
A Reactive Model-based Programming Language

for Robotic Space Explorers

Michel Ingham, Robert Ragno, Brian Williams
MIT Space Systems Laboratory / Artificial Intelligence Laboratory

Cambridge, MA 02139
{ingham, rjr, williams}@mit.edu

Keywords model-based autonomy, model-based
programming, execution, synchronous programming,
automated reasoning

Abstract
Model-based autonomous agents have emerged re-
cently as vital technologies in the development of
highly autonomous reactive systems, particularly in
the aerospace domain. These agents utilize many
automated reasoning capabilities, but are compli-
cated to use because of the variety of languages em-
ployed for each capability. To address this problem,
we introduce model-based programming, a novel ap-
proach to designing embedded software systems. In
particular, we introduce the Reactive Model-based
Programming Language (RMPL), which provides a
framework for constraint-based modeling, as well as
a suite of reactive programming constructs. To con-
vey the expressiveness of RMPL, we show how it cap-
tures the main features of synchronous programming
languages and advanced robotic execution languages.
This paper focuses on using the rich behavior mod-
eling of RMPL to provide sequencing and robotic
execution capabilities for spacecraft.

1 Introduction
Several highly autonomous aerospace systems have
been recently deployed, and more are currently un-
der development. Examples include NASA’s Deep
Space One (DS1) spacecraft [1], the next genera-
tion of space telescopes [2], and Mars rover pro-
totypes [3]. These systems integrate many of the
tools of AI research for automated reasoning: plan-
ning and scheduling, task decomposition execution,
model-based reasoning and constraint satisfaction.

Though these technologies show great promise,
there is a likely barrier to the widespread deployment
of this level of autonomy: the numerous software
tasks running on a spacecraft processor are generally
encoded using a variety of modeling and program-
ming languages. These tasks include sequencing,

system monitoring, system reconfiguration, planning
and low-level control. To illustrate this problem,
consider the current state-of-the-art in model-based
autonomy software, Remote Agent (RA). Flight-
validated on the DS1 spacecraft in 1999, RA is
composed of three primary components: a Plan-
ner/Scheduler, a Smart Executive, and a Mode Iden-
tification and Reconfiguration module known as Liv-
ingstone.

The complexity of software interfaces was identi-
fied as a key challenge encountered during the inte-
gration of the RA and the flight software [4]. Fur-
thermore, each of the three component technolo-
gies requires a distinct knowledge representation, ex-
pressed using different modeling languages. While
such heterogeneous representations have a number
of benefits, including the ability for different soft-
ware components to reason at different levels of ab-
straction, they also raise several difficulties. Most
significant are the possibility for models to diverge,
and the need to duplicate knowledge representation
efforts. One conclusion from the RA design effort
is the desire to head towards a unified representa-
tion of the spacecraft, while maintaining the ability
to accommodate the complexities of the spacecraft
domain, and the capacity for knowledge abstraction
[5].

To address this desire, we introduce the notion
of model-based programming, a novel approach to
designing embedded software systems. We also in-
troduce a language for encoding model-based pro-
grams, the Reactive Model-based Programming Lan-
guage (RMPL). RMPL combines constraint-based
modeling with reactive programming constructs, and
offers a simple model of computation in terms of hi-
erarchical constraint-based automata. Systems that
monitor, diagnose and plan using RMPL are dis-
cussed in [6] and [7]. The goal of this paper is
to show how RMPL leverages the features of both
embedded synchronous programming languages and
advanced robotic execution systems, to provide a

framework for robust spacecraft sequencing. We also
show how RMPL forms the basis for a model-based
executive providing integrated monitoring, fault pro-
tection and sequencing capabilities.

