
Model-based Reactive Programming of

Cooperative Vehicles for Mars Exploration

Brian C. Williams, Phil Kim, Michael Hofbaur, Jonathan How,
Jon Kennell, Jason Loy, Robert Ragno, John Stedl and Aisha Walcott

MIT Space Systems and Artifical Intelligence Laboratories
77 Massachusetts Ave., Cambridge, MA 02139 USA
{williams,philkim,hofbaur,jhow,jonk,jloy,rjr,stedl,aisha}@ mit.edu

Keywords: cooperating autonomous agents,
planning and execution, embedded programming.

Abstract

In the future webs of unmanned vehicles will act to-
gether to robustly achieve elaborate missions within
uncertain environments. This web may be a dis-
tributed satellite system forming an interferometer,
or may be a heterogenous set of rovers and blimps ex-
ploring Mars. We coordinate these systems by intro-
ducing a reactive model-based programming language
(RMPL) that combines within a single unified rep-
resentation the flexibility of embedded programming
and reactive execution languages, and the delibera-
tive reasoning power of temporal planners. To sup-
port fast mission planning as graph search, the KIRK
planner compiles an RMPL program into a temporal
plan network (TPN), similar to those used by tempo-
ral planners, but extended for symbolic constraints
and decisions. To robustly coordinate air vehicle or
rover maneuvers we combine the Kirk planning algo-
rithm with randomized algorithms for kinodynamic
path planning. Finally, we describe our Mars explo-
ration testbed, including four RWI ATRV vehicles.

1 Model-based Programming

The recent spread of advanced processing to embed-
ded systems has created vehicles that execute com-
plex missions with increasing levels of autonomy, in
space, on land and in the air. These vehicles must
respond to uncertain and often unforgiving environ-
ments, both with a fast response time and with a
high assurance of first time success. The future looks
to the creation of cooperative robotic networks. For
example, giant space telescopes are being deployed
that are composed of satellites carrying the tele-

scope’s different optical components. These satel-
lites act in concert to image planets around other
stars, or unusual weather events on earth. In ad-
dition, the 2000 Mars Program Independent Assess-
ment Team recommended an exploration architec-
ture that adopts a more global view. For example, a
heterogenous set of vehicles, such as orbiters, rovers
and blimps might work in concert to identify and
evaluate sites of greatest scientific interest.

The creation of robotic networks cannot be sup-
ported by the current programming practice alone.
Recent mission failures, such as the Mars Climate
Orbiter and Polar Landers, highlight the challenge
of creating highly capable vehicles within realistic
budget limits. Due to cost constraints, spacecraft
flight software teams often do not have time to think
through all the plausible situations that might arise,
encode the appropriate responses within their soft-
ware and then validate that software with high as-
surance. To break through this barrier we need to
invent a new programming paradigm.

In this paper we advocate the creation of embed-
ded, model-based programming languages that sup-
port the ability to specify global strategies for multi-
vehicle coordination. First, we argue that the pro-
grammer should retain control for the overall suc-
cess of a mission, by programming game plans and
contingencies that in the programmer’s experience
will ensure a high degree of success. The program-
mer should be able to program these game plans us-
ing features of the best embedded programming lan-
guages available. For example, reactive synchronous
languages[5], like Esterel, Lustre and Signal, offer
a rich set of constructs for interacting with sensors
and actuators, for creating complex behaviors involv-
ing concurrency and preemption, and for modulariz-
ing these behaviors using all the standard encapsu-
lation mechanisms. Model-based programming ex-
tends this style of reactive language with a minimal

set of constructs neccessary to perform flexible mis-
sion coordination, while hiding its reasoning capabil-
ities under the hood of the language’s interpreter or
compiler.

