shown in Figure 11. It
consists of two propellant tanks, two main engines (A on the left and B on the
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right), redundant latch valves and pyro valves. When propellant paths to a
main engine are open, the propellants flow into the engine and produce thrust.
The pyro valves are used to isolate parts of the engine. They can open or close
only once, and are more costly to use than the latch valves. The system offers
a wide range of configurations for achieving the goal of producing thrust.

Given the configuration goal of engine thrust, first, mode estimation deter-
mines that both engines are currently shut down (Figure 11, upper left). Mode
reconfiguration then deduces that the goal may be accomplished by opening
the latch valves leading to engine A (Figure 11 upper right), and sends out
commands to open the valves. Suppose now that engine A fails to provide the
desired thrust. Mode estimation identifies the likely cause of failure, for exam-
ple, that the right latch valve going into engine A is stuck closed (Figure 11,
lower right). Mode reconfiguration then searches for an alternate set of com-
ponent modes that achieve the goal of engine thrust. Engine A cannot be used
because of the stuck valve. Hence, mode reconfiguration deduces that the least
costly way to achieve this goal is to fire the two pyro valves leading to Engine
B, and to open the remaining latch valves (rather than firing additional pyro
valves) (Figure 11, lower left).

Conflict-directed A* forms the core of both mode estimation and mode re-
configuration. We refer to its implementation as OpSat. The model-based
executive compiles all hardware models into clauses in a propositional state
logic. Mode estimation and mode reconfiguration are then framed as optimal
CSPs of the form

arg min f(x)
s. t. CS(x) is satisfiable,

CU (x) is unsatisfiable,

where CS is a conjunction of propositional clauses that must be satisfied by
the solution x, and CU is a conjunction of propositional clauses that must not
be satisfied by x.

Mode estimation selects, at each time step, most likely sets of component mode
transitions that are consistent with the plant model and current observations.
As discussed in [8], ME is framed roughly as

arg minPt(m
′),

s. t. M(m′) ∧O(m′) is satisfiable,

where m′ is a set of component modes that the system can transition to, Pt

is a transition probability, M is the plant model and O is the current set of
observations.

At each time step, mode reconfiguration first chooses a least cost set of reach-
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able component modes that is consistent with the model and that entails the
current configuration goals, as discussed in [9]. Mode reconfiguration is framed
roughly as

arg maxRt(m
′)

s. t. M(m′) is satisfiable,
M(m′) entails G(m′),

where Rt is the cost of transitioning to mode m′, G is a conjunction of con-
figuration goals, and the constraint “M(m′) entails G(m′)” is equivalent to
M(m′) ∧ ¬G(m′) being unsatisfiable.

Having identified a reachable set of component modes, mode reconfiguration
then generates a command sequence to move to those modes. To accomplish
this, mode reconfiguration generates a compact encoding of a universal plan at
compile time. The first step of this process involves compiling the model into a
set of automata that eliminate any reference to intermediate variables. As dis-
cussed in [9], OpSat is used to compile the model, by generating the complete
set of prime implicates of the model that only refer to control assignments,
current and next mode assignments.

To summarize, conflict-directed A* plays a central role in creating robust,
model-based embedded systems, both during runtime, through state estima-
tion and control, and at design time, through model compilation.

3.5 Summary

Thus far we have introduced conflict-directed A*, which uses discovered con-
flicts to jump over sets of inconsistent states, and we have demonstrated this
process on Boolean polycell. In addition, we demonstrated the process of gen-
erating the best kernel, a consistent subspace containing the best cost solution,
through A* search of a minimal covering tree. Finally we demonstrated how
conflict-directed A* is at the core of building self-reparing systems, that reason
at reactive time scales.

The remainder of this paper presents Optimal CSPs and conflict-directed A*
more formally, and two supporting methods, constraint-based A* and next-
best-kernels. Constraint-based A* offers a point of comparison, as a method for
solving optimal CSPs that exploits preferential independence but not conflicts.
Next-Best-Kernel offers a method for generating parsimonious descriptions
of the “best” solutions, while offering an any-time approach to avoiding an
exponential growth in the descriptions.
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4 Constraint-based A*

In this section we generalize A* search to a method for efficiently solving
Optimal CSPs, by exploiting the added structure imposed by the CSP and its
cost function. We begin with a quick review of state space search and A*.

4.1 Review of A*

Recall that a generic state space search problem is comprised of a set of states
Σ, an initial state Θ ∈ Σ, a set of search operators, op : Σ → Σ, which
map states to next states, and a Goal-Test: Σ→ {True,False} which specifies
whether or not a state satisfies the problem goals. A solution is an operator
sequence that maps the initial state to a goal state. A problem also includes
a cost function g, which returns the cost of applying an operator sequence,
starting at initial state Θ. An optimal solution is one that minimizes cost.

A search tree is induced by rooting the tree at the initial state, and by recur-
sively expanding each tree node, by mapping each node’s state to child states,
using the applicable operators. A* search explores the tree by expanding tree
nodes in best first order according to a function f(n), which estimates the
cost of the best solution that goes through node n. A* is guaranteed to find
the shortest path to a node first, and avoids expanding sub-optimal paths by
exploiting an instance of the dynamic programming principle. A* terminates
when it reaches a state that satisfies the goal test. Given a node n with state
s, A* computes f by adding to g an estimate h of the minimum cost to reach
a goal state from s.

A* is guaranteed to return the best solution, when h is admissible, that is, it
never overestimates the minimum cost to reach a goal. A* is also characterized
as optimally efficient[39], in the sense that no other optimal algorithm that
expands search paths from the root is guaranteed to expand fewer nodes than
A*. Intuitively, any algorithm that does not expand all nodes in the contours
between the root and the goal contour runs the risk of missing the optimal
solution.

Our leverage point for improving upon A* is the fact that an optimal CSP
imposes additional structure that traditional A* does not exploit, in particular,
states are factored into variable assignments, and constraint Cx is factored
into a set of constraints. Our generalizations of A*, should preserve efficiency,
that is, it should not explicitly consider any state whose g is worse than the
optimal solution. For correctness it must also rule out any state whose g is
better than the optimum. However, while A* rules out these states explicitly,
our generalizations to A* will rule out many of these states implicitly.
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4.2 Generalizing to Constraint-based A*

In this section we develop constraint-based A*, a variant of A* that solves
optimal CSPs by exploiting MPI, but not conflicts. Framing an optimal CSP
as a state space search problem, each search state is a partial assignment to
decision variables y. The initial state is the empty assignment {}. An operator
takes a partial assignment, and adds an assignment to one of its unassigned
variables. The Goal-Test returns true if the search state is a consistent as-
signment to all variables in y, and the assignment satisfies each of the CSP’s
constraints. g is the cost of the partial assignment, and is computed by combin-
ing the individual assignment costs gi, as defined in Section 2. By associativity
and commutativity, cost is a function only of search state, and is independent
of the order in which assignments are made.

The search tree of an optimal CSP, called an assignment tree, is similar to
that for CSPs. Examples were given in Section 3.3. An unassigned variable is
selected for each tree node that is not a leaf, and the branches of the node are
labeled with alternative assignments to that variable. The set of assignments
along a path from the tree root to a node is a partial assignment for the CSP,
and represents the node’s search state. The search state of a leaf node is a
decision state of the Optimal CSP. Functions supporting the manipulation of
assignment trees are given in Appendix B.

Our constraint-based variant of A* is given in Figure 12. It is distinguished
by heuristic cost f and its node expansion function Expand-Variable, defined,
respectively, in the next two subsections.

4.3 An Admissible Heuristic for Optimal CSPs

To be admissible, the cost f of a node n must be a lower bound on the cost
of all states appearing below node n that satisfy Goal-Test. In the absence of
additional information, we take this to be a lower bound on the cost of all full
extensions to n’s partial assignment. Pseudocode for functions corresponding
to g and h are given in Appendix C. g(n) is the cost of n’s partial assignment,
and is computed by applying g[OCSP] to n’s assignments. The heuristic cost of
completion h(n) is a lower bound on the cost of assignments to n’s unassigned
variables.