In Section 2, we first introduce the model-based
programming paradigm. The RMPL language is
then introduced in Section 3, by describing its prin-
cipal constructs and its underlying model of com-
putation. In Section 4, we discuss the compilation
and execution of model-based programs, and show
how a model-based executive can be used to enable
robust spacecraft autonomy. To convey the expres-
siveness of RMPL, in Section 5 we show how it cap-
tures the main features of synchronous programming
languages and advanced robotic execution languages.
Finally, we conclude by highlighting future work that
will allow RMPL to be applied to other tasks in au-
tomated reasoning.

2 Model-based Programming
In this section we introduce the notion of model-
based programming as an approach to writing soft-
ware for embedded reactive systems. Figure 1 il-
lustrates the model-based programming paradigm,
as embodied in a model-based executive. The un-
derlying principle is that control programs can be
written by asserting and checking states which may
be “hidden”, i.e. not directly controllable or observ-
able, rather than by operating on observable and
control variables. Such a control program is input
to a sequencing engine, for onboard execution. An
underlying mode estimation and reactive planning
layer uses a model of the system to deduce the sys-
tem state from the observables, and to figure out
how to achieve a specified goal state. This deduc-
tive layer can reason about states of physical compo-
nents in the system, or abstract states representing
subsystem-level behavior.

Model-based programming shares some common
architectural themes with the Mission Data System
(MDS), under development at the Jet Propulsion
Laboratory [8]. In particular, both concepts advo-
cate that system state and models form the founda-
tion for monitoring and control. Model-based pro-
gramming concentrates on providing a programming
language centered on hidden state, and seamlessly in-
corporating powerful model-based deductive engines
into the program interpreter.

Model-based programming offers the following ad-
vantages over traditional approaches to embedded
software development:

Abstraction - By abstracting away the details of
how a particular state is inferred or achieved, the sys-
tem engineer’s knowledge of spacecraft behavior (e.g.
as represented in StateCharts [9]) can be converted

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer
State

estimates

System
Model

Control
Program

Deductive
Mode Estimator &
Reactive Planner

Commands

Configuration
goals

Observations
Flight System Control

RT Control Layer

Onboard Sequencer
State

estimates

System
Model

Control
Program

Figure 1: Architecture for a Model-based Executive

into flight code in a more straightforward manner.
This is because it is easier to specify a desired state
than the sequence of control actions needed to reach
it.
Powerful Inference Engines - The model-based
programming paradigm leaves the challenging tasks
of state estimation and state achievement in the
hands of powerful model-based deduction engines,
such as those introduced in [10] and [11]. Such en-
gines offer more flexibility and robustness than the
traditional rule-based engines commonly deployed in
flight software.
Modularity - Because of its use of modular sys-
tem models, flight software written as a model-based
program can accommodate component-level modifi-
cations late in the spacecraft design cycle. New com-
ponent models can be swapped in without having to
rewrite significant sections of flight code. Further-
more, modularity within the deductive layer allows
for transparent upgrading of the engines used for
mode estimation and reactive planning, when more
powerful ones become available.
Model Reusability - Another benefit to the use of
modular system models is that the component-level
models can be reused. Over time, a database of mod-
els for different subsystems and component designs
can be assembled, dramatically reducing the need for
single-use flight code.
Verifiability - As a consequence of being able to
write control code in terms of states, model-based
programming results in cleaner code that is easier to
verify. Ease of verification is also a feature of the
system models, which can be built up directly from
system engineering specifications of hardware or soft-
ware components.

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed
offoff --
cmdcmd

standbystandby --
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01
standbystandby --

cmdcmd

firefire --
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal) StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed
offoff --
cmdcmd

standbystandby --
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01
standbystandby --