Second, we argue that model-based programming
languages should focus on elevating the program-
mer’s thinking, by automating the process of reason-
ing about low-level system interactions. Many recent
space mission failures, such as Mars Climate Orbiter
and Mars Polar Lander, can be isolated to difficulties
in reasoning through low-level system interactions.
On the other hand, this limited form of reasoning and
book keeping is the hallmark of computational meth-
ods. The interpreter or compiler of a model-based
program reasons through these interactions using
composable models of the system being controlled.
We are developing a language, called the Reactive
Model-Based Programming Language (RMPL), that
supports four types of reasoning about system inter-
actions: reasoning about contingencies, scheduling,
inferring a system’s hidden state and controlling that
state. This paper develops RMPL in the context of
contingencies and scheduling, while [15], shows how
RMPL is used to infer hidden state.

Third, execution of these programs is a form of
mission-level planning that searches through the op-
tions for the optimal strategy that operates within
the time constraints. Vehicle movement is central
to these missions, hence to achieve global optimal-
ity we unify mission-level planning with global path
planning algorithms. In particular we build upon
the rapidly exploring random tree (RRT) algorithm
of La Valle[8]. In addition, these vehicles may oper-
ate in highly dynamic situations or situations where
maneuvering is extremely tight.

RMPL offers a middle ground between execu-
tion languages, like RAPS [4], and highly flexible,
operator-based temporal planners,like HSTS [10].
RAPS offers the exception handling and concurrency
mechanisms of embedded languages, while adding
goal monitoring, nondeterministic choice and met-
ric constraints. However, RAPS makes its decisions
reactively, without addressing concerns of schedu-
lability and threat resolution, and hence can fall
into a failure state. RMPL incorporates the forward
looking planning and scheduling abilities of modern
temporal planners, but can substantially restrict the
space of plans considered to possible threads of ex-
ecution through the RMPL program. This speeds
response and mitigates risk.

To develop the model-based programming
paradigm in the context of Mars exploration, we
have developed a combination of simulation and
ground-based testbeds, including a collection of four

RWI ATRV rovers and a set of formation flying
spacecraft, called Spheres, to be flown on space
station.

The paper begins by introducing a subset of
RMPL that includes constructs from traditional
reactive programming plus constructs for specify-
ing contingencies and scheduling constraints. Sec-
ond, we describe how Kirk, an RMPL-based plan-
ner/executive, compiles RMPL programs into tempo-
ral plan networks (TPN), which compactly represent
all possible threads of execution of an RMPL pro-
gram, and all resource constraints and conflicts be-
tween concurrent activities. Third, we present Kirk’s
online planning algorithm for RMPL that “looks”
by using network search algorithms to find threads
of execution through the TPN that are temporally
consistent. The result is a partially ordered tempo-
ral plan. Kirk then “leaps” by executing the plan
using plan execution methods[12] developed for Re-
mote Agent[11]. Fourth, we develop the unification
of Kirk with randomized, kino-dynamic path plan-
ning algorithms. We present Kirk in the context of
a simple Mars exploration mission segment.

2 Example: Cooperative Ex-
ploration

Consider a Mars exploration mission, where a team
of rovers, blimps and orbiters explore several sites
of interest (target areas). Orbiters perform initial
surveillance, resulting in a course site map. Agile
Scout rovers then refine the site map with high res-
olution data for local regions. Scouts are provided
high resolution instruments for path planning and
obstacle avoidance, and low resolution science in-
struments for initial site evaluation. Finally, labo-
ratory rovers are guided to the most promising sites
of interest. These rovers include additional capabil-
ities, such as drills for subsurface exploration, that
are used for sample collection.

As an example, a description of the Mars explo-
ration mission using RMPL would include an En-
route activity, that specifies the group movement of
scout rovers between sites of interest. In this Enroute

activity, the group selects one of two possible paths
for traveling to the target area, and then traverses to-
gether along the path through a series of waypoints
to the target position. Upon arrival the group leader
transmits a message to the rover operations team at
the mission control center (MCC) to indicate their
arrival and awaits authorization from MCC before
initiating science exploration of the target area.