To define an h that may be computed efficiently, we exploit mutual preferential
independence (MPI). Recall that if a cost function g is MPI, it follows that,

if u ≤ v, then G(u,w) ≤ G(v,w).
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function Constraint-based-A*(OCSP)
returns the leading minimal cost solutions of OCSP.
f(x) ← G[problem](g[OCSP](x), h[problem](x))
Nodes[OCSP] ←

Make-Queue(Make-Search-Tree-Node(Θ[OCSP],NoParent))
solutions ← {}
loop do

if Terminate?(OCSP, solutions) or
Nodes[OCSP] is empty

then return solutions
else node ← Remove-Best(Nodes[OCSP], f)

Nodes[OCSP] ←
Enqueue(Nodes[OCSP], Expand-Variable(node, OCSP), f)

if Goal-Test-State[OCSP] applied to State(node) succeeds
then add State[node] to solutions

end

function Goal-Test-State(node, problem)
returns True iff node is a complete, consistent, decision state.
if State[node] assigns values to all decision variables in problem

then return Consistent?(State[node], CSP[problem])
else return False

Fig. 12. Constraint-based A*.

Hence, the cost of a decision state is minimized by minimizing the cost of the
assignment to each variable yi ∈ y separately. Let z denote the set of unas-
signed variables of the OCSP at a particular search node. Then the minimum
cost of assignment z is 9

h(z) = G({gmin
zi
|zi ∈ z, gmin

zi
= min

vij∈Dzi

gzi(vij)}).

For example, in Figure 8, Boolean polycell included a tree node n1, corre-
sponding to kernel {A2 = U, O2 = U}. The utility of the assignments in this
kernel is

1/g(n1) = PA2(U)× PO2(U) = .005 × .01 = .00005.

Cost is minimized by maximizing probability, and the probability of each
component is maximized if it is in the “Good” mode, hence,

1/h(n1) = PA1(G) × PO1(G) × PO3(G) = −.995 × .99× .99 = .975.

In general, since the definition of h(z) is an optimistic estimate on the cost

9 Let S be a set of attribute costs {si}. We use G(S) to denote G(s1, s2, . . .sn).
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of all extensions, h is admissible, hence, constraint-based A* is guaranteed to
come up with an optimal solution. h is only an estimate since, although a
state must exist with cost h(n), that state may be inconsistent with Cy. 10

4.4 Expanding the Best Child

To complete our development we define Expand-Variable. A straight forward
implementation would perform expansion similar to backtrack search. Given a
node n, Expand-Variable might first check to see if the state of n is consistent.
If it is, it would then select any unassigned decision variable, and if such a
variable exists, it would then generate a child of n for each possible value
in that variable’s domain. As with any CSP, the solution is insensitive to
the order in which the variables are assigned, hence any one variable may be
chosen to expand at each step, rather than all variables. In addition, since
expansion is systematic, the A* search does not need to detect multiple paths
to the same search state.

We can do better by exploiting mutual preferential independence to reduce
the number of branches of the tree expanded during search.

Proposition 1 Let c1 and c2 be sibling nodes, where c1 is labeled with as-
signment yi = vij, c2 is labeled with yi = vik, and gi(vij) ≤ gi(vik). Then
there exists a leaf node l1 under c1 such that for all leaf nodes l2 under c2,
g(State[l1]) ≤ g(State[l2]).

For example, suppose we have a node n with state {O1 = U} (Figure 13).
Furthermore, suppose we expand n using O2, hence, n has a child c1 for
{O2 = G} and a child c2 for {O2 = U}. gi(O2 = G) = 1/.99, while gi(O2 =
U) = 1/.01, hence, c1 has a leaf that is ≤ all the leaves of c2. In particular, by
MPI the best leaf, l1i, of c1 is {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G},
with cost 1/(.01×.99×.99×.995×.995) = 1/.0097. This is better than the best
leaf, l2j, of c2, which by MPI is {O1 = U,O2 = U,O3 = G,A1 = G,A2 = G},
with cost 1/(.01× .01× .99× .995× .995) = 1/.00098. We note that these two
best children only differ by the assignments to O2. This is a consequence of
MPI.

Now consider how constraint-based A* expands a node n. It starts by selecting
an unassigned variable yi. We assume the values of Di are ranked in increasing
order of cost gi, with v1 denoting the value that minimizes gi, v2 denoting the

10 This article employs a simple heuristic. More accurate heuristics, for example,
based on Russian Doll search[30], mini-bucket heuristics[31] and lazy dynamic pro-
gramming[32], have been extensively explored in the literature, and are synergistic
with the approach presented here.
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Fig. 14. Due to MPI, only the child of a node with the best cost assignment needs
to be expanded (right), rather than all children (left).

second best value, and so forth. Likewise, we use c1 to denote the child with
the best assignment, yi = v1, we use c2 to denote the child with the second
best assignment, yi = v2, and so forth. The key consequence of Proposition
1 is that function Expand-Variable only needs to create a node for the child,
c1, with the best assignment, yi = v1 (Figure 14). This follows because some
leaf, l1n, of c1 must exist whose cost is less than or equal to all leaves of the
siblings of c1. Hence the best cost unexplored state contained by node n must
be contained within c1, not its siblings. This best child is created by function
Expand-Variable-Best-Child in Figure 15. 11

Node c1 is guaranteed to contain the best state only until one or more of
the states of c1 have been eliminated, for example, by selecting one of c1’s
leaf nodes as a candidate and testing consistency. At this point we may have
eliminated c1’s best decision state l1n, in which case the best leaf node of
c2 may be of lesser cost than the remaining unexplored leaves of c1. Hence,

11 For simplicity of presentation, in the figure, Expand-Domain orders the assig-
ments by cost when the node is created. For efficiency, the implementation performs
this ordering when the domains are created.
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function Expand-Variable-Best-Child(node, problem)
returns for node, a child with a best cost assignment.
if all variables are assigned in State[node]

then return {}
else return Expand-Domain(node, problem)

function Expand-Domain(node, problem)
returns the child with the best cost assignment of an unassigned variable.
yi ← an unassigned variable in State[node] with the smallest domain.
C ← {yi = vij |vij ∈ Di[problem]}
Child-Assignments[node]← Sort C such that for i from 1 to |C| − 1,

Better-Assignment?(C[k], C[k + 1], problem) is True
yi = vij ← C[1], which is the best assignment in the domain of yi

return {Make-Node({yi = vij}, node)}

function Better-Assignment?(yi = vij , yi = vik , problem)
returns True if the lower bound cost of a child node that adds

assignment yi = vij is at least as good as a sibling adding yi = vik.
return gyi [problem](vij) ≤ gyi [problem](vik)

Fig. 15. Expanding the best child for Constraint-Based-A*.

once a leaf of a node cn is eliminated, constraint-based A* must create a
node for cn’s next best sibling cn+1. This sibling is created using the function
Expand-Next-Best-Sibling, shown in Figure 16. When a leaf is expanded, a
next best sibling is created for every ancestor of the leaf by function Expand-
Next-Best-Sibling-of-Ancestors. This approach to expansion is summarized in
Figure 16. 12

A* traditionally expands all children of a node, producing at most b nodes,
where b is the maximum variable domain size, b = maxi |Di|. Each call to
expand increases the size of the queue by b− 1 nodes, producing a worst case
growth of (b − 1) × n after n iterations. In contrast, our strategy grows the
queue by one node at each step (two new nodes are added, and one is removed),
producing a worst case growth of only n nodes after n iterations. In practice,
this is an important reduction in queue growth. Our strategy preserves the key
properties of optimality and completeness, that is, it expands leaves in best
first order and it eventually reaches all tree leaves, given that the variable
domains are finite.