cmdcmd

firefire --
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

Figure 2: State transition model for an engine

Model-based Programming Example
To demonstrate the applicability of model-based pro-
gramming to the field of spacecraft execution, we
consider the representative mission scenario of per-
forming an orbital insertion maneuver. As shown in
Figure 1, a model-based program specifies two in-
puts, a control program and a system model. The
system model is composed of component-level mod-
els. In our example, we consider a simplified space-
craft model, consisting of two identical redundant en-
gines (EngineA and EngineB) and a science Camera.
The state transition model for an engine is shown in
Figure 2. Nominally, an engine can be in one of
three modes: off, standby, or firing. Each of these
modes is described by a set of constraints on the
thrust and power in variables. The engine also has
a failed mode, capturing any off-nominal behavior.
Transitions between nominal modes are triggered on
commands, as shown in the figure. Transitions into
the failed mode are considered to be probabilistic,
with a 1% chance of failure from both the standby
and firing modes. The Camera can be in one of two
modes, on or off, with corresponding “turn-on” and
“turn-off” transitions. This type of transition sys-
tem model is similar to the one used in Livingstone
[10].

The control program in Figure 3 specifies state
trajectories for the orbital insertion maneuver. The
specific RMPL constructs used in the program are
introduced in Section 3. In order to execute the or-
bital insertion, both engines must be set to standby
mode and one of the two engines must be fired. Prior
to firing an engine, the camera must be turned off,
for fear of plume contamination of its sensitive op-
tics. Should the first engine fail to fire correctly, the
backup engine should be commanded to fire instead.
To express this, our control program must be able to
represent the following types of behavior:

1. conditional branching - The control code
must check for two conditions, prior to firing its

OrbitInsert ()::
(do -watching ((EngineA = Firing) OR (EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do -watching (EngineA = Failed)

(when -donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when -donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Figure 3: RMPL Control Program for the Orbital
Insertion Scenario

engine: that the engine to be fired is in standby
mode, and that the camera is turned off.

2. iteration - Should the above two conditions
take some time to be achieved, the control pro-
gram should wait for both to become true, re-
quiring an iteration on the condition check.
Also, while the primary engine is firing, there
must be a continuous check for engine failure.

3. preemption - If the primary engine fails, the
act of firing it should be preempted, in favor of
firing the backup engine.

4. concurrency - The following tasks should be
performed in parallel: setting each engine to
standby mode, turning off the science camera,
checking for completion of these actions prior to
firing the primary engine, and checking for pri-
mary engine failure.

These types of behaviors are common to embed-
ded programming. The key distinction in our model-
based control programs is that we refer directly to
hidden variables in the plant. Furthermore, we would
like to express the spacecraft state transition models
described above using a language common to both
the system models and the control program. Such a
language would need to be able to specify determinis-
tic and probabilistic transitions, as well as qualitative
constraints describing the behavior in each mode. In
the next section, we introduce a language expressive
enough to encode all these types of behavior.

3 The RMPL Language
RMPL is an object-oriented language that allows a
domain to be structured in a variety of ways – for
example, through a component or process hierarchy.
RMPL enables modeling of complex elements of a
domain through an object hierarchy that includes
subclassing and multiple inheritance.

RMPL programs may be viewed as specifications
of deterministic state transition systems, which act

on the plant by asserting and checking constraints
expressed in a propositional state logic. The propo-
sitions are assignments of state variables to values
within their domains. Reactive combinators allow
flexibility in expression of complex system behavior
and dynamic relations.

3.1 RMPL Constructs
The constructs of RMPL are similar to those de-
veloped in TCC, a language for timed concurrent
constraint programming [12]. RMPL constructs are
stated as operator-prefixed, parenthesis-enclosed ex-
pressions. These expressions may be arbitrarily com-
posed with each other. An RMPL program is a single
expression built up from simpler expressions. The
constructs rely on the system state knowledge, con-
sisting of a set of value assignments to all state vari-
ables. A constraint is entailed if it is implied by
the current state knowledge, and not entailed other-
wise. Entailment is denoted by simply stating the
constraint, non-entailment is denoted by using an
overbar. Note that non-entailment of c (c) is not
equivalent to entailment of the negation of c (NOT
c) – the current state knowledge may not imply c to
be true or false. The following are the key constructs
in the language:
constraint

Constraint is expressed as a well-formed-formula in
state logic. The simplest constraint expression is an
assertion of the state of a variable, such as (thrust =
full). More complex constraints can be created us-
ing the logical connectives NOT, AND, and OR. The
constants true and false are also valid constraints.
Note that the same form is used for both checking
constraints and asserting constraints.
(PARALLEL exp1 exp2 . . .)