Enroute includes a series of timing constraints.
For example, the two available paths can be traversed
only during certain time windows, due to the need
for sufficient lighting to recharge the rovers’ photo-
voltaic cells. Enroute might also be bound by mission
constraints imposed at a higher level, such as, the re-
quirement that scout exploration completes in 25-30
hours, with 30% of the time allotted to the Enroute
activity.

Codifying the Enroute activity requires most stan-
dard features of embedded languages. Enroute in-
cludes both sequential and concurrent threads of
activities, such as going to a series of way points,
and sending a message to the mission control center
(MCC), while concurrently awaiting authorization.
There are maintenance conditions and synchroniza-
tions. For example, the selected path needs to be
maintained safe during traverse, and synchronization
occurs with the MCC.

In addition to constructs found in traditional em-
bedded languages, we need constructs for expressing
timing requirements and alternative choices or con-
tingencies, in this example to use one of two paths.
These constructs are common to robotic execution
languages[4]. However, they are only used reactively.
Kirk must reason forward through the RMPL pro-
gram’s execution, identifying a course of action that
is consistent.

3 RMPL Constructs

To summarize, RMPL needs to include constructs
for expressing concurrency, maintaining conditions,
synchronization, metric constraints and contingen-
cies. The relevant RMPL constructs are as follows.
We use lower case letters, like c, to denote activities
or conditions, and upper case letters, like A and B,
to denote well-formed RMPL expressions:

a. Invokes primitive activity a, starting at the
current time. This is the basic construct for ini-
tiating activities.

c. Asserts that condition c is true at the cur-
rent time, where c is a literal. This is the basic
construct for asserting conditions.

if c thennext A. Starts executing A if condition
c is currently satisfied, where c is a literal. This
is the basic construct for expressing conditional
branches and asserting preconditions.

do A maintaining c. Executes A, and ensures
throughout A that c occurs. This is the ba-
sic construct for introducing maintenance con-
ditions and protections.

do A watching c. Executes A until condition
c becomes true.

A,B. Concurrently executes A and B. It is the
basic construct for forking processes.

A;B. Consecutively executes A and then B. It
is the basic construct for sequential processes.

A[l, u]. Constrains the duration of program A
to be at least l and at most u. This is the basic
construct for expressing timing requirements.

choose {A,B}. Reduces non-deterministically
to program A or B. This is the basic construct
for expressing multiple strategies and contingen-
cies.

Together, c and if c thennext A provide ba-
sic constructs for synchronization, by specifying re-
quired and asserted conditions. A,B and A;B
provide constructs for building complex concurrent
threads and do . . .maintaining acts as a mainte-
nance condition that Kirk must prove at planning
time.

Using these constructs we express the Enroute ac-
tivity as follows:

Group-Enroute()[l,u] = {

choose {

do {Group-Traverse-Path(PATH1_1,PATH1_2,

PATH1_3,TAI_POS)[l*90%,u*90%];

} maintaining PATH1_OK,

do {Group-Traverse-Path(PATH2_1,PATH2_2,

PATH2_3,TAI_POS)[l*90%,u*90%];

} maintaining PATH2_OK

};

{Group-Transmit(MCC,ARRIVED_TAI)[0,2],

do {Group-Wait(TAI_HOLD1,TAI_HOLD2)

[0,u*10%]

} watching PROCEED_OK

}

}

The choose expression models the two options for
path traversals. 90% of the total time of the overall
maneuver is allocated to this group traverse. Each
traverse has a maintenance condition that the path

is okay. Arrival is transmitted to the mission con-
trol center, and receipt of a message to proceed is
concurrently monitored.