12 Also note that constraint-based A* only expands a node when its partial assign-
ment proves consistent, similar to backtrack search.
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function Expand-Variable(node, problem)
returns the best nodes expanded from node.
if Consistent?(State[node], CSP[problem])

then nodes ← Expand-Variable-Best-Child(node, problem)
if Leaf-Node?(node, problem)

then nodes ← nodes ∪
Expand-Next-Best-Sibling-of-Ancestors(node, problem)

return nodes
else return {}

function Expand-Next-Best-Sibling-of-Ancestors(node, problem)
returns siblings of node and its ancestors with the next best assignment.
if Root?[node]

then return {}
else return Expand-Next-Best-Sibling(node, problem) ∪

Expand-Next-Best-Sibling-of-Ancestors(Parent[node], problem)

function Expand-Next-Best-Sibling(node, problem)
returns node’s sibling with the next best assignment

in Child-Assignments[Parent[node]].
if Root?[node]

then return {}
else {yi = vij} ← Assignment[node]

{yk = vkl} ← next assignment in Child-Assignments[Parent[node]]
after {yi = vij}

if no next assignment {yk = vkl}
or Parent[node] already has a child with {yk = vkl}

then return {}
else return {Make-Node({yk = vkl}, Parent[node])}

Fig. 16. Expanding the best sibling for constraint-based A*.

4.5 Constraint-based A* Applied to Boolean Polycell

Returning to Boolean polycell, constraint-based A* begins with the root node
n1 on the search queue. The root is dequeued and its best child n2 is expanded
and enqueued, by selecting O3 as an unassigned variable and assigning it its
best assignment, G. A similar process generates n3 - n5 and finally n6, which
is the best state, and hence Candidate 1 (Figure 17, top left),

{O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}.

Node n6 is a leaf node, hence when it is dequeued, Expand-Variable generates
the next best sibling of that node and all its ancestors, producing n7 – n11

(Figure 17, bottom left).
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Fig. 17. Constraint-based-A* search tree for Boolean Polycell, for the best three
states. Top left) Expanding the best descendants to create the best state (n6).
Bottom left) When n6 is dequeued, its best sibling and ancestors are created. Top
right) Expanding the descendants of n11 to produce the second best state (n15).
Bottom right) Expanding the descendants of n10 to produce the third best state
(n15).

Constraint-Based-A* uses Goal-Test-State to test Candidate 1, which proves
inconsistent. Continuing the search, nodes n9−n11 are at the front of the queue,
all with the same cost. Assuming that n11 is first dequeued, Expand-Variable
repeatedly generates its best descendants, producing n12−n15 (Figure 17, top
right). n15 is a complete assignment, and is returned as the second candidate,

{O1 = G,O2 = G,O3 = U, A1 = G,A2 = G}.

Since n15 is a leaf node, when it is dequeued, Expand-Variable generates its
next best sibling and ancestors, n16 − n19 (Figure 17, bottom right). No next
best sibling for n1 is generated, because the domain of O3 has been exhausted.
The candidate tests inconsistent.

Likewise, the third round of the search expands n10, generating the best de-
scendants n20 − n22 (Figure 17, bottom right), and the third candidate,

{O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}.
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which also proves inconsistent. 13 The process repeats until the desired set of
best consistent candidates has been found.

4.6 Summary

Constraint-based A* is based on three concepts. First, an OCSP may be solved
by performing an A* search on a tree representing the space of all partial
assignments, similar to traditional backtrack search. Second, MPI enables us
to efficiently estimate the cost-to-go of a partial assignment. This function, h,
simply selects the assignment with the best attribute cost for each unassigned
variable. Finally, the most interesting concept is that queue growth is reduced
by only expanding the best child for each node, waiting until one of the child’s
states is removed, before expanding its next best sibling.

5 Generating the Best Kernel

Recall that conflict-directed A* uses Next-Best-State-Resolving-Conflicts to
jump over the leading set of conflicting states, as we demonstrated in Section
3.3. It accomplishes this by using function Next-Best-Kernel to generate the
kernel containing the best state. We develop Next-Best-Kernel in this section.

Early diagnostic approaches [1,19] generated a complete description of the di-
agnostic space by generating all kernels, given all conflicts. In the worst case,
however, the complete set of kernels may be exponential in the number of
components. Next-Best-Kernel allows us to address this problem by generat-
ing the kernels in best first order, stopping when the generated kernels cover
most or all “good” solutions. The approach offers an any-time, any-space al-
gorithm, which increases its coverage of the solution space as additional time
and memory permits.

For diagnosis, this approach is particularly effective in the common case, where
a small collection of kernels covers most of the probability density of valid di-
agnoses, while the remaining, exponential number of kernels collectively cover
a small portion of the probability density space.

Within conflict-directed A*, Best-Kernels operates on a subset of the complete
set of conflicts, and hence produces “approximate” kernels, which together
contain all solutions, but may also include inconsistent decision states. These
decision states are pruned by Goal-Test, by testing consistency using a CSP
solver.

13 This corresponds to the second candidate tested by conflict-directed A*.
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5.1 Conflicts to Kernels

We begin by making our terms precise. A partial assignment to the variables
of a CSP denotes a subset of the state space of the CSP. A conflict is a partial
assignment that is inconsistent. Any state that is a superset of this conflict is
also inconsistent. Hence a conflict denotes an inconsistent subset of the state
space.

Definition 2 Let y be a set of variables with state space Sy, and let Cy be a
constraint on y. A conflict α of constraint Cy is a partial assignment to y such
that every state that extends α is inconsistent with Cy. Let α be a conflict of
Cy, and s be a state s ∈ Sy, then s manifests α if α ⊂ s; otherwise, s resolves
α.

For example, from Section 3.2, Candidate 1 of Boolean polycell is a state
s1 : {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}, which manifests conflicts:

Conflict 1: {O1 = G,O2 = G,A1 = G} and

Conflict 2: {O1 = G,A1 = G,A2 = G},

To jump over subspaces containing conflicting states, Conflict-directed A* in-
verts the known conflicts, by generating descriptions of all subsets of the state
space that resolve these conflicts. A kernel is a partial assignment denoting a
subspace, such that each state in the subspace resolves the complete set of con-
flicts. An essential property of the set of all kernels is that it forms a complete
description. Every state contained by a kernel resolves every known conflict,
and each state that resolves all conflicts is the state of at least one kernel. To
be complete, conflict-directed A* must be able to generate all kernels for a
given set of known conflicts. 14

Definition 3 Let y be a set of variables with partial assignments Py, let Cy

be a constraint on y, and let Γ be a set of conflicts for Cy. A partial assignment
α ∈ Py resolves conflicts Γ if every state of α resolves every conflict γ ∈ Γ.
Partial assignment α is a kernel of Γ if α resolves Γ, and no proper subset β of
α exists that resolves Γ. The kernels of Γ is the set {β ∈ Py|β is a kernel of Γ}.

14 Note, our concept of kernel is similar to that of kernel diagnosis in [2], except that
a kernel resolves the known conflicts, while a kernel diagnosis resolves all conflicts.
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The kernels for Conflict 1 and 2 are:

Kernel 1: {O1 = U}

Kernel 2: {A1 = U}

Kernel 3: {O2 = U, A2 = U}.

To generate the kernels of conflicts Γ we first generate the kernels of each
conflict separately. We call these the constituent kernels of Γ.

Proposition 2 Let Cy be a constraint on y, and Γ be a set of conflicts of
Cy, then the constituent kernels of Γ is the set {kernels of γ|γ ∈ Γ}. The set
of constituent kernels of conflict γ is

Kγ ≡def

{
{a}|a ∈

(
∪〈xi=vik〉∈γDxi

)
− γ

}
.