Concurrency. Execution of each expression expi is
initiated concurrently.
(SEQUENCE exp1 exp2 . . .)

Sequence. Starting with i = 0, executes expression
expi until completion, and then initiates expression
expi+1 in the next time step. Terminates when the
last expression terminates.
(ALWAYS exp)

Iteration. Expression exp is initiated at every time
step.
(IF-THENNEXT-ELSENEXT c expthen expelse)

Branch. If constraint c is entailed, then executes
expression expthen in the next time step. Otherwise
(if c is not entailed), executes expression expelse in
the next time step.
(UNLESS-THENNEXT constraint exp)

Guarded transition. Unless constraint is entailed,
expression exp is executed in the next time step.

(WHEN-DONEXT constraint exp)

Temporally-extended guarded transition. Wait until
constraint is entailed, then execute expression exp
in the next time step.
(WHENEVER-DONEXT constraint exp)

Iterated guarded transition. Wait until constraint
is entailed, then execute expression exp in the next
time step. This trigger can repeat indefinitely.
(DO-WATCHING constraint exp)

Preemption. Executes expression exp until comple-
tion or until constraint is entailed. If and when
constraint is entailed, the execution of expression
exp is halted at the beginning of the step in which
constraint is entailed.

Constructs also exist to represent probabilistic and
reward-producing transitions [6]. Other higher-level
constructs can be constructed from the above.

3.2 Hierarchical ConstraintAutomata
To support efficient execution or reasoning, RMPL
code is compiled into hierarchical constraint au-
tomata (HCA). Figure 4 shows the HCA structures
represented by various RMPL constructs. HCA con-
sist of nodes (called locations) that may assert con-
straints, and directed edges (called transitions) that
may have associated guard conditions. Groups of
locations may also have associated maintenance con-
straints. The transition guards and maintenance
constraints may either indicate entailment or non-
entailment. HCA are hierarchical in that a transition
may connect a location to either another location or
an HCA. A subset of the locations in an HCA are
designated as start locations. These start locations
serve as ”entry points” into the automaton during
their execution. The HCA execution process is de-
scribed in the following section.

4 Compilation and Execution
of Model-based Programs

In this section, we show how a control program
written in RMPL is compiled to HCA, and discuss
how an HCA is executed. To illustrate this pro-
cess clearly, we return to our motivating example
from Section 2. Figure 3 shows how the orbital in-
sertion control code looks when encoded in RMPL.
The RMPL compiler takes this code as an input, and
outputs the corresponding HCA system (see Figure
5). It should be noted that the compilation process
takes place offline. Only the resulting HCA model is
loaded onto the onboard flight processor for eventual
execution.

The current execution threads in the HCA system
are represented by a set of “marked” locations. Ex-
ecution of an HCA consists of stepping through the

(always A)

A

(when-donext c A)

Ac
c
_

(whenever-donext c A)

Ac

(do-watching c A)
MAINTAIN(c)

_

A

c

c

(parallel A B)

A B

(if-thennext-elsenext c A B)

Ac

B
c
_

(unless-thennext c A)

Ac
_

Figure 4: HCA representations of various RMPL
forms.

HCA, beginning from the start locations, and taking
all enabled transitions from each currently marked
location. Steps are performed synchronously, with
all possible transitions assumed to be simultaneous.
If a location transitions to an HCA, that HCA is
initialized (by marking its start locations). This al-
lows the initiation of components of the hierarchical
structure.

The algorithm for executing an HCA model can
be described as follows:

1. Initialize HCA system by marking all start lo-
cations.

2. Assert states from the currently marked lo-
cations (as well as any active maintenance
conditions specified by an encapsulating “do-
watching”). The reactive planner deduces a se-
quence of actions to eventually achieve each of
the asserted system states, and issues the first
set of commands in the sequence.

3. Obtain from the mode estimation module an up-
date of the system states.

4. Take enabled transitions. A location’s transi-
tions are enabled if (1) the location’s state as-
signment has been achieved, and (2) the transi-
tion conditions and maintenance conditions cur-
rently hold true.

5. Mark new set of locations, delete previous set of
expired markings, and return to step 2.

HCA Execution Example
To illustrate the process of executing HCA, we con-
sider a nominal (i.e. failure-free) execution trace from
our example scenario. In Figure 5, markings are rep-
resented by small numbered labels adjacent to each

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

1,2

1,2

1

1,2 3,4

1,2,3,4

Figure 5: HCA model for the Orbital Insertion Sce-
nario (markings for nominal execution are labeled in
red)

location. The numbers correspond to the order of
execution steps, e.g. the location which asserts the
state (EngineA = Standby) is marked in both the
first and second steps.

Initially, all start locations are marked. The start
locations are those labeled with “1”. The follow-
ing state assignments are asserted by the start lo-
cations: EngineA=Standby, EngineB=Standby and
Camera=Off. The maintenance condition to be
checked throughout the process of achieving these
states is the non-entailment of (EngineA=Firing
OR EngineB=Firing). These state assignments and
maintenance conditions are sent to the reactive plan-
ner, which generates the sequence that achieves the
goal state, and issues the first set of commands in
the sequence.

The enabled transitions of the currently marked
locations are then taken. In our example, we as-
sume that turning a camera off is a one-step opera-
tion, whereas putting an engine into standby mode
requires two steps (the intermediate step might be
to turn on a valve driver, for instance). Conse-
quently, the locations asserting (EngineA=Standby)
and (EngineB=Standby) remain marked in the next
execution step (labeled “2” in Figure 5). Since Cam-
era=Off has been achieved within a single step (as
confirmed by the mode estimator), and there are
no specified transitions from the location that as-
serted this state, this thread of execution terminates.
The last two markings from execution step “1”, cor-
responding to “when-donext” condition checks, re-
main marked at step “2”, as the only currently en-
abled transitions from these locations are the self-

transitions.
At step “2”, the reactive planner issues the sec-

ond set of actions in the sequence for achieving
(EngineA=Standby) and (EngineB=Standby). As-
suming these actions are successfully performed, the
mode estimation module indicates that the (En-
gineA=Standby) and (EngineB=Standby) conditions
are achieved. This results in termination of the
two execution threads corresponding to these state
achievement requests, and enabling of the transi-
tion labeled with the condition (EngineA=Standby
AND Camera=Off). Note that the maintenance
conditions associated with this transition, corre-
sponding to non-entailment of (EngineA=Failed),
and non-entailment of (EngineA=Firing OR En-
gineB=Firing), still hold true.

After taking the enabled transitions, only two lo-
cations are marked at step “3”. One of these marked
locations asserts (EngineA=Firing). This state as-
signment is sent to the reactive planner, which gen-
erates the two-step sequence that achieves this state,
and issues the first set of commands in the sequence.

Finally, at step “4” the reactive planner issues the
second set of commands required to achieve (En-
gineA=Firing), and the mode estimation module in-
fers that the engine is indeed firing. Since this vi-
olates the high-level maintenance condition being
watched for, the entire block of Figure 5 is exited.
Note that since no engine failure occurred during
this process, the thread of execution waiting for (En-
gineA=Failed) did not advance from its start loca-
tion.

5 Expressiveness of RMPL
To serve as the foundation for the development of a
model-based execution framework, RMPL must pro-
vide certain key features of other languages used
for embedded robotic systems. Expressiveness is
achieved through the combination of constraint-
based modeling and recent advances in two different
domains: synchronous programming, used in many
industrial embedded reactive systems, and robotic
execution languages, used to provide robust sequenc-
ing capabilities for ground-based robots and au-
tonomous spacecraft.