4 Temporal Plan Networks

Executing an RMPL program involves choosing a
set of threads of execution (Plans), checking to en-
sure that the execution is consistent and schedulable,
and then scheduling events on the fly. It is essential
that we generate these plans quickly. This suggests
compiling RMPL programs to a plan graph, along
the lines of Graphplan or Satplan [14], and then
searching the precompiled graph. However, it is also
important for the plan to have the temporal flexi-
bility offered by a partially ordered, temporal plan.
Least committment leaves slack to adapt to execu-
tion uncertainties and to recover from faults. This
partial committment is expressed in temporal plan-
ning through a Simple Temporal Network (STN)[3].
Hence, a key observation of our approach is that
to build in temporal flexibility we should build our
graph-based plan representation, called a Temporal
Plan Network (TPN), as a generalization of an STN.

3

6

4 5[0,0] [405,486]

[0,0]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[0,0]

[0,0]

[0,0] [0,0]

[450,540]

11

9 10[0,0]
[0,54]

[0,0]
12

13

[0,2]

[0,0]

[0,]∞

Tell(not(PROCEED=OK))

The TPN corresponding to the above Enroute pro-
gram is shown above. Activity name labels are omit-
ted to keep the figure clear, but the node pairs 4,5
and 6,7 represent the two Group-Traverse-Path ac-
tivities, and node pairs 9,10 and 11,12 correspond to
the Group-Wait and Group-Transmit activities, re-
spectively. Node 3 is a decision node that represents
a choice between two methods for traversing to the
search area. The TPN represents the consequences
of the constraint that the mission last between 25
and 30 hours. It also models the decision between
the two paths to the target area, and it models the
restrictions that each of the paths can only be used
if they are available.

A TPN encodes all feasible executions of an activ-
ity. It does this by augmenting an STN with two
types of constraints: temporal constraints restrict
the behavior of an activity by bounding the dura-
tion of an activity, time between activities, or more
generally the temporal distance between two events.
Symbolic constraints restrict the behavior of an ac-
tivity by expressing the assertion or requirement of

certain conditions by activities that all valid execu-
tions must satisfy.

For example, consider some of the possible execu-
tions of the Enroute activity. One possible execu-
tion is that the group traverses along path one (pair
4,5) to the target area in 420 time units (minutes
in this case), transmits an arrival message to the
mission control center (11,12) for one minute, and
concurrently waits (9,10) for another 40 minutes to
receive authorization to proceed. Another possible
execution is that the group selects the second path,
traverses to the target area in 500 minutes, takes 2
minutes to transmit the arrival message, and is au-
thorized to proceed immediately. If it were the case
that path one was available from the time at which
the Enroute activity started to at least the time that
the group arrived at the target area, then the first ex-
ecution is valid. This is because it satisfies both the
temporal constraints on the Enroute activity, and
the requirement that path one is available for the
duration of the traverse along it. The planning al-
gorithm presented in the next section performs the
identification of consistent activity executions.

A Temporal Planning Network is a Simple Tem-
poral Network, augmented with symbolic constraints
and decision nodes. These additions are sufficent to
capture all RMPL constructs given earlier. Like a
simple temporal network, the nodes of a TPN rep-
resent temporal events, and the arcs represent tem-
poral relations that constrain the temporal distance
between events. An arc of a TPN may be labeled
with a symbolic constraint Tell(c) or Ask(c), as well
as a duration. A Tell(c) label on an arc (i,j) asserts
that the condition represented by c is true over the
interval between the temporal events modeled by the
nodes i and j. Similarly, an Ask(c) label on an arc
(i,j) requires that the condition represented by c is
true over the interval represented by this arc. For ex-
ample, in the Enroute TPN, the Ask(PATH1=OK)
label on the arc (4,5) represents the requirement for
path one to be available for the interval of time cor-
responding to the interval of time between the tem-
poral event modeled by node 4 and node 5. These
Ask-type symbolic constraints allow for the encoding
of conditions in the network.

Decision nodes are used to explicitly introduce
choices in activity execution that the planner must
make. For example, in the Enroute activity there are
two choices of paths for the group to use for travers-
ing to the target area, path one and path two. The
activity model captures the two choices as out-arcs
of node 3 of the enroute TPN. This decision node is
designated by a double outline. All other nodes in
the Enroute TPN are non-decision nodes.