For example, suppose Γ consists of Conflict 1 and 2, identified earlier. We
create the complete set of constituent kernels for Conflict 1 by replacing each
assignment of Conflict 1 with its alternative domain assignments, and likewise
for Conflict 2, respectively,

{{{O1 = U}, {O2 = U}, {A1 = U}} and

{{O1 = U}, {A1 = U}, {A2 = U}}}.

The procedure Constituent-Kernels follows directly from Proposition 2. The
proof of Proposition 2, and the pseudocode for Constituent-Kernels, is pre-
sented in Appendix D. Constituent-Kernels incurs negligible computational
cost; its worst case computational complexity is on the order of

∑
Dxi∈Dx

|Dxi|.

Next, to generate the kernels of Γ from its constituent kernels, we note:

Proposition 3 A kernel k resolves a set of conflicts Γ if and only if it resolves
each conflict γi ∈ Γ. k resolves γi if and only if it contains one of the kernels
of γi.

Hence, each kernel, k ∈ KΓ, is a set that selects at least one kernel from each
set of constituent kernels, Kγ , and takes their union. For example, we might
combine {O2 = U}, from the constituent kernels of Conflict 1, with {A2 = U},
from the constituent kernels of Conflict 2, producing kernel {O2 = U, A2 =
U}. A kernel must be minimal, hence we exclude any union that is a superset
of another union. To be consistent a kernel can assign at most one value to any
variable; hence, we eliminate any union containing two distinct assignments
for the same variable. This is analogous to the candidate generation algorithm
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used in the GDE system[1], whose soundness and completeness was demon-
strated by Corollary 1 of [2]. Kernel generation is NP Hard and the number
of kernels is worst case exponential in the number of conflicts.

5.2 In Search of the Best

To make conflict-directed A* tractable, we require an efficient means for find-
ing the kernel that contains the best cost state, while generating as few kernels
as possible. To accomplish this we note that the process of generating kernels
may be viewed as a state space search through a space of partial kernels. A
search tree for our example was shown earlier in Figure 8. At each iteration of
this search, a partial kernel is expanded to resolve an additional conflict, ter-
minating when all conflicts are resolved. A partial kernel is pruned if it either
proves inconsistent, redundant, or non-minimal. The function Best-Kernels is
given in Figure 18, as a variant on A* search.

The heuristic cost function, f(n) = g(n) + h(n), for Best-Kernels is the same
as that for Constraint-based A*, defined in Appendix C. The goal test and
node expansion functions must be modified, as discussed below.

5.2.1 Detecting Kernels

One difference from constraint-based A* is that the leaves of the tree for Next-
Best-Kernel are kernels, rather than full assignments. This requires modifica-
tion to Goal-Test, so that it returns true as soon as a node covers all constituent
kernels, and hence all conflicts have been resolved (Figure 19).

5.2.2 Expanding Partial Kernels

Expand-Conflict selects one of the sets of constituent kernels for an unresolved
conflict, and creates a child for each kernel in the constituent. For example,
the root node {}, shown earlier in Figure 8, does not resolve Conflict 1 or
Conflict 2. It is expanded by selecting Conflict 1, and its constituent kernels
are used to generate three children, labeled O2 = U, O1 = U and A1 = U.
Given multiple possible conflicts to choose from, Expand-Conflict selects the
conflict with the fewest number of constituent kernels. This corresponds to the
standard most-constrained-variable-heuristic, used by most CSP algorithms.

Like constraint-based A*, mutual preferential independence allows conflict-
directed A* to reduce the number of branches of the tree expanded during
search. However, there is an important difference, due to the fact that for
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function Initialize-Best-Kernels(KGP)
returns Kernel generation problem, KGP, with its search-tree initialized.
Best-Kernels[KGP]← {}
Nodes[KGP] ←

Make-Queue(Make-Search-Tree-Node(Θ[KGP],NoParent))
Visited[KGP]← {}
return KGP

function Next-Best-Kernel(KGP)
returns the next best cost kernel of Conflicts[KGP]

for kernel generation problem KGP.
f(x) ← G[KGP](g[KGP](x), h[KGP](x))
loop do

if Nodes[KGP] is empty then return failure
node ← Remove-Best(Nodes[KGP], f)
Add State(node) to Visited[KGP]
new-nodes ← Expand-Conflict(node, KGP)
for each new-node in new-nodes

unless ∃ n ∈ Nodes[KGP] such that State(new-node) = State(n)
or State(new-node) is in Visited[KGP]

then Nodes[KGP] ← Enqueue(Nodes[KGP], new-node, f)
if Goal-Test-Kernel[KGP] applied to State(node) succeeds

then best-kernel = State(node)
Best-Kernels[KGP]←
Add-To-Minimal-Sets(Best-Kernels[KGP], best-kernel)

if best-kernel ∈ Best-Kernels[KGP]
then return best-kernel

end

Fig. 18. Generating the best kernels of a set of conflicts using A* search. A ker-
nel generation problem, KGP, includes a set of Conflicts and initial state Θ = {}.
Functions Goal-Test-Kernel and Expand-Conflict are shown in Figures 19 and 20.
Functions Make-Tree-Node, Root?, State and Theta are the same as for Con-
straint-Based-A*, and were given in Appendix B. g, h, Gmin and gmin are also
the same, and were given in Appendix C.

function Goal-Test-Kernel(node, problem)
returns True iff the state of node resolves all known conflicts.
if for all Kγ ∈ KΓ[problem], State[node] contains a kernel in Kγ

then return True
else return False

Fig. 19. Goal-Test-Kernels used by Next-Best-Kernel to detect kernels.
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conflict-directed A*, the assignments associated with siblings may involve dis-
tinct variables.

Proposition 4 Let c1 and c2 be sibling nodes with parent n, where c1 is
labeled with assignment yi = vij, c2 is labeled with yk = vkl, and neither
yi nor yk appear in State[n]. Let gmin

yi
and gmin

yk
denote the best attribute

costs of yi and yk, respectively. If G(gyi (vij), g
min
yk

) ≤ G(gmin
yi

, gyk
(vkl)), then

there exists a leaf node l1 under c1 such that for all leaf nodes l2 under c2,
g(State[l1]) ≤ g(State[l2]).

Note that c1 doesn’t restrict the value of yk, and c2 doesn’t restrict the value of
yi. Hence to identify the child with the best state, the comparison is performed
under the assumption that the two children take on best cost values for their
sibling’s variable.

For example, consider the node labeled O2 = U in Figure 8. The first of its
three children, c1, has assignment O1 = U, and the second child, c2, has
assignment A2 = U. c1 is preferred over c2, since

1/(P (O1 = U)× Pmax(A2)) ≤ 1/(P (A2 = U)× Pmax(O1)).

Next, consider how this proposition is incorporated into function Expand-
Conflict of Next-Best-Kernel. Given a node n, Expand-Conflicts begins by
identifying an unresolved conflict. A conflict is unresolved by node n if none
of the conflict’s constituent kernels is a subset of State(n). We order the con-
stituent kernels of the conflict using function Better-Kernel?, shown in Figure
20. Let kn denote the nth kernel in this ordering, and cn denote the correspond-
ing child. It follows from Proposition 4 that only the first child, c1, needs to
be expanded. This is performed by function Expand-Conflict-Best-Child, in
Figure 20.

Proposition 4 only holds until one or more of the states of a child cn has
been eliminated. This occurs as soon as cn is expanded, in order to resolve
an additional conflict, since that conflict may eliminate one or more of the
states of cn. Hence, as soon as a child of node cn is expanded, the next best
sibling, cn+1, of cn must be expanded as well. The pattern of node expansion
is then to repeatedly replace the best cost node on the search queue, with its
best child and its next best sibling. This expansion is achieved with functions
Expand-Conflict (Figure 20) and Expand-Next-Best-Sibling (Figure 16).