In this section, we highlight the relevant aspects
of each of these two domains to the design of RMPL,
and provide a rough mapping of these features to
constructs in RMPL.

5.1 Synchronous Programming
Languages

The field of synchronous programming offers a class
of languages developed for writing control programs
for embedded reactive systems. Esterel, Lustre

and Signal are synchronous programming languages
that have been deployed for industrial applications
[13, 14]. The widely used StateCharts graphical
specification formalism [9] shares key aspects of the
synchronous programming model. In the design of
RMPL, certain key ideas from the synchronous pro-
gramming domain have been leveraged. In this sec-
tion, we highlight the similarities and fundamental
differences between RMPL, and one widely-used syn-
chronous language, Esterel.

First we consider similarities between the two lan-
guages. Both include standard constructs for ex-
pressing reactive system behavior, such as condi-
tional branching, iteration, parallel composition, se-
quential ordering and preemption. Figure 6 provides
a mapping between constructs in Esterel and the cor-
responding RMPL forms. Both languages compile
to underlying automaton models with clean math-
ematical semantics. They both emphasize modu-
larity in software design: Esterel uses the ‘module’
as its programming unit, while RMPL uses the no-
tion of ‘class’ objects. Finally, like Esterel, RMPL is
fully orthogonal, meaning that the constructs can be
nested and combined arbitrarily.

Despite the similarities between the two languages,
there exist some fundamental differences in their cor-
responding philosophy:
• Esterel is very much a “signal-based” language,

whereas RMPL is a “state-based” language.
Rather than thinking in terms of signals, as
is the case for Esterel, we consider the notion
of hidden system states to be the fundamen-
tal basis for execution with RMPL. This differ-
ent point of view is attributable to the different
application domains targeted by the two lan-
guages. For Esterel, which is designed to provide
coordination and synchronization between com-
putational processes, signals and events are the
most appropriate basic mechanisms. RMPL’s
task, which is to provide a framework for mon-
itoring and control of complex dynamic plants,
lends itself to thinking more naturally in terms
of state evolution.

• The availability of instantaneous broadcasting
and control transmission in Esterel makes it pos-
sible to write syntactically correct but seman-
tically “non-sensical” programs [13]. RMPL’s
more strict use of execution steps avoids these
causality problems.

• The intent of Esterel is to provide the func-
tionality of a full programming language, in-
cluding external function and procedure calls,
and external task execution. RMPL’s scope is
focused towards providing the functionality re-
quired to evolve the state of a complex system.

Construct
Description Esterel RMPL

1-step delay pause true

halting halt (ALWAYS true)

sequencing body1 ; body2 (SEQUENCE body1 body2)

conditional
 if exp then body1
 else body2
 end

(IF-THENNEXT-ELSENEXT exp
 body1 body2)

concurrency body1 || body2 (PARALLEL body1 body2)

await await S
(DO-WATCHING S
 (ALWAYS true))

await-do
 await S do
 body
 end

(WHEN-DONEXT S
 body)

trap definition
 trap id in
 body
 end

(DO-WATCHING (exit=true)
 body)

weak abort
 weak abort
 body
 when S

(DO-WATCHING (exit=true)
 (PARALLEL
 body
 (WHEN-DONEXT S
 (exit=true))))

abort with
handler

 abort
 body1
 when S do
 body2
 end

(PARALLEL
 (DO-WATCHING S body1)
 (WHEN-DONEXT S body2))

guarded loop
 every S do
 body
 end

(WHENEVER-DONEXT S
 (DO-WATCHING S
 body))

Figure 6: Corresponding constructs in Esterel and
RMPL

It currently relies less heavily on code written
in an external “host” language. Future deploy-
ment of RMPL to various applications will re-
veal whether the additional capability provided
by such external links warrants extension of the
language.