5 Compiling RMPL to TPN

Given a well formed RMPL expression, we compile
it to a TPN by mapping each RMPL primitive to a
TPN as defined below. RMPL sub-expressions, de-
noted by upper case letters, are recursively mapped
to equivalent TPN:

A[l, u]. Invoke activity A between l and u time units.
A.start A.end

[l,u]

c[l, u]. Assert that condition c is true now until [l, u].
[l,u]

Tell(c)

if c thennext A[l, u]. Execute A for [l, u], if condi-
tion c is currently satisfied.

A.start A.end
[l,u][0,0]

Ask(c)

do A[l, u] maintaining c. Execute A for [l, u], and
ensure throughout A that c occurs.

A.start A.end
[l,u]

Ask(c)

do A[l, u] watching c. This program executes A for
[l, u], and preempts the execution as soon as condi-
tion c becomes true.

A.start A.end
[l,u]

Tell(not(c))

A[l1, u1], B[l2, u2]. Concurrently execute A for
[l1, u1] and B for [l2, u2].

A.start A.end
[l1,u1]

B.start B.end
[l2,u2]

[0,0] [0,0]

[0,0]
[0,0]

A[l1, u1];B[l2, u2]. Execute A for [l1, u1], then B for
[l2, u2].

A.start A.end
[l1,u1] [0,0]

B.start B.end
[l2,u2]

choose {A[l1, u1], B[l2, u2]}. Reduces to A[l1, u1] or
B[l2, u2], non-deterministically.

A.start A.end
[l1,u1]

B.start B.end
[l2,u2]

[0,0] [0,0]

[0,0]
[0,0]

6 Planning using TPNs

After compiling an RMPL program into a TPN,
Kirk’s planner uses the TPN to search for an exe-
cution that is both complete and consistent. The
execution corresponds to an unconditional, tempo-
ral plan. A plan is complete if choices have been
made for each relevant decision point, it contains

only primitive-level activities, and all activities la-
beled Ask(c) have been linked to a Tell(c). A plan
is consistent if it does not violate any of its tempo-
ral constraints or symbolic constraints. The resulting
plan is then executed using the plan runner described
in [12].

The input to Kirk’s planner is a TPN describ-
ing an activity scenario. A scenario consists of the
TPN for the top-level activity invoked and any con-
straints on its invocation. The following TPN in-
vokes Enroute (nodes 1-13). In a parallel thread it
constrains the time ranges over which path one is
available (nodes 14-15) and over which the vehicles
may perform search (nodes 16-17).

3

6

4 5
[405,450]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Tell(not(PROCEED=OK))

11

9 10
[0,45]

12

13

[0,2] [0,]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED=OK)

[200,200]

s e

[500,800]

[10,10] [0,]

[10,] [40,385]

∞

∞

∞

[0,]∞

[0,]∞

[0,]∞

The output of the planner consists of a set of paths
through the input network from the start-node to the
end-node of the top-level activity. In the example the
paths s-1-3-4-5-8-9-10-13-2-e and s-14-15-16-17-e de-
fine a consistent execution. The first path defines
the execution of the group of vehicles, and the sec-
ond path defines the “execution” of the rest of the
world in terms of the assertion or requirement of rel-
evant conditions over the duration of the scenario.
The portion of the TPN not selected for execution is
shown in gray.

Planning involves two interleaved phases. The
first phase searches for a sub-network that consti-
tutes a feasible plan, while incrementally checking
for temporal consistency. The second phase is anal-
ogous to the repair step of a causal link planner, in
which threats are detected and resolved, and open
conditions are closed[13].

6.1 Phase 1: Select Plan Execution

The first phase selects a set of paths that go from
the start-node to the end-node of the top-level activ-
ity, and that are temporally consistent. The planner
handles this execution selection problem as a variant
of a network search[1] rooted at the start-node of the
TPN encoding of the top-level activity.