Next-Best-Kernel uses a variant of the dynamic programming principle of
A* search to avoid extending multiple paths that go to the same state. To
accomplish this, Next-Best-Kernel keeps track of nodes that it has already
explored using the variable visited. As each node is queued, we check to see if
a node with the same search-state already exists on the queue or visited list. If

32



function Expand-Conflict(node, problem)
returns the best nodes expanded from node.
return Expand-Conflict-Best-Child(node, problem) ∪

Expand-Next-Best-Sibling(node, problem)

function Expand-Conflict-Best-Child(node, problem)
returns for node, a child with the best cost extension.
if for all Kγ ∈ Constituent-Kernels(Γ[problem])

State[node] contains a kernel in Kγ

then return {}
else return Expand-Constituent-Kernel(node, problem)

function Expand-Constituent-Kernel(node, problem)
returns for node, the child containing the best cost kernel of a

conflict not already resolved by State[node].
Kγ ← the smallest set in Constituent-Kernels(Γ[problem]),

such that no kernel in the set is contained in State[node].
C ← {yi = vij|{yi = vij} ∈ Kγ , yi = vij is consistent with State[node]}
Sort C such that for all i from 1 to |C| − 1,

Better-Kernel?(C[i], C[i + 1], problem) is True
Child-Assignments[node]← C
yi = vij ← C[1], which is the best kernel in Kγ consistent with State[node]
return {Make-Node({yi = vij},node)}

function Better-Kernel?(yi = vij, yk = vkl, problem)
returns True if the lower bound cost of a child node that adds

kernel yi = vij is better than a sibling that adds kernel yk = vkl.
if yi = yk

then return gyi [problem](vij) ≤ gyk
[problem](vkl)

else return G[problem](gyi [problem](vij), gmin(yk, problem))
≤ G[problem](gmin(yi, problem), gyk

[problem](vkl))

Fig. 20. Expand-Conflict used by Next-Best-Kernel to cover known conflicts. Ex-
pand-Next-Best-Sibling is the same as for Constraint-Based-A* and is shown in
Figure 16. g, h, Gmin and gmin are also the same, and are given in Appendix B.
Likewise, Make-Tree-Node, Root?, State and Theta are given in Appendix B.

so, then the node is ignored. This has a substantial impact on our performance
experiments, discussed in Section 7.

5.3 Summary

In this section we introduced an algorithm, called Next-Best-Kernel, that gen-
erates the kernels of a set of conflicts in best first order. Next-Best-Kernel com-
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bines A* search with traditional algorithms for generating kernel diagnoses.
It achieves efficiency by exploiting mutual preferential independence and a
special case of the dynamic programming principle, in order to restrict the
set of nodes expanded during search. Next-Best-Kernel is used by Conflict-
Directed-A* to extract the best state that resolves the known conflicts, as we
will see in the next section. It also provides an any-time, any-space algorithm
for generating parsimonious descriptions of the best solutions.

6 Conflict-directed A*

The top-level procedure of conflict-directed A* (Figure 4) was introduced
and demonstrated in Section 3. This section completes the development of
conflict-directed A*, by specifying the candidate generation procedure, Next-
Best-State-Resolving-Conflicts. First we consider the case where we are only
interested in the single best solution, building upon the function Next-Best-
Kernel (Section 5). This case corresponds to the algorithm demonstrated
earlier in Section 3. Next, we generalize conflict-directed A* to finding any
number of leading solutions. To accomplish this we develop a hybrid version
of Next-State-Resolving-Conflicts that unifies Constraint-based-A* and Next-
Best-Kernel, (from Sections 4 and 5, respectively).

6.1 Conflict-directed A*: One Solution

To generate the single best solution of an optimal CSP, at each iteration
Next-Best-State-Resolving-Conflicts simply extracts the best kernel, and then
extends the kernel to the best complete decision state (Figure 21). The best
kernel K is extracted from the conflicts using Next-Best-Kernel, developed
in the preceding section. In our preceding development, Next-Best-Kernel as-
sumed that the set of conflicts was fixed. In this case, if a partial assignment
was found to be a kernel, then it would be removed from the search queue
without further expansion. For conflict-directed A*, however, newly discovered
conflicts can be added after kernels have been generated. In this case the set
of generated kernels may no longer resolve all conflicts, and must be incremen-
tally updated. To address this, whenever a new conflict is extracted (Figure 4),
the function Update-Known-Kernels-Based-On-New-Conflicts is called, which
searches through the set of generated kernels, Best-Kernels[OCSP], and tests
whether each kernel resolves all new conflicts. If a kernel does not, the kernel is
removed from Best-Kernels and its corresponding search node, Node(kernel),
is queued for expansion, in order to resolve all new conflicts (Figure 21). The
net result is an incremental best-first kernel generation algorithm that inter-
leaves kernel generation with conflict insertion.
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function Terminate?(OCSP)
returns True when first solution of OCSP is found.
return True iff Solutions[OCSP] is non-empty.

function Next-Best-State-Resolving-Conflicts(OCSP)
returns the best cost state consistent with Conflicts[OCSP].
best-kernel ← Next-Best-Kernel(OCSP)
if best-kernel = failure

then return failure
else return Kernel-Best-State[problem](best-kernel)

function Update-Known-Kernels-Based-On-New-Conflicts(OCSP)
returns OCSP with kernels and queue updated to reflect kernels requiring further expansion.
for each kernel in Best-Kernels[OCSP]

unless Goal-Test-Kernel[OCSP] applied to kernel succeeds
then Best-Kernels[OCSP]← Remove(kernel, Best-Kernels[OCSP])
{new-node} ← Expand-Constituent-Kernel(Node[kernel], OCSP)
unless ∃ n ∈ Nodes[OCSP] such that State(new-node) = State(n)

or State(new-node) is in Visited[OCSP]
then Nodes[OCSP] ← Enqueue(Nodes[OCSP], new-node, f)

return OCSP

function Kernel-Best-State[problem](kernel)
returns the best utility state of kernel.
unassigned ← all variables not assigned in kernel
return kernel ∪ Best-Assignment(unassigned)

function Best-Assignment[problem](variables)
returns the maximum utility assignment to variables.
if variables = {}

then return {}
else yi = one of variables

remaining = variables - {yi}
return {yi = vmax[problem](yi)}∪ Best-Assignment[problem](remaining)

function vmax[problem](yi)
returns the value with the maximum attribute utility for yi.
return argmaxvij∈Di[problem] gi[problem](vij)

Fig. 21. Support functions for Conflict-directed-A* for the case of generating a single
best solution.

To extract the best state of kernel K, let z be the set of variables not assigned
in K. Then the best cost decision state, s, of K is the one that selects for each
unassigned variable zi ∈ z its best cost value,

s ≡ K ∪
{

zi = vimin | zi ∈ z, vimin = arg min
vij∈Dzi

gi(vij)

}
.

35



This corresponds to Function Kernel-Best-State (Figure 21). This version of
conflict-directed A* was demonstrated in detail in Section 3.

A key property of most systematic CSP search algorithms is that the same
search state is not visited twice; this property, called systematicity can have
enormous impact on search efficiency. Systematicity is satisfied for constraint-
based A*. To ensure this property for conflict-directed A*, our development
requires modification. In particular, two kernels can denote overlapping sub-
spaces, in which case the kernels can be extended to the same full assignment.
This full assignment can be generated more than once, for example, if it rep-
resents the optimal state for both kernels.

The overlap in kernels is introduced by Expand-Conflict (Figure 20), which
splits on a set of constituent kernels, and results from child nodes making
assignments to different variables. To eliminate this overlap, we augment the
state of a child node so that it excludes the kernel assignment of each sibling
node that was created before it. In particular, consider the last line of func-
tion Expand-Next-Best-Sibling (Figure 16), which creates each child node after
the first. For conflict-directed A*, whenever this function is called by Expand-
Conflict, the search state {yk = vkl} is augmented with ¬(yi = vij) for any sib-
ling assignment yi = vij that precedes it in Child-Assignments[Parent(Node)].
In addition, a node is not generated if its augmented state is inconsistent. For
simplicity of presentation, this addition is not included in the pseudocode of
this article, but is straightforward to introduce (see [48]).

6.2 Conflict-directed A*: Multiple Solutions

To generate multiple leading solutions, we introduce a variant of Next-Best-
State-Resolving-Conflicts that is able to enumerate, in best first order, multi-
ple decision states of one or more kernels. This is in contrast to the preceding
section, where Next-Best-State-Resolving-Conflicts can only enumerate the
single best decision state of each kernel.

Our augmented Next-Best-State-Resolving-Conflicts, is defined in Figure 22.
It generates kernels similar to Next-Best-Kernel (Figure 20), and enumer-
ates the states of these kernels, similar to Constraint-Based-A* (Figure 22).
To efficiently focus the search, it interleaves the processes of generating best
kernels and best states. In particular, at each iteration it selects for expan-
sion the node from the two search processes that looks most promising ac-
cording to f . To implement this, Next-Best-State-Resolving-Conflicts uses a
single search queue that contains nodes of both search types. The function
Expand-State-Resolving-Conflicts expands each node based on this type, us-
ing Expand-Conflict to expand partial kernels and Expand-Variable to expand
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function Next-Best-State-Resolving-Conflicts(OCSP)
returns the best cost state consistent with Conflicts[OCSP].
f(x) ← G[problem](g[problem](x), h[problem](x))
loop do

if Nodes[OCSP] is empty
then return failure
else node ← Remove-Best(Nodes[OCSP], f)

Add State(node) to Visited[OCSP]
new-nodes ← Expand-State-Resolving-Conflicts(node, OCSP)
for each new in new-nodes

unless ∃ n ∈ Nodes[OCSP] such that State(new) = State(n)
or State(new) is in Visited[OCSP]

then Nodes[OCSP] ← Enqueue(Nodes[OCSP], new, f)
if Goal-Test-State-Resolves-Conflicts[OCSP](State(node)) succeeds
then return node

end

function Expand-State-Resolving-Conflicts(node, problem)
returns Best nodes expanded from node.
if forall Kγ ∈ Constituent-Kernels(Γ[problem]),

State[node] contains a kernel in Kγ

then if all variables are assigned in State[node]
then return {}
else return Expand-Variable(node, problem)

else return Expand-Conflict(node, problem)

function Goal-Test-State-Resolves-Conflicts(node, problem)
returns True iff node is a complete decision state

that resolves all known conflicts.
if forall Kγ ∈ Constituent-Kernels(Γ[problem]),

State[node] contains a kernel in Kγ

then if all variables are assigned in State[node]
then return True
else return False

else return False

function Update-Known-Kernels-Based-On-New-Conflicts(OCSP)
return OCSP

Fig. 22. Support functions for Conflict-directed-A* for the case of generating multi-
ple solutions. Combines expansion functions for Next-Best-Kernel (Figure 20) and
Constraint-based-A* (Figure 22). Terminate? is application specific and is not sup-
plied.

37



kernels to states. The goal-test function, Goal-Test-State-Resolves-Conflicts,
returns true when a search state is a complete assignment and it resolves all
conflicts. The application of the dynamic programming principle is the same
as outlined at the end of Section 5.2.2 for Next-Best-Kernel.

Note that Next-Best-State-Resolving-Conflicts does not need to maintain the
set of Best-Kernels in order to generate solutions. If these kernels are de-
sired, they can be maintained incrementally similar to Section 6.1. The key
difference is that, unlike Section 6.1, Update-Known-Kernels-Based-On-New-
Conflicts does not need to search Best-Kernels for kernels requiring additional
expansion, since kernels are always expanded by Next-Best-State-Resolving-
Conflicts.

To ensure that search is systematic, the function Expand-Next-Best-Sibling
is modified as outlined in the preceding section (Section 6.1), thus guaran-
teeing that the subspaces denoted by child nodes are non-overlapping. Once
again, this change is only made for calls to Expand-Next-Best-Sibling from
Expand-Conflict; siblings generated by calls from Expand-Variable are already
guaranteed to be non-overlapping.

6.3 Full Conflict-directed A* Applied to Boolean Polycell

Consider a trace of our extended version of conflict-directed A*, applied to
Boolean polycell. Initially there are no conflicts, and the root node n1 is on the
search queue. On the first iteration of conflict-directed A*, Next-Best-State-
Resolving-Conflicts starts by dequeuing n1. Since there are no conflicts to be
resolved, the best descendants of n1 are expanded similar to constraint-based
A* (Section 4.5), producing nodes n2−n6 (Figure 23, top left). The best state,
n6, is returned,

Candidate 1: {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}.

Conflict-Directed-A* finds Candidate 1 inconsistent, generating

Conflict 1: {O1 = G,O2 = G,A1 = G}.

Next-Best-State-Resolving-Conflicts is reinvoked with this new conflict and
the current search agenda. Since n6 is eliminated, its next best sibling and
ancestors are generated. n9−n11 (Figure 23, top right) are at the front of the
queue, all with the same cost. Assuming that n11 is dequeued, n11 does not
resolve Conflict 1, hence a best child n12 is generated for n11 that selects the
best cost constituent kernel, {O2 = U}, for Conflict 1. Note that this kernel
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Fig. 23. Search trees generated for Boolean polycell, by the extended version of
Next-Best-State-Resolving-Conflicts. The best decision state is indicated by an ar-
row. A closed/open circle indicates an expanded/unexpanded node. Top left) the
best cost state, given no conflicts. Top right) the best cost state, given Conflict 1.
Bottom) the best cost state, given Conflicts 1 and 2.

adds an additional failure (O2 broken), and hence the cost n12 is about an
order of magnitude worse than that of n11.

The next best node taken off the search queue is n10, which has the same cost
as n11. This node already resolves Conflict 1, hence the node is recursively
expanded to its best state, by repeatedly selecting an unassigned variable and
assigning it its best cost value (n13−n15, Figure 23, top right). n15 is returned
as the best state that resolves the known conflicts,

Candidate 2: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}.
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Conflict-Directed-A* determines that Candidate 2 is also inconsistent, gener-
ating

Conflict 2: {O1 = G,A1 = G,O2 = G}.

Conflict 2 is added and Next-Best-State-Resolving-Conflicts is invoked for a
third round. Since n15 was removed, its next best siblings and ancestors are
generated, producing n16−n18. Next the best node n9 is dequeued. n9 resolves
both Conflict 1 and Conflict 2, hence its best descendants n19 and n20 are
expanded (Figure 23, bottom), producing

Candidate 3: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}.

Conflict-directed A* determines that Candidate 1 is consistent, and hence the
best diagnosis. At this point all conflicts have been discovered, hence subse-
quent invocations of Next-Best-State-Resolving-Conflicts generates all diag-
noses in best first order, without visiting any additional, inconsistent states.

7 Experimental Results

We evaluated the performance of conflict-directed A* both on applications to
real world space systems and on randomly generated problems. To measure
the effectiveness of exploiting conflicts and mutual preferential independence,
we ran parallel tests with constraint-based A*. Starting with real-world ap-
plications, we have employed variants of conflict-directed A* in a range of
model-based diagnosis and model-based autonomous systems, including Liv-
ingstone[8], Burton[9], MiniMe[34] and Titan[10]. These have been applied to
space, naval and automotive systems. Applications to space systems in flight
include NASA’s Deep Space One probe and Earth Observer One satellite.
Space demonstrations in a ground testbed or in simulation include the Cassini
Saturn space probe, the Air Force TechSat 21 cluster, NASA’s Messenger mis-
sion, the X-34 and X-37 NASA’s ST-7 concept mission, and the MIT Sphere’s
mission. The performance of an earlier variant of conflict-directed A* for the
Cassini scenario was reported in [8,43].