5.2 Robotic Execution Languages
State-of-the-art spacecraft sequencers, like the Smart
Executive flown as part of the Remote Agent Experi-
ment on Deep Space One [15], are used to coordinate
the run-time activity among the different software
modules within a control system. They must be able
to respond quickly to events while bringing poten-
tially large amounts of information (both knowledge
and run-time data) to bear on their decisions [16].
Robust executives are becoming even more essential
as autonomous agents of increasing capability are de-
veloped. The robotic execution languages used to en-
code advanced sequencing engines (e.g. RAPs [17],
TDL [18]) provide constructs for managing interact-
ing parallel goal- and event-driven processes.

We consider the example of the Remote Agent
Executive. It is written in a rich procedural lan-
guage, Execution Support Language (ESL), which
is an extension to multi-threaded Common Lisp.
ESL provides the following features, allowing the en-
coding of execution knowledge into embedded au-

tonomous agents [16]: contingency handling, time-
keeping, task management, goal achievement, logical
database querying, and resource management.

Through its rich set of reactive constructs, RMPL
provides most of these features. By combining its
preemption constructs (e.g. “do-watching”) with the
hidden state diagnosis capability provided by the un-
derlying deductive layer, mechanisms for identifying
and recovering from failure contingencies and speci-
fying cleanup procedures can be built.

Task management capabilities, such as spawning
new concurrent tasks, aborting tasks, setting up task
networks and defining guardian tasks (for task moni-
toring) are provided by RMPL’s parallel composition
and preemption constructs. Task synchronization
features, including signaling and waiting for partic-
ular events, take on a different meaning in a model-
based programming language like RMPL: as long as
the “events” can be represented as changes to system
states, they are straightforwardly accommodated.

The mechanisms for specifying and commanding
goal achievement methods are provided by the un-
derlying reactive planning layer, in the model-based
programming framework. The capacity for a model-
based executive to perform sequencing at the level
of system state specifications, and to abstract away
the details of how states are achieved, is considered
a significant benefit, as discussed in Section 2.

Similarly, the need to explicitly maintain, query
and reason about a distinct logical database is made
obsolete by the presence of a transparent underlying
mode estimation layer, which maintains the latest
system state knowledge, and provides the sequencer
with all the state information it requires.

The dominant features that the current incarna-
tion of RMPL cannot adequately provide are time-
related utilities (such as event scheduling, timeout
definitions or warping), and advanced property lock-
ing mechanisms (resource interactions between con-
current tasks). It should be noted that RMPL does
provide the ability to perform basic resource man-
agement, using the preemptive constructs to trig-
ger when a certain property, expressed in terms of
state assignments, is no longer entailed. Incorpora-
tion of timing-related constructs and more advanced
resource management features is a focus of current
work.

6 Conclusion
We have discussed the design of a model-based execu-
tive, consisting of a sequencing layer coded in RMPL
and compiled down to HCA, and an underlying de-
ductive layer providing mode estimation and reac-
tive planning capabilities, based on models of the
system expressed in RMPL. In the current design of

the model-based executive, the sequencing layer and
the deductive layer are distinct. One of the eventual
goals of this research task is the integration of both
capabilities into a unified system, which will allow
us to perform monitoring, diagnosis and reconfigu-
ration on the same HCA models that are executed,
eliminating the need for separately maintaining the
control program and the system models.

The ultimate goal of this research effort is to ar-
rive at a fully integrated autonomous system, which
uses a unified system representation to provide high-
level planning and scheduling capabilities, in addi-
tion to robust sequencing and configuration man-
agement. To this end, a temporal planning capa-
bility based on an extension of RMPL (including the
notions of metric time, temporally bounded activity
specifications and non-deterministic choice) is cur-
rently under development [7]. In addition, to address
the problem of monitoring and controlling systems
which must be described using continuous dynam-
ics, a hybrid version of RMPL is under development
[19]. This Hybrid Model-based Programming Lan-
guage incorporates the notion of continuous variables
with RMPL’s reactive programming and constraint-
based modeling features.