The network search begins at the start-node, and
extends a branch of the path at each iteration. De-
cision nodes are treated by extending the path along

one out arc, while non-decision nodes are treated by
branching the path and extending along all out arcs.
As the paths are extended they are incrementally
tested for temporal consistency as described in [6].
The search completes when the selected nodes and
arcs define a set of paths from the start-node to the
end-node of the top activity.

To check temporal consistency we note that any
subnet of a Plan Network, minus its symbolic con-
straint labels, forms a Simple Temporal Network
(STN)[3]. An STN is consistent if and only if its
encoding as a distance graph contains no negative
cycles [3]. The Kirk planner detects negative cycles
using a variant of the generic label-correcting single-
source shortest-path algorithm [1].

6.2 Example: Searching the Network

To illustrate this search, we return to an Enroute
like input network, where node 1 is the start-node
and node 2 is the end-node:

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

Initially, node 1 is selected, which is indicated by
its darker shade. In the first iteration, Kirk chooses
to expand node 1, and since node 1 is not a decision
node, it selects all out-arcs. This continues until both
node 5 and node 15 are selected:

At this point, Kirk chooses node 5 to expand.
Since node 5 is a decision node, Kirk must choose
either arc (5,7) or arc (5,10). It selects arc (5,7) and
continues extending until it reaches the following:

Note that arc (14,2) is selected, forming the cy-
cle, 1-3-4-5-7-8-9-6-13-14-2-1. In this example, this
selected sub-network is temporally inconsistent, so

Kirk backtracks to the most recent decision with
open options, which is Node 5. Out-arc (5,10) has
not yet been tried, so it is selected and the path ex-
tend to the end-node. Finally a path through arc
(15,16) is found to the end-node, resulting in the
temporally consistent sub-network:

6.3 Phase 2: Threats and Open Con-
ditions

Symbolic constraints – Ask(c) and Tell(c) – are han-
dled analogous to threats and open conditions in
causal link planning[13]. Two symbolic constraints
conflict if one is either asserting (by using Tell) or
requesting (by using Ask) that a condition is true,
and the second is asserting or requesting that the
same condition is false. For example, Tell(Not(c))
and Ask(c) conflict. An open condition in a TPN
appears as Ask constraints, which represent the need
for some condition to be true over the interval of time
represented by the arc labeled Ask.

6.3.1 Resolving Threats

To detect threats the planner computes the feasible
time bounds for each temporal event (node) in the
network, and then uses these bounds to identify po-
tentially overlapping intervals that are labeled with
inconsistent constraints. These bounds are com-
puted by solving an all-pairs shortest-path problem
over the distance graph of the partially completed
plan [2].

Once these feasible time ranges are determined,
the planner detects which arcs may overlap in time.
A threat consists of two arcs that may overlap
and that are labeled with conflicting symbolic con-
straints. To resolve a threat we introduce a con-
straint that forces an ordering between the two ac-
tivites, similar to promotion and demotion in classi-
cal planning[13]:

Ask(Not(c))

A.star t A.end

Tell(c)

B.star t B.end

<2,3>

<4,5> <6,7>

<7,8> <12,15>

<14,18>
[1,]∞

6.3.2 Closing Open Conditions

An open condition is represented by an arc labeled
with an Ask constraint, which represents the request
for a condition to be satisfied over the interval of time
represented by the arc. If this interval of time is con-
tained by another interval over which the condition is
asserted by a Tell constraint, then the open condition
is satisfied (i.e., closed), and a causal link is drawn
from the Tell to the Ask. Open conditions are de-
tected simply by scanning through all activites and
checking any Ask constraints. Finding potentially
overlapping intervals is performed using the same
method described above for detecting threats. Once
a Tell is found that can satisfy an open condition,
temporal constraints are added so that the duration
of the open condition is contained within the Tell.
This method of closing open asks is related to the
way that the HSTS planner satisfies compatibilities
[10].