7.1 Cassini Saturn Space Probe Scenarios

Cassini is interesting as NASA’s most complex space craft to date, and hence a
representative case study of a complex embedded system. The Cassini scenario
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consists of roughly 80 components, which correspond to 80 decision variables,
with an average domain size of roughly four values. Constraints are encoded
in propositional logic using approximately 3,000 propositional variables and
12,000 clauses. This results in a decision space whose size is approximately 480

and a state space whose size is approximately 23000.

We compared the performance of conflict-directed A* to that of constraint-
based A* (i.e., no conflict-direction) by measuring the total number of nodes
expanded and the largest length of the search queue. This was performed for
six failure recovery scenarios supplied by Cassini engineers. Each of these sce-
narios involved selecting a set of component mode changes that re-established
the spacecraft’s configuration goals after a failure (i.e., mode selection).

Conflict-directed A* was able to focus the search dramatically for all the test
cases. Performance broke into three categories: Several of the failures involved
simple recoveries, such as the inertial reference unit and accelerometer failures,
whose best recovery action involved changing the mode of a single component.
In these cases, conflict-directed A* found the best solution with 12 or less node
expansions and a maximum queue size of 3.

Recoveries of moderate difficulty, such as the main engine overheating or a
spacecraft attitude failure, required recoveries that changed up to 10 compo-
nent modes. These were solved with approximately 50 node expansions and a
maximum queue size of 10.

The most complex recoveries, such as a low acceleration reading, needed ap-
proximately 100 node expansions and a maximum queue size of 50. For all
cases, the computational cost in terms of time and space usage is extremely
modest, compared to the complexity of the search space and the number of
mode changes in the solution.

Constraint-based A* performed well overall, considering the effective size of
the search space, but its performance was much worse in comparison to conflict-
directed A*. Also note that the performance without conflict-direction was
very sensitive to variable ordering. For comparison with conflict-directed A*,
we consider optimistic orderings.

For the family of simplest recoveries, constraint-based A* required at least
50 times as many node expansions as conflict-directed A*, and the increase
in space usage was worse. The increase in the number of expanded nodes
and queue size was a result of considering nodes that could not contribute to
restoring the configuration goal.

For recoveries of moderate complexity, the performance of constraint-based
A* varied considerably, consuming from 20 to over 500 times as much space
and time as conflict-directed A*. This variation was the result of a large de-
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pendence on the order of the variables and values searched, and the number
of mode changes in the final solution.

Recoveries of greatest complexity were the most difficult to discover. For these
recoveries, A* without conflict-direction increased the number of nodes ex-
panded by an average factor of 200 over conflict-directed A*, and increased
the maximum queue size by a factor of 250.

7.2 Randomized Experiments

Problem Parameters Constraint-Based Conflict-Directed Mean CD-CB Ratio

VariablesDomain
Size

Decision
Vari-
ables

Constraint
Clauses

Clause
Length

Nodes
Ex-

panded

Queue
Size

Nodes
Ex-

panded

Queue
Size

Conflicts
Used

Nodes
Ex-

panded

Queue
Size

30 5 10 10 5 683 1230 3.33 6.33 1.2 4.5% 5.6%

30 5 10 30 5 2360 3490 8.13 17.9 3.2 2.4% 3.5%

30 5 10 50 5 4270 6260 12 41.3 2.6 0.83% 1.1%

30 10 10 10 6 3790 13400 5.75 16 1.6 2.0% 1.0%

30 10 10 30 6 1430 5130 9.71 94.4 4.2 4.6% 5.8%

30 10 10 50 6 929 4060 6 27.3 2.3 3.5% 3.9%

30 5 20 10 5 109 149 4.2 7.2 1.6 13% 13%

30 5 20 30 5 333 434 6.4 9.2 2.2 6.0% 5.4%

30 5 20 50 5 149 197 5.4 7.2 2 12% 11%

Table 1
Average performance of Constraint-based A* and Conflict-directed A* on randomly-
generated problems.

Turning to randomized experiments, we verified the performance improve-
ments discussed above through a series of experiments on randomly generated
problems. For these experiments, each randomized data set was generated
based on five parameters characterizing optimal CSP problems: the number
of state variables, the maximum domain size of each state variable, the number
of decision variables, the number of constraints, and the size of each constraint.
The size of the variable domains and constraints were selected with uniform
distribution between 2 and the allowed maximum. Cost for each variable as-
signment was selected in a similar manner.

Conflict-directed A* and constraint-based A* were each applied to the sets
of randomly generated problems and rated based on total number of nodes
expanded and maximum search queue length. The results of these experiments
are shown in Figure 1. Once again, the data shows a significant improvement
in performance for conflict-directed A* across the range of problems tested.
The degree of improvement varied depending on how constrained the problem
was and the difficulty of the optimization problem.

The data suggests that the performance benefit of conflict-direction for A*
increases as the problems become more constrained and as the maximum
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domain size increases. For highly constrained problems, conflicts tend to arise
with fewer assignments. This allows conflict-directed A* to rule out larger
portions of the state space that would otherwise be explored.

Conflict-directed A* also performs well for problems that are lightly-constrained,
because the problem contains fewer conflicts. Hence, the kernels that resolve
all conflicts tend to be short, and are discovered at a very shallow point in the
search. Once the kernel is found, extracting its best state involves little search.
Note that the results for lightly constrained problems is less significant, simply
because these problems are more easily solved in general.

7.3 Summary

To summarize, the performance of both constraint-based A* and conflict-
directed A* scale well for systems of real-world complexity. The excellent per-
formance of both approaches on the Cassini example demonstrates the effec-
tiveness of the approach to using mutual preferential independence to guide
search. In addition, the substantial and consistent increase in performance of
conflict-directed A* over constraint-based A* demonstrates the effectiveness
of conflict-directed search as a focussing mechanism for real-world applica-
tions. These performance results are confirmed for a broad set of randomly
generated problems.

8 Conclusion

Many artificial intelligence decision making problems, such as diagnosis, plan-
ning, and embedded systems control, are being translated from CSPs to opti-
mization problems involving a search over a discrete space for the best solution
that satisfies a set of constraints. This has opened a new research frontier at
the boundary between optimization and automated reasoning research.

We described this family of problems as optimal constraint satisfaction prob-
lems, that is, multi-attribute decision problems whose decision variables are
constrainted by a set of finite domain constraints. We highlighted the pervasive
family of optimal CSPs that are mutually, preferentially independent.

The remainder of the paper introduced conflict-directed A*, an algorithm
for tackling optimal CSPS by extending A* search. Traditional A* search
guarantees optimality by visiting all states whose cost is better than that
of the optimal feasible solution. Conflict-directed A* is able to reason about
subsets of the infeasible states implicitly, by exploiting the structure of the
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CSPs and the source of conflicts.

Conflict-directed A* searches the state space in best first order, using mu-
tual preferential independence (MPI) to construct an admissible heuristic that
guides the search through the space of partial assignments. The search is ac-
celerated by identifying the sources of conflict within each inconsistent candi-
date found and using this information to jump over related candidates in the
search tree. This elimination process builds upon the concepts of conflict and
kernel, generalized from model-based diagnosis[1,2] and dependency-directed
search[3–6]. In Section 7 we saw that this approach leads to a several order of
magnitude increase in performance over A* without conflicts.

At the core of conflict-directed A* is the ability to identify a feasible region
of state space, called a kernel, that contains the best utility state resolving all
known conflicts. The computational challenge is that an exponential number of
kernels may exist in the worst case. We focus the process of generating kernels
towards only the best kernel, by introducing an algorithm, called Next-Best-
Kernel, that combines minimal set covering with A* search. Next-Best-Kernel
guides the search and reduces node expansion by exploiting MPI similar to
Constraint-based A*. In Section 7 we saw, during the Cassini and randomized
experiments using Conflict-directed-A*, that Next-Best-Kernel generates a set
of search nodes that is extremely modest compared to the total size of the
search space.

