AUTONOMOUS DIAGNOSIS BASED ON SOFTWARE-EXTENDED BEHAVIOR MODELS

Tsoline Mikaelian, Brian C. Williams, and Martin Sachenbacher

Massachusetts Institute of Technology
Computer Science and Atrtificial Intelligence Laboratory
32 Vassar St. Room 32-275, Cambridge, MA 02139
{tsoline, williams, sachenba} @mit.edu

ABSTRACT

Model-based diagnosis has traditionally operated on
hardware systems. However, in most complex systems
today, hardware is augmented with software functions
that influence the system’s behavior. In this paper hard-
ware models are extended to include the behavior of
associated embedded software, resulting in more com-
prehensive diagnoses. Capturing the behavior of soft-
ware is much more complex than that of hardware due
to the potentially enormous state space of a program.
This complexity is addressed by using probabilistic, hi-
erarchical, constraint-based automata (PHCA) that allow
the uniform and compact encoding of both hardware and
software behavior. We introduce a novel approach that
frames PHCA-based diagnosis as a soft constraint opti-
mization problem over a finite time horizon. The problem
is solved using efficient, decomposition-based optimiza-
tion techniques. The solutions correspond to the most
likely evolutions of the software-extended system.

1. INTRODUCTION

Model-based diagnosis of devices has traditionally oper-
ated on hardware systems (Ref. 1, 2). For instance, given
an observation sequence, the Livingstone (Ref. 3) diag-
nostic engine estimates the state of hardware components
based on hidden Markov models that describe each com-
ponent’s behavior in terms of nominal and faulty modes.
Researchers at the other end of the spectrum have applied
model-based diagnosis to software debugging (Ref. 4, 5).
This paper explores the middle ground between the two,
in particular the monitoring and diagnosis of systems
with combined hardware and software behavior.

Many complex systems today, such as spacecraft, ro-
botic networks, automobiles and medical devices consist
of hardware components whose functionality is extended
or controlled by embedded software. Examples of de-
vices with software-extended behavior include a commu-

nications module with an associated device driver, and an
inertial navigation unit with embedded software for tra-
jectory determination. The embedded software in each
of these systems interacts with the hardware components
and influences their behavior. In order to correctly esti-
mate the state of these devices, it is essential to consider
their software-extended behavior.

As an example of a complex system, consider vision-
based navigation for an autonomous rover exploring the
surface of a planet. The camera used within the naviga-
tion system is an instance of a device that has software-
extended behavior: the image processing software em-
bedded within the camera module augments the function-
ality of the camera by processing each image and deter-
mining whether it’s corrupt. A sensor measuring the cam-
era voltage may be used for estimating the physical state
of the camera. A hardware model of the camera describes
its physical behavior in terms of inputs, outputs and avail-
able sensor measurements. A diagnosis engine such as
Livingstone that uses only hardware models will not be
able to reason about a corrupt image. The embedded
software provides additional information on the quality
of the image that is essential for correctly diagnosing the
navigation system. To see why this is the case, consider
a scenario in which the camera sensor measures a zero
voltage. Based solely on hardware models of the camera,
the measurement sensor and the battery, the most likely
diagnoses will include camera failure, low battery volt-
age and sensor fault. However, given a software-extended
model of the camera that models the process of obtaining
a corrupt image, the diagnostic engine may use the in-
formation on the quality of the image. Knowing that the
processed image is not corrupt, the most likely diagnosis
that the measurement sensor is broken may be deduced.

The above scenario demonstrates that a diagnostic sys-
tem for complex systems with software-extended behav-
ior must: 1) monitor the behavior of both the hardware
and its embedded software so that the software state can
be used for diagnosing the hardware, and 2) reason about
the system state given delayed symptoms. An instance of
a delayed symptom is the quality of the image determined

by the camera software after it has completed all stages
of image processing.

In this paper we introduce a novel model-based moni-
toring and diagnostic system that operates on software-
extended behavior models, to meet requirements 1) and
2) listed above. In contrast to previous work on model-
based software debugging (Ref. 5, 6), the purpose of
this work is to leverage information within the embed-
ded software to refine the diagnoses of physical systems.
As such, we are not addressing the problem of diagnos-
ing software bugs. Without loss of generality, we assume
that software bugs discovered at runtime are handled by
a separate exception handling mechanism.