Tell(c)

A.start A.end

Ask(c)

B.start B.end

<0,0>

<1,3> <7,9>

<1,2> <8,10>

<9,12 >

[0,]∞
[0,]∞

7 Incorporating Path Planning

A TPN incorporates a range of activities; some of
which require scout rovers to drive between locations.
For example, nodes 4 and 5, and nodes 6 and 7 from
the Enroute activity call for the rovers to traverse ei-
ther path 1 or path 2 along a sequence of waypoints,
while avoiding obstacles. In order to accomplish such
a task we extend Kirk with the ability to plan a path
from one way point to the next. This involves unify-
ing Kirk’s TPN representation and search algorithms
with a randomized path planning algorithm based on
Rapidly-Exploring Random Trees (RRTs) [8].

obstacle

obstacle
Waypoint i Waypoint i+1

i+1
i

An RRT is built by randomly generating a point
and connecting the nearest vertex in the existing
RRT to that point as shown in the figure below.
A new vertex is created and added to the RRT by
reaching out a distance epsilon towards the random

point. The RRT approach refines ideas from both
probabilistic roadmap methods and potential fields
methods. Two key features of RRTs is that they
are probabilistically complete, and are are heavily
biased towards exploring unexplored regions within
the path planning space.

The path planning problem is defined in terms of
its configuration space where there are obstacle re-
gions and free space regions. The idea behind the al-
gorithm is to create a rapidly exploring random tree,
T, that starts at an initial configuration and grows
into the goal configuration. This is done by ran-
domly generating a point in the configuration space
and connecting it with an edge to the closest vertex
within T. This process is repeated until a solution is
found.

We are adapting an RRT based path planning al-
gorithm to fit within the TPN framework. Since the
underlying data structure for both the path planner
and the TPN is based on a graph representation the
two can be merged. The sub activities that repre-
sent going between waypoints call the path planner
for each waypoint. The TPN is updated by including
the nodes (which are RRT vertices) generated by the
path planner, between each pair of waypoints. This
is depicted in the figure shown above. The figure
shows what occurs if path 1 of the Enroute activ-
ity is selected. A waypoint i between nodes 4 and 5
grows an RRT into the next waypoint i + 1. A path
is found following the trajectory along the black line
and the nodes along that path are added into the
TPN.

Initially the path planner would receive data from
a satellite that surveys the region terrain yielding
a coarse resolution map of the area landscape (60
cm/pixel). The problem is then converted into a con-
figuration space problem, where the rover is specified
as a point at some start location and the resolved
obstacles are identified as the obstacle regions, while
the other space is considered free space. This, in
turn, is the input into the path planner.

In addition, we are extending Kirk’s onboard plan
execution algorithms to perform local path planning
using on board instruments, such as a laser range
finder, sonar, etc. The rovers use these instruments
to perform reactive obstacle avoidance while driving
between waypoints along the computed path.

8 Testbed

The MIT Space Systems Lab has a testbed consist-
ing of 4 RWI rovers (1 ATRV and 3 ATRV Jr.) and
blimps for indoor and outdoor multi-vehicle experi-

ments. An indoor test area is used to study issues
on target area exploration, for example, site map
refinement with two Scout rovers (two ATRV Jr.)
and cooperative exploration by the Scout rovers and
the laboratory rovers (ATRV and one ATRV Jr.).
The ATRV Jr. rovers have already beed used as an
outdoor formation to study relative navigation, com-
munication, control and autonomy issues associated
with multi-vehicle fleets. The rovers will be com-
bined with blimps to build a heterogeneous team for
surface exploration. The blimps can be used tethered
or free flying to provide additional ground coverage.