Next-Best-Kernel also offers a powerful algorithm for candidate generation[1,17,19]
that generates parsimonious descriptions of solutions in best first order. This
results in an any-time, any-space algorithm that generates the most useful
descriptions first, and can be terminated at any point.

This paper has focussed on the interrelationship between A* search, constraint
satisfaction, and conflict-directed reasoning. These are just a few of a rich set
of computationally powerful methods that have been developed over the last
decade for solving constraint satisfaction problems (e.g.,[27,30,28,31,32]). The
extension of these methods to Optimal CSPs is a rich area for future research.
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A Conflict-directed A*: Requirements and Implementation

The four subprocedures within the Conflict-directed-A*(CSP, y, g) loop are
defined through the following requirements:

Requirement 1 Let OCSP = 〈y, g,CSP〉 be an optimal constraint satis-
faction problem, α be a decision state of OCSP, and Γ be the set of known
conflicts of OCSP, then:

Consistent? Consistent?(CSP, α) is True if and only if Cy(α) is consistent.
Extract-State-Conflicts Let ∆ = Extract-State-Conflicts(CSP, α). ∆ is

empty if and only if α is consistent with Cy; otherwise, each δ ∈ ∆ is a
state conflict of α for Cy.

Eliminate-Redundant-Conflicts: Let ∆ = Eliminate-Redundant-Conflicts(Γ),
where Γ is a set of conflicts. Then ∆ ⊂ Γ and States(∆) = States(Γ).

Next-Best-State-Resolving-Conflicts Let α = Next-Best-State-Resolving-
Conflicts(OCSP). Then α = {} if no state in Sy exists that resolves conflicts
Γ and that is not in solutions. Otherwise, α is a decision state in Sy such
that α is not in solutions, α resolves conflicts Γ, and no state β ∈ Sy exists
such that β resolves Γ and g(β) < g(α).

We do require that Consistent? be able to determine inconsistency as well as
consistency. An inconsistency is typically found using a systematic search pro-
cedure that performs limited inference, such as back track search with forward
checking or the DPLL propositional satisfiability procedure[41]. Local search
methods, such as Min-Conflict [16] or GSAT[14], are efficient at determining
consistency, but can not alone determine inconsistency.

Note that Extract-State-Conflict does not need to return a complete set of
conflicts, and the conflicts are not required to be minimal, since this does not
impact the correctness of the algorithm. Of course a complete set of minimal
conflicts rules out the largest set of inconsistent states. However, this must be
traded against the computational cost of extracting conflicts, since generating
the complete set of minimal conflicts is NP Hard. Extract-State-Conflict must
return at least one conflict when called with a decision state α that is inconsis-
tent. This can always be performed efficiently, since α may always be returned
as a conflict, for example, if no other conflict can be extracted efficiently.

The most common way to extract a conflict, as mentioned in Section 3.2, is
based on local constraint propagation. Assignments α are propagated using
a local inference rule, such as unit propagation, while maintaining a depen-
dency trace of the deductions performed. When an inconsistency is derived,
the dependency trace is examined to extract the subset of α that was used to
derive the inconsistency. For example, Figure 5 shows the dependency traces
for generating Conflicts 1 and 2, respectively. The dependencies in Figure 7
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show how O1 = G, O2 = G, and A2 = G were used to detect the symptom
at F.

The implementation discussed in this paper uses propositional clauses as con-
straints. Consistent? is implemented using a variant of the DPLL satisfiability
procedure [41] that uses Boolean Constraint Propagation (BCP) [44–46,43] to
perform unit propagation incrementally. BCP maintains dependencies during
propagation. Extract-State-Conflict uses these dependencies to quickly extract
a single conflict when an inconsistency is found. A range of alternatives are
possible. For example, a prime implicant algorithm, such as an ATMS[47],
might be used to identify one or more subsets of α that, together with the
CSP constraints, entail False. These algorithms are exponential in the worst
case. It is an open question as to whether or not the benefit of discovering
additional conflicts can out weight the added computational cost.

The function Eliminate-Redundant-Conflicts(Γ) eliminates conflicts that are
redundant in the sense that their removal doesn’t alter the set of states that
manifest one or more of the conflicts in Γ. Note that there does not always
exist a unique subset of Γ that is irredundant. Also note that identifying an
irredundant set of conflicts is a common task studied in the circuit synthe-
sis literature, and is not tractable in the general case. However, Eliminate-
Redundant-Conflicts does not need to eliminate all redundant conflicts, since
the existence of redundant conflicts does not alter the solution, only the solu-
tion time. It is an open empirical question as to whether or not redundant con-
flicts speed up or slow down the process. It is, however, the case that including
a conflict that is a strict superset of another conflict offers no computational
benefit, hence, our implementation of Eliminate-Redundant-Conflicts simply
eliminates these superset conflicts.

B Search Trees for Optimal CSPs

Below are functions for constructing and examining a search tree for a CSP,
called an assignment tree, introduced in Section 4. These functions are used
by Constraint-Based-A* (Figure 12), Next-Best-Kernel (Figure 18) and Next-
Best-State-Resolving-Conflicts of Conflict-Directed-A* (Figure 22).

function Make-Tree-Node(assignment, parent)
return 〈assignment, parent〉

function Root?[node]
returns True if node is the root of the search tree.
if Assignment[node] = {}

then return True
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else return False

function State[node]
returns the (partial) assignments along the path from root to node.
if Root?[node]

then return {}
else return Assignment[node] ∪ State[Parent[node]]

end

function Theta[Problem]
returns the initial state of the search, which is the empty assignment.
return {}

C Heuristic Cost of an Optimal CSP

The following are function definitions for cost g and heuristic cost h for an opti-
mal CSP. These functions are used by Constraint-Based-A* (Figure 12), Next-
Best-Kernel (Figure 18) and Next-Best-State-Resolving-Conflicts of Conflict-
Directed-A* (Figure 22).

function g[problem](node)
returns the cost of node’s state.
if Root?[node]
then return IG[problem]
else {yi = vj} = Assignment[node]

return G[problem](gi(vj), g[problem](Parent[node]))

function h[problem](node)
returns the best cost to complete node’s state.
unassigned ← all variables not assigned in State[node]
return Gmin[problem](unassigned)

function Gmin[problem](variables)
returns the minimum cost of all assignments to variables.
if variables = {}
then return IG[problem]
else yi = one of variables

remaining = variables - {yi}
return G[problem](gmin[problem](yi), Gmin[problem](remaining))

function gmin[problem](yi)
returns the minimum attribute cost for yi.
return minvij∈Di[problem] gi[problem](vij)
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D Constituent Kernels

The procedure for generating Constituent-Kernels of a set of conflicts, Γ,
is provided below, and directly follows from Proposition 2. Its worst case
computational cost is negligible, on the order of

∑
Dxi

∈Dx
|Dxi|. Constituent-

Kernels is used by functions Next-Best-Kernel (Figure 18) and Next-Best-
State-Resolving-Conflicts (Figure 22).

function Constituent-Kernels(Γ)
returns a set whose elements are sets of kernels for each conflict in Γ.
constituent-kernels ← {}
for γ in Γ

Kγ ← {}
for (xi = vij) in γ

Kγ ← Kγ ∪ {{xi = vik}|vik ∈ Dxi, vik 6= vij}
constituent-kernels ←

Add-To-Minimal-Sets(constituent-kernels, Kγ)
return constituent-kernels

function Add-To-Minimal-Sets(Set, S)
returns Adds S to Set and removes any element of S that is a

superset of another element.
for E in Set

if E ⊂ S
then return Set
else if S ⊂ E

then Set ← remove E from Set
finally return Set ∪ {S}
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