
Autonomous Sequencing and Model-based

Fault Protection for Space Interferometry

Michel Ingham, Brian Williams
Space Systems Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{ingham, williams}@mit.edu

Thomas Lockhart, Amalaye Oyake,
Micah Clark, Abdullah Aljabri

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109
{firstname.lastname}@jpl.nasa.gov

Keywords model-based autonomy, autonomous
agents, execution, sequencing, fault protection, fault
recovery, mode estimation, reconfiguration, optical
interferometry, space telescopes

Abstract

The Remote Agent is a software set for sophisticated
monitoring and control of complex systems. Flight
validated as an experiment on the Deep Space One
spacecraft, it has been repackaged as the foundation
for process control in space-based optical interfer-
ometry applications. Two main elements of the Re-
mote Agent autonomy architecture, Livingstone and
the Smart Executive, are being integrated with the
Real-Time Control software controlling various inter-
ferometry testbeds at the Jet Propulsion Laboratory.
The application of these technologies to robust au-
tonomous sequencing, model-based fault protection
and control of a ground-based interferometer testbed
has been demonstrated, in the context of a repre-
sentative observation scenario. This paper describes
the functionality of these software elements, provides
an overview of the system models developed for this
task, and discusses the demonstrated capabilities of
the integrated system. The goal of this paper is to
provide an example of how state-of-the-art model-
based autonomy technology is integrated with a com-
plex aerospace system, and to highlight the lessons
learned from the integration process.

1 Introduction

Model-based autonomy is emerging as a technol-
ogy with significant potential for application to the
next generation of highly autonomous aerospace sys-
tems. The current state-of-the-art in model-based
autonomy software is embodied in the Remote Agent
(RA), a software set for sophisticated monitoring and

control of complex systems. In the Remote Agent ap-
proach, Artificial Intelligence technology is used to
encode the operational rules and system constraints
within the flight software. The software may be con-
sidered a ”remote agent” of the spacecraft’s ground
operators: the operators rely on the RA to monitor
the spacecraft and achieve particular mission goals
[1]. The RA was flown and demonstrated onboard
the Deep Space One (DS1) spacecraft in May 1999.
In two separate experiments, the RA was given con-
trol of DS1 and demonstrated the ability to respond
to high-level goals by generating and executing plans,
under the watchful eye of model-based mode identi-
fication and reconfiguration (MIR) software [2].

This paper documents an effort to integrate model-
based autonomy technology into a complex aerospace
system. In particular, the main goal of this task is
to demonstrate autonomous control of an interfer-
ometer instrument by implementing a model-based
fault protection system and autonomous sequencing
on an interferometer testbed, in the context of a
representative observation scenario. Two main el-
ements of the RA autonomy architecture, the MIR
element (Livingstone), and the Smart Executive el-
ement (EXEC), are being integrated with the Real-
Time Control (RTC) software controlling various in-
terferometry testbeds at the Jet Propulsion Labora-
tory. The RA components adapted for use in optical
interferometers, along with the necessary interface
software packages, are collectively dubbed Remote
Agent for Interferometry (RAI).

Motivation

Model-based autonomy has significant potential for
application to future NASA missions: Livingstone
and EXEC are being considered to provide high-
level control on the Space Interferometry Mission
(SIM), currently scheduled for launch in 2009, and



on the StarLight (formerly Space Technology 3) mis-
sion, planned for 2005. These two technologies, com-
bined with an autonomous planner, provide the core
of the RA architecture. In addition, a more ad-
vanced MIR system, called Burton [3], is currently
being integrated with the US Air Force’s TechSat21
Autonomous Sciencecraft Constellation mission [4].
Considering the significant dependence of future mis-
sions on such key autonomy capabilities, it is criti-
cal to perform rigorous testing of the integrated au-
tonomous system, in order to anticipate its behavior
under all possible operational scenarios.

An optical interferometer instrument consists of nu-
merous components, with significant component in-
teraction. Each component is likely to have mul-
tiple possible failure modes, often involving multi-
step recovery procedures. When dealing with such
a complex system, integrated pre-flight testing is all
the more essential. A successful demonstration on a
ground testbed is the first step toward broader ac-
ceptance of autonomy technology in the aerospace
community, and possible adoption in future missions.
A successful demonstration consists of showing that
the RAI system can provide the basic capabilities re-
quired for monitored execution of complex sequences
during nominal interferometer operations, but even
more importantly, that it can robustly recover from
most likely types of failure (e.g. loss of metrology
lock, unsuccessful metrology pointing search, etc),
and provide robustness in the face of more subtle
failures.