The Kirk compiler, written in Lisp, converts the
RMPL program to TPN specification files (off-line).
Kirk’s planner, written in C++, generates a plan
from the TPN and checks consistency. Kirk’s exec-
utive takes the resulting partially ordered temporal
plan and executes it on the multi-vehicle testbed.
The rovers are equipped with sufficient on-board
computing resources for vehicle control, sensor data
processing, on-line execution of the Kirk planner, of
Kirk’s executive and the RTT path planning.

9 Discussion

The primary contribution of this paper is the Re-
active Model-based Programming Language and
the Temporal Plan Network representation. The
algorithms presented here only begin to explore
RMPL/TPN-based planning. The following are
some example directions for further research.

TPNs reduces online planning to graph search.
Our current implementation, which uses chronologi-
cal search, performs well with no search guidance up
to TPNs of the size of the enroute example (about
100 nodes in the expanded TPN after planning). We
are therefore exploring a reimplementation that ap-
plies a more sophisticated search strategy.

An important element of practical temporal plan-
ners in the space domain, such as HSTS[9] and
IxTeT[7], is the ability to plan with depletable re-
sources. Can RMPL and TPNs be similarly extended
to support decision theoretic planning and agile ma-
neuver planning, common to robotic vehicles?

Finally, RMPL allows the programmer to con-
strain the family of possible behaviors that the plan-
ner considers when controlling an embedded system.
It is important that this family of behaviors be safe.
Embedded languages like Esterel, Lustre and Sig-
nal offer a clean semantics, and offer support for di-
rect machine verification of safety and liveness prop-
erties. The verification of RMPL programs would
be similar, but requires methods, such as timed au-

tomata verification, that support metric constraints
and non-determinism.

Acknowledgments

This research was supported in part by the ONR un-
der contract N00014-99-1-1080, by the DARPA MO-
BIES program under contract F33615-00-C-1702,
and by NASA’s Cross Enterprise Technology Devel-
opment program under contract NAG2-1466.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, 1993.

[2] T. Cormen, C Leiserson, and R. Rivest. Introduction
to Algorithms. MIT Press, Camb., MA, 1990.

[3] R. Dechter, I. Meiri, and J. Pearl. Temporal con-
straint networks. AIJ, 49:61–95, 1991.

[4] R. James Firby. The RAP language manual. Tech-
nical Report AAP-6, Univ. Chicago, 1995.

[5] N. Halbwachs. Synchronous programming of reactive
systems. Kluwer Academic, 1993.

[6] P. Kim, B. C. Williams, and M. Abramson. Execut-
ing reactive, model-based programs through graph-
based temporal planning. In Proceedings of IJCAI-
01, 2001.

[7] P. Laborie and M. Ghallab. Planning with sharable
resource constraints. In Proceedings of IJCAI-95.

[8] S. LaValle. Rapidly-exploring random trees: A new
tool for path planning. Technical report, Dept. of
Computer Science, Iowa State University, 1998.

[9] N. Muscettola. HSTS: Integrating planning and
scheduling. In Intelligent Scheduling. Morgan Kauf-
mann, 1994.

[10] N. Muscettola, P. Morris, B. Pell, and B. Smith.
Issues in temporal reasoning for autonomous control
systems. In Autonomous Agents, 1998.

[11] N. Muscettola, P. Nayak, B. Pell, and B. C.
Williams. The new millennium remote agent. Arti-
ficial Intelligence, 103(1-2):5–48, 1998.

[12] I. Tsamardinos, N. Muscettola, and P. Morris. Fast
transformation of temporal plans for efficient execu-
tion. In Proceedings of AAAI-98, 1998.

[13] D. Weld. An introduction to least commitment plan-
ning. In AI Magazine, 1994.

[14] D. Weld. Recent advances in ai planning. In AI
Magazine, 1999.

[15] B. C. Williams, S. Chung, and V. Gupta. Mode
estimation of model-based programs: Monitoring
systems with complex behavior. In Proceedings of
IJCAI-01, 2001.