First, we address modeling issues. Capturing the behav-
ior of software is much more complex than that of hard-
ware due to the hierarchical structure of a program and
the potentially large number of its execution paths. We
address this complexity by using probabilistic, hierarchi-
cal, constraint-based automata (PHCA) (Ref. 7) that can
uniformly and compactly encode both hardware and soft-
ware behavior. Building upon our previous work, we in-
troduce a novel capability for diagnosing systems with
software-extended behavior in the presence of delayed
symptoms. While Livingstone-2 (L2) (Ref. 8) handles
delayed symptoms for diagnosing hardware systems, our
approach generalizes this capability to software-extended
behavior by posing the PHCA-based diagnosis problem
over a finite time horizon. We frame diagnosis as con-
straint optimization problem based on soft constraints
that encode the structure and semantics of PHCA. The
problem is solved using efficient, decomposition-based
optimization techniques, resulting in the most likely di-
agnoses of the software-extended system.

2. MODELING
HAVIOR

SOFTWARE-EXTENDED BE-

Figure 1 shows the software-extended camera module for
the vision-based navigation scenario described above. In
this example, the failure probabilities for each of the bat-
tery, camera and sensor are 10%, 5% and 1% respectively.
A typical behavioral model of the camera is shown on the
left of Figure 2. The camera can be in one of 3 modes:
on, off or broken. The hardware behavior in each of the
modes is specified in terms of inputs to the camera such as
the power and the behavior of camera components such
as the shutter. The broken mode is unconstrained in order
to accommodate novel types of failures. Mode transitions

Failure Probabilit

10% [Battery
Camera 5% Camera

1% Sensor

Image
processing

Figure 1. Camera Module for Navigation System

(Power_in =
zero) AND
(shutter =

(Power_in =
nominal) AND
(shutter = open)

Nommal Nommal

B attery=low

’éd tW&am =Broken
o
o
 cmd=turnOn,” c. am= Bro Senqor—Broken
< g =
0.05 ™ 0.05 =
: 9 < | SensorBroken -
0 1

Observe

Power On and -
Sensor

Take Picture

voltage = zero

Figure 2. left: Behavior Model for the Camera Component.
right: Most likely diagnoses of the camera module based on
hardware component models. Nominal state = no failures.

Nommal Nominal Batlery—low Sensor=Broken
([]
a7 Ba tery 1
8 'Cam—Broken
o
&
= Cam Broke Sensot*Broken Battery=low
=
< [J
ScnSOﬁBrokcn ® Cam=Broken _
0 1 2 6 Time

Observe

Power On and .
Sensor

T'ake Picture

S/W behavior =>
Image not corrupt

voltage = zero

Figure 3. Most likely diagnoses of the camera module based
on the software-extended behavior models.

can occur probabilistically, or as a result of issued com-
mands. The battery and the sensor components can be
modeled in a similar way. For the scenario introduced
above, the most likely diagnoses of the module can be
generated based on the hardware models alone, as shown
on the right of Figure 2. However, the image process-
ing software provides extended functionality that is not
described by the model in Figure 2. The specification
of the embedded software can offer important evidence
that substantially alters the diagnosis. A sample specifi-
cation of the behavior of the image processing software
may take the following form:

If an image is taken by the camera, process it to
determine whether it’s corrupt. If algorithm X
determines that the image is corrupt, discard it
and reset the camera; retry until a non-corrupt
image is obtained for navigation. Once a high
quality image is stored, wait for new image re-
quest from navigation unit.

Such a specification abstracts the behavior of the image
processing software implemented in an embedded pro-
gramming language such as Esterel (Ref. 9) or RMPL
(Ref. 7). For the above scenario, the behavior of the em-
bedded software provides diagnostic information neces-
sary to correctly estimate the state of the camera module.
Given that the image is not corrupt, the possibility that
the camera is broken becomes very unlikely. This is il-
lustrated in Figure 3.

Time

Unlike a hardware component that can typically be de-
scribed by a single mode of behavior, monitoring soft-
ware behavior necessitates tracking simultaneous hierar-
chical modes. A modeling formalism that will allow the
specification of software behavior must support: 1) full
concurrency for modeling sequential and parallel threads
of behavior, 2) conditional behavior, 3) iteration, 4) pre-
emption, 5) probabilistic behavior for modeling uncer-
tainty and 6) propositional logic constraints for specify-
ing co-temporal relationships among variables. The fol-
lowing section reviews the modeling framework for han-
dling these requirements.

3. PROBABILISTIC, HIERARCHICAL CON-
STRAINT AUTOMATA (PHCA)

Probabilistic, hierarchical, constraint-based automata
(PHCA) were introduced in (Ref. 7) as a compact
encoding of Hidden Markov Models (HMMs). These
automata have the required expressivity to uniformly
model both hardware and software behavior.

Definition 1 (PHCA)
A PHCA is atuple < X, Pg, 11, O, C, Pr >, where:

3 is a set of locations, partitioned into primitive lo-
cations %, and composite locations >J.. Each com-
posite location denotes a hierarchical, constraint au-
tomaton. A location may be marked or unmarked.
A marked location represents an active branch.

e P5(0©;) denotes the probability that ©; C X is the
set of start locations (initial state). Each composite
location [; C Y. may have a set of start locations
that are marked when [; is marked.

o Il is a set of variables with finite domains. C[II] is
the set of all finite domain constraints over II.

e O C II is the set of observable variables.

e (C': 3 — CIII] associates with each location [; C ¥
a finite domain constraint C'(1;).

e Pr(l;), for each I; C X, is a probability distribu-
tion over a set of transition functions 7'(;) : Ez(,t) X
C[m® — 95 Each transition function maps a
marked location into a set of locations to be marked

at the next time step, provided that the transition’s
guard constraint is entailed.

Definition 2 (PHCA State)
The state of a PHCA at time ¢ is a set of marked locations
called a marking m®) c ¥.

Figure 4 shows a PHCA model of the camera module in
Figure 1. The ”On” composite location contains three

(Power_in = zero)
AND

(Power_in = nominal) (Shutter = moving)

(shutter = closed)
—

(result(image, Algorithm
X) = corrupt)

TurnOn

Reset|

TurnOff

\\\o.os
/ t i
_~70.05
Broken] 0.001 ,\
/ 0.999
| 0.001 , \
| 0.999 |1

‘ Unconstrained ‘ shutter = open

Figure 4. PHCA model for the camera/image processing mod-
ule. Circles represent primitive locations, boxes represent com-
posite locations and small arrows represent start locations.

subautomata that correspond to primitive locations “Ini-
tializing”, ’Idle” and “Taking Picture”. Each composite
or primitive location of the PHCA may have behavioral
constraints. The behavioral constraint of a composite lo-
cation, such as (power _in = nominal) for the ”On” lo-
cation, is inherited by each of the subautomata within that
composite hierarchy. In addition to the physical camera
behavior, the model incorporates qualitative software be-
havior such as processing the quality of an image. Fur-
thermore, based on the image quality, the possible cam-
era configurations may be constrained by the embedded
software. For example, if the image is determined to be
corrupt, the software attempts to reset the camera. This
restricts the camera behavior to transition to the Initializ-
ing location.

Recall that Figure 3 shows the most likely state trajecto-
ries based on the software-extended PHCA model. At
time step 2, as the sensor measurement indicates zero
voltage, the most likely diagnosis trajectories are 1) bat-
tery = low with 10% probability, 2) camera = broken with
5% probability and 3) sensor is broken with 1% probabil-
ity. For the first trajectory that indicates that the battery
is low, the power to the camera is not nominal, hence the
camera will stay in the Off” location. For the second tra-
jectory, the camera will be in the "Broken” location. For
the third trajectory that indicates that the sensor is bro-
ken, the power input to the camera will be unconstrained,
and hence the PHCA state of the camera may include a
marking of the ”On” location. Although the evolutions
of this third trajectory have an initially low probability of
1%, at time step 6 they become more likely than the oth-
ers as the embedded software determines that the image
is valid. The reason is because the second most likely tra-
jectory at time 2 with camera = "Broken” location marked
has a 0.001 probability of generating a valid image, thus
making the probability of that trajectory 0.005% at time
6. This latter trajectory is less probable than those trajec-
tories stemming from the sensor being broken with 1%
probability. Similarly, the first trajectory with battery =

(result(image, Algorithm
X = not corrupt)

low and camera = Off becomes less likely at time step 6
as there is 0.001% probability of processing a valid image
while the camera is ”Off”.

PHCA models have the following advantages that support
their use for diagnosing systems with software-extended
behavior. First, since HMMs may be intractable, PHCA
encoding is essential to support real-time, model-based
deduction. Second, PHCAs provide the expressivity to
model the behavior of embedded software by satisfying
requirements 1)-6) above (Ref. 7). Third, the hierarchical
nature of the automata enables modeling of complex con-
current and sequential behaviors. As an example of con-
currency, the PHCA in Figure 4 allows the simultaneous
marking of the ”On” location of the camera, as well as
the “Initializing”, ’Idle”, or ”Taking Picture” locations.
This is in contrast to diagnosis based on non-hierarchical
models that can estimate each component to be in a sin-
gle mode of operation. State estimates of components
may be required at different levels of granularity. For ex-
ample, an image-based navigation function may require
high level camera state estimates such as ”’On” or "Off”.
On the other hand, a function that coordinates imaging
activities may need more detailed camera state estimates
such as “Initializing” or “Taking Picture”. Simultaneous
marking of several camera locations such as ”On” and
“Initializing”, allows their use within functions that re-
quire estimates at different levels of granularity.

The following sections introduce a novel diagnostic sys-
tem based on the PHCA modeling framework. We first
introduce our approach for diagnosis over a single time
step, and then extend it to handle delayed symptoms. Our
approach results in a capability for diagnosing systems
with software-extended behavior in the presence of de-
layed symptoms. Furthermore, our formulation of the di-
agnosis problem enables the use of decomposition tech-
niques (Ref. 10) for efficient solution extraction.

4. DIAGNOSIS AS CONSTRAINT OPTIMIZA-
TION BASED ON PHCA MODELS

We frame diagnosis based on PHCA models as a soft
constraint optimization problem (COP) (Ref. 11). The
COP encodes the PHCA models as probabilistic con-
straints, such that the optimal solutions correspond to the
most likely PHCA state trajectories. The soft constraint
formulation allows a separation between probability
specification and variables to be solved for. Thus, we
can associate probabilities with constraints that encode
transitions, while solving for state variables.

Definition 3 (Constraint Optimization Problem)

A constraint optimization problem (COP) is a triple
(X,D,F) where X = {X,..,X,} is a set of
variables with corresponding set of finite domains
D = {Dy,...D,}, and F = {Fy,...,F,} is a set of
preference functions F; : (S;, R;) — C; where (S;, R;)
is a constraint and C; is a set of preference (or cost)

values. Each constraint (S;, R;) consists of a scope
S; = {Xi1,..., X} representing a subset of variables
X, and a relation R; C D;; X ... X D; on S; that
defines all tuples of values for variables in S; that are
compatible with each other. Each preference function
F; maps the tuples of (S;, R;) to values in C;. The
solution to variables of interest (solution variables) Y
C X is an assignment to Y that is consistent with all
constraints, has a consistent extension to all variables
X, and minimizes (or maximizes) a global objective
function defined in terms of preference functions Fj;.

Given a PHCA state at time ¢ and an assignment to ob-
servable and command variables in II (see Definition 1)
at times ¢ and ¢ + 1, in order to estimate PHCA state at
time ¢ + 1, we encode both the structure and execution
semantics of the PHCA as a COP, consisting of:

e Set of variables Xy, U II U X g e., Where Xy =
{L1,...,L,} is a set of variables that correspond to
PHCA locations [; € ¥, II is the set of PHCA vari-
ables, and Xp,c. = {E1,..., E,} is a set of auxil-
iary variables used for encode the execution seman-
tics of the PHCA.

o Set of finite, discrete-valued domains D x, U Dy U
Dx,,..., where Dx,, = {Marked, Unmarked} is
the domain for each variable in Xy, Dy is the set of
domains for PHCA variables II, and Dg,.. is a set
of domains for variables X g cc.

e Set of constraints R that include the behavioral con-
straints associated with locations within the PHCA,
as well as encoding of the PHCA execution seman-
tics.

e Preference functions F' in the form of probabilities
associated with tuples of constraints 2. Tuples of
hard constraints that are disallowed by the constraint
are assigned probability 0.0, while the tuples al-
lowed by the constraint are assigned probability 1.0.
Tuples of soft constraints are mapped to a range of
probability values based on the PHCA model. These
probability values reflect the probability distribution
Po of PHCA start states and probabilities associated
with PHCA transitions Pr.

o The optimal solution to the COP is an assignment
to solution variables X that represent the state of
the PHCA, while maximizing the probability of the
transitions that lead to that state from the previous
time step. This corresponds to a state assignment
that maximizes the product of the probabilities of
the enabled constraint tuples.

A key to framing PHCA-based diagnosis as COP is the
formulation of the constraints R that capture the ex-
ecution semantics of the PHCA. PHCA execution in-
volves determining the entailment of behavioral con-
straints, identifying enabled transitions from a current
PHCA state, and taking those transitions to determine

the next state. Referring back to the PHCA example in
Figure 4, if we assume that at time t the PHCA state
is < On < Idle >> and that the transition guard
constraint (command = TakePicture) is entailed,
and at time t+1 the behavioral constraint (shutter =
moving) of the transition’s target location is entailed,
then the PHCA state at time t+1 will be < On <
TakingPicture >>. To encode entailment of con-
ditions such as (command = TakePicture), a vari-
able Er is introduced with domain {Entailed, Not —
Entailed} to denote whether the transition guard con-
dition is entailed. Entailment of a condition is then for-
mulated as a COP constraint that allows the assignment
Er = Entailed to be associated with tuples that list all
possible assignments to the variable command that entail
the condition (command = TakePicture). Entailment
constraints are generated for all locations that have be-
havioral constraints and for all transitions that have guard
constraints.

The following example on the left of Figure 5 shows a
probabilistic choice between two transitions for a sec-
tion of the PHCA in Figure 4. In order to encode this
probabilistic choice, we first introduce a location variable

Xg])pf for time t, with domain {Marked, Unmarked}.

Then auxiliary variables Eéw? and Eéf% with domain

{Enabled, Disabled} are introduced for transitions T1
and T2 respectively.

Ep® | Er,® | Prob.

Xog"
0.05 Marked | Enabled | Disabled | 0.95
T \%) T 2 Broken Marked | Disabled | Enabled | 0.05

Unmarked | Disabled | Disabled 1.0

Figure 5. left: PHCA with two probabilistic transitions. right:
Probabilistic transition constraint.

The COP constraint that encodes the probabilistic choice
among the two transitions T1 and T2 is formulated logi-
cally:

XSOk = Marked = 3 T € {T1,T2} | : By
Enabled A (v T' € {{T1,T2} — T} | : E{Y) =
Disabled)) \ Xg}f =Unmarked =T € {T1,T2}
|- BYY) = Disabled)

This logical formula is compiled into a set of tuples
with associated probability values, as shown in Figure 5
(right). The tuples are mapped to probability values by
the following preference function:

o _ | Prob(Ty) if AT : EY) = Enabled)
T 1.0 otherwise

The above constraint identifies the enabled transition, but
does not encode taking the transition. In general, the fol-
lowing constraint encodes taking enabled transitions, un-
less the behavior constraint of the transition’s target loca-
tion is not entailed:

~VLeX| (@371 e {TTarget(T) = L} |
Eg_l) = FEnabled) A Behavior(Lt) = FEntailed) =
Xg) = Marked)

where E; represents a transition variable, Behaviory, is
an entailment variable for the behavior constraints of lo-
cation L U its composite parent if L is within a hierarchy,
and X, is the location variable of L. The constraint is in-
stantiated for each location of the PHCA, as indicated by
VILeX.

Some semantic rules apply to PHCA hierarchies. For
example, when a composite location becomes marked,
all of its start locations become marked. Since “Initial-
izing” is a start location of the composite ”On” loca-
tion, a PHCA in state < Off > may transition to state
< On < Initializing >>. Furthermore, a compos-
ite location should be marked if any of its subautomata
are marked. The COP constraints must correctly capture
such PHCA semantics and encode mutual exclusions to
avoid interference and conflicting effects among the con-
straints. For brevity, the complete encoding of constraints
is not presented.

The formulation of diagnosis as COP is performed of-
fline. Given a PHCA, we have implemented a compiler
that automatically generates the corresponding COP. The
COP is then used in an online solution phase by dynami-
cally updating it to incorporate constraints on new obser-
vations and issued commands. The solutions to the COP
can be generated up to a given probability threshold us-
ing a constraint optimization solver for soft constraints
(Ref. 12). The solutions incorporate the probability dis-
tribution on the initial states as encoded by the COP. The
most likely solutions generated at a time step t dynami-
cally update the COP to constrain the set of start states for
solving the COP at time step t+1. For example, as Fig-
ure 3 shows, state estimates at time 2 may only be reached
through those at time 1. Thus limiting the number of state
trajectories maintained at each time step has implications
for diagnosing faults that manifest delayed symptoms.

5. DIAGNOSIS WITH DELAYED SYMPTOMS

Ideally, diagnosis will maintain a complete probability
distribution of all possible system states. However, main-
taining all possible state trajectories at each time step is
intractable because of exponential growth in state space.
Thus at every time step a limited number of trajectories
are typically maintained. A potential problem with this
approach is that it may miss the best diagnosis if a trajec-
tory through a pruned state that is initially very unlikely
becomes very likely after additional evidence. Figure 6
illustrates this situation for the camera module, where the
initially unlikely state (Sensor = Broken) is pruned,
resulting in the best diagnosis to be unreachable when
additional evidence is available at time 6.

Dealing with delayed symptoms is particularly impor-
tant for diagnosing systems with software-extended be-

Nominal Nominal Sensor=Broken

—————————>
® o Best state
missed

Battery=low
—»@ Battery=low

—
—® Cam=Broken

S/W behavior =>
Image not corrupt

Figure 6. Missed diagnosis as a result of tracking a limited
number of trajectories (K -Best)

Anpiqeqoid

X =
Sensor=Broken
1

0

Power On and Take Picture

havior, due to typically delayed observations associated
with software processing. Livingstone-2 (L2) (Ref. 8)
addresses the problem of delayed symptoms for diagnos-
ing hardware systems. We generalize the L2 capability to
PHCA-based diagnosis.

We extend our COP formulation of PHCA-based diagno-
sis to provide flexibility for regenerating the most likely
diagnoses over a finite time horizon rather than a single
previous step. Thus, we frame the COP over a finite time
horizon (NN-stages) and leverage the N-stage history of
observations and issued commands to generate the most
likely diagnosis trajectories over the horizon. This in-
volves augmenting the COP in the previous section to in-
clude model variables and constraints for each time step
within the N-stage horizon. The solutions to the COP be-

come assignments to location variables X g), te {0..N},
representing PHCA state trajectories that have maximum
probability within the horizon. This probability corre-
sponds to the product of transition probabilities enabled
within that trajectory, multiplied by the probability of the
initial state of the trajectory. As time progresses during
the online solution phase, the N-stage horizon is shifted
from (t - t+ N)to(t+1 — t+ N + 1) and the
COP over the new horizon is dynamically updated by
constraining its start states at time t+1 to match the so-
lutions from the previous iteration. This reformulation
still limits the number of trajectories tracked to a given
probability threshold, as described in the previous sec-
tion. Referring to Figure 6, if we consider a time hori-
zon (0 — 6), state trajectories will be regenerated start-
ing from the (INominal) state at time 0. Therefore, even
though the number of trajectories is limited, the trajectory
ending at state (Sensor = Broken) at time 6 will have
the highest probability based on the delayed observation.
Consequently, the state (Sensor = Broken) at time 2
will be maintained because it is part of the most likely
trajectory at time 6.

Decreasing the probability threshold for the trajectories
being tracked solves the delayed-symptom problem by
maintaining a larger number of states at each time step.
However, for a system with many combinations of similar
failure states with high probability, the number of trajec-
tories maintained will have to be very large in order to be
able to account for a delayed symptom that supports an
initially low probability state. For such systems, consid-
ering even a small number of previous time steps gives

enough flexibility to regenerate the correct diagnosis.

6. IMPLEMENTATION AND DISCUSSION

The PHCA model-based diagnosis capability, described
above, has been implemented in C++. Figure 7 shows the
offline compilation phase and the online solution phase

of the diagnosis process.

S/W specs

Dynamic update Optimal

PHCA N-Smge. cop
H/W models Constraint of COP; Constraint
Graph Ly Horizon shifting || Solver

y
SN
Decomposition

(code)

*

ot

Offline compilation phase
Figure 7. Process diagram for PHCA-based diagnosis

In the offline phase, the /N-Stage COP is generated auto-
matically, given a PHCA model and parameter /N. To en-
hance the efficiency of the online solution phase, tree de-
composition (Ref. 13) is applied to decompose the COP
into independent subproblems. This enables backtrack-
free solution extraction during the online phase (Ref. 10).
In our implementation, the COP is decomposed using a
tree decomposition package that implements bucket elim-
ination (Ref. 14).

The online monitoring and diagnosis process uses both
the COP and its corresponding tree decomposition. The
online phase consists of a loop that shifts the time hori-
zon, updates and solves the COP at each iteration. The
COP is updated by incorporating new observations and
commands, and constraining the start states to track the
trajectories obtained within the previous horizon. At each
iteration of the loop, the updated COP is solved using
an implementation of the decomposition-based constraint
optimization algorithm in (Ref. 12) that can generate di-
agnoses up to a given probability threshold.

For the camera model with N = 2, the COP has ~ 150
variables and ~ 100 constraints and is solved online in
~ 1 sec, resulting in more comprehensive diagnoses than
previous hardware models. Future work includes eval-
uating the efficiency of the COP formulation using sev-
eral complex scenarios, optimizing the COP formulation
by minimizing the number of variables and constraints
generated, investigating the optimal size of the diagnosis
horizon and its relationship to the number of trajectories
tracked.

7. ACKNOWLEDGMENTS

This research is sponsored in part by NASA CETDP un-
der contract NNAO4CK91A and by the DARPA SRS pro-
gram under contract FA8750-04-2-0243.

Online solution phase

REFERENCES

1.

10.

11.

12.

13.

14.

de Kleer, J. and Williams, B. C. Diagnosing mul-
tiple faults. Artificial Intelligence, 32(1):97-130,
1987.

Dressler, O. and Struss, P. The consistency-based
approach to automated diagnosis of devices. Prin-
ciples of Knowledge Representation, pages 267—
311, 1996.

Williams, B. C. and Nayak, P. A model-based
approach to reactive self-configuring systems. In
Proc. AAAI-96, pages 971-978, 1996.

Console, L., Friedrich, G., and Dupre, D. T.
Model-based diagnosis meets error diagnosis in
logic programs. In Proc. IJCAI-93, 1993.

Mayer, W. and Stumptner, M. Approximate mod-
eling for debugging of program loops. In Proc.
DX-04, 2004.

Grosclaude, 1. Model-based monitoring of
component-based software systems. In Proc. DX-
03, 2003.

Williams, B. C., Chung, S., and Gupta, V. Mode
estimation of model-based programs: monitoring
systems with complex behavior. In Proc. IJCAI-
01, 2001.

Kurien, J. and Nayak, P. Back to the future for
consistency-based trajectory tracking. In Proc.
AAAI-00, 2000.

Berry, G. and Gonthier, G. The esterel pro-
gramming language: design, semantics and im-
plementation. Science of Computer Programming,
19(2):87-152, Nov. 1992.

Dechter, R. Constraint Processing. Morgan Kauf-
mann, 2003.

Schiex, T., Fargier, H., and Verfaillie, G. Val-
ued constraint satisfaction problems:hard and easy
problems. In Proc. IJCAI-95, 1995.

Sachenbacher, M. and Williams, B. C. Diagno-
sis as semiring-based constraint optimization. In
Proc. ECAI-04, 2004.

Gottlob, G., Leone, N., and Scarcello, F. A com-
parison of structural csp decomposition methods.
Artificial Intelligence, 124(2):243-282, 2000.

Kask, K., Dechter, R., and Larrosa, J. Unifying
cluster-tree decompositions for automated reason-
ing. Technical report, U. of California at Irvine,
2003.