7 Acknowledgments
This research was supported in part by the DARPA
MOBIES program under contract F33615-00-C-
1702, and by NASA’s Cross Enterprise Technology
Development program under contract NAG2-1466.

References
[1] Muscettola, N. et al., “Remote Agent: To

Boldly Go Where No AI System Has Gone
Before”, Artificial Intelligence, 103(1-2):5-48,
1998.

[2] Ingham, M. et al., “Autonomous Sequencing
and Model-based Fault Protection for Space In-
terferometry”, Proc. of iSAIRAS-2001, 2001.

[3] Washington, R. et al., “Autonomous Rovers
for Mars Exploration”, Proc. of the IEEE
Aerospace Conference, 1999.

[4] Nayak, P.P. et al., “Validating the DS1 Re-
mote Agent Experiment”, Proc. of iSAIRAS-
1999, 1999.

[5] Bernard, D.E. et al., “Design of the Remote
Agent Experiment for Spacecraft Autonomy”,
Proc. of the IEEE Aerospace Conference, 1999.

[6] Williams, B.C., Chung, S., and Gupta, V.,
“Mode Estimation of Model-based Programs:
Monitoring Systems with Complex Behavior”,
To appear in Proc. of IJCAI-2001, 2001.

[7] Kim, P., Williams, B.C., and Abramson, M.,
“Executing Reactive, Model-based Programs
through Graph-based Temporal Planning”, To
appear in Proc. of IJCAI-2001, 2001.

[8] Dvorak, D. et al., “Software Architecture
Themes in JPL’s Mission Data System”, Proc.
of the AIAA Guidance, Navigation, and Control
Conference and Exhibit, Portland, OR, 1999.

[9] Harel, D., “Statecharts: A Visual Approach to
Complex Systems”, Science of Computer Pro-
gramming 8:231-274, 1987.

[10] Williams, B.C. and Nayak, P.P., “A Model-
based Approach to Reactive Self-Configuring
Systems”, Proc. of AAAI-96, pp.971-978, 1996.

[11] Williams, B.C. and Nayak, P.P., “A Reactive
Planner for a Model-Based Executive”, Proc. of
IJCAI-97, 1997.

[12] Saraswat, V., Jagadeesan, R., and Gupta,
V., “Foundations of Timed Concurrent Con-
straint Programming”, Proc. of the Ninth An-
nual IEEE Symposium on Logic in Computer
Science, 1994.

[13] Berry, G., The Esterel v5 Language Primer, ver-
sion 5.21 release 2.0, Centre de Mathematiques
Appliquees, Ecole des Mines and INRIA, April
6, 1999.

[14] Halbwachs, N., Synchronous Programming of
Reactive Systems, Kluwer Academic Publishers,
1993.

[15] Pell, B. et al., ”The Remote Agent Execu-
tive: Capabilities to Support Integrated Robotic
Agents”, Proc. of the AAAI Spring Symposium
on Integrated Robotic Architectures, 1998.

[16] Gat, E., “ESL: A Language for Supporting Ro-
bust Plan Execution in Embedded Autonomous
Agents”, Proc. of the AAAI Fall Symposium on
Plan Execution, 1996.

[17] Firby, R.J., Adaptive Execution in Dynamic Do-
mains, Ph.D. Thesis, Yale University Depart-
ment of Computer Science, 1989.

[18] Simmons, R. and Apfelbaum, D., “A task De-
scription Language for Robot Control”, Proc. of
the Conference on Intelligent Robotics and Sys-
tems, Vancouver, Canada, October 1998.

[19] Williams, B., Hofbaur, M., and Jones, T.,
Mode Estimation of Probabilistic Hybrid Sys-
tems, MIT Space Systems Laboratory Report
#6-01, Massachusetts Institute of Technology,
May 2001.