Paper Overview

First, background on the design of an optical interfer-
ometer and on the Livingstone and EXEC software
packages is provided. The overall system architec-
ture of the integrated RAI/RTC system is also de-
scribed. The paper then provides an overview of the
testbed component models developed for use by Liv-
ingstone, the model-based fault protection system.
It discusses the EXEC sequencer constructs used to
robustly control the testbeds. The paper then high-
lights the demonstrated capabilities, addresses the
lessons learned in developing the autonomous con-
trol system, and finally, proposes avenues for future
work.

2 Background

This section presents background on optical interfer-
ometry and the Remote Agent software technology.
It should be noted that it is beyond the scope of this
paper to delve into either of these topics in extensive
detail. References are suggested here, which provide

Baseline

Internal
Metrology
Laser Source

Fiducial
Fiducial

Siderostat
Siderostat

External
Delay

Stellar Wavefront

Delay
Line

a

Fringe
Detector

Beam
Combiner

Baseline

Internal
Metrology
Laser Source

Fiducial
Fiducial

Siderostat
Siderostat

External
Delay

Stellar Wavefront

Delay
Line

a

Fringe
Detector

Beam
Combiner

Figure 1: Simplified single-baseline Michelson inter-
ferometer

a more thorough description of this background ma-
terial.

2.1 Optical Interferometry

Long-baseline optical interferometry has been iden-
tified by NASA as a critical technology for the next
generation of ground- and space-based telescopes.
The basic idea is that light from multiple apertures
can be interfered, providing the equivalent resolu-
tion of a much larger telescope. In order to elim-
inate the image-polluting effects of the Earth’s at-
mosphere, which reduce the effectiveness of ground-
based telescopes, NASA is designing a series of space-
based telescopes to be launched in the next decade
or so. These space observatories, including the
StarLight interferometer, SIM, and the Terrestrial
Planet Finder, are part of NASA’s Origins program.

Figure 1 shows a simplified diagram represent-
ing a single-baseline optical Michelson stellar in-
terferometer. Two physically separated telescopes
(siderostats) collect starlight, and via a series of mir-
rors, bring the light to a beam combiner. Based on
the interference pattern from the combined beams, a
measurement of the external delay can be obtained,
providing information on the angular position (a) of
the observed star. In this section, the mechanisms
used to measure external delay are discussed, with
the goal of introducing the behavior and interactions
of the components modeled in the RAI system.

Prior to acquiring any science data, the instrument’s
steerable optics must be pointed toward the target
star. The accurate pointing of the instrument is
enabled by the star tracker component, which en-
compasses the closed-loop system involving a sidero-
stat (for low-bandwidth, coarse pointing control), at
least one fast-steering mirror (for high-bandwidth,



fine pointing control) and one detector. There is a
star tracker associated with each of the two optical
paths in the interferometer system.

Once the two individual science light paths have been
established, light from the two collectors is combined
at the beam combiner, typically with a half-silvered
mirror, through reflection of one beam and trans-
mission of the other. The combined beam is then
focused onto a detector, which senses either a bright
fringe (constructive interference) or a dark fringe (de-
structive interference), depending on the total op-
tical path difference (OPD) between the two light
paths (or ”arms”). A bright fringe is seen on the de-
tector when the OPD is an integral number of wave-
lengths. Furthermore, for the usual case of white
light, a peak in the fringe intensity is seen when the
OPD is exactly zero. As OPD increases, the inter-
ference pattern becomes incoherent, and the detector
records the mean intensity of the two beams.

To achieve zero OPD, the instrument must introduce
an internal delay in one of the two light paths, usu-
ally by adjusting the position of a movable delay line.
The delay line is a multi-staged device consisting of a
movable trolley (coarse stage), a voice-coil (interme-
diate stage), and piezoceramic actuator (fine stage).
When the delay line position is set such that the peak
intensity is detected, the fringe visibility amplitude
can be read off the detector. Fringe visibility phase,
which is necessary to obtain precise astrometric mea-
surements, is extracted by dithering the path delay
(using a dither input to the piezo stage on the delay
line). The fringe tracker component, consisting of
the closed-loop system involving the delay line and
the science detector, is entrusted with keeping the
central peak fringe ”locked” on the detector during
observations.

The measurement of the internal delay introduced in
the delay line is done with an internal metrology sys-
tem, consisting of a laser source which is split into
two different beams, one for each arm of the interfer-
ometer. These two beams travel down the same two
paths as the science light beams, from the beam com-
biner to the outer-most siderostats and back. A laser
counter sensor is used to monitor the phase of the
laser light fringes seen in the recombined metrology
beam, providing an ongoing measure of the relative
pathlength difference between the two arms.

The discussion of the design and operation of an opti-
cal interferometer as presented in this subsection has
been significantly simplified. A more thorough de-
scription of the instrument can be found in [5]. The
corresponding operational details for a separated-
spacecraft interferometer, such as the StarLight mis-

Internal MetrologyInternal Metrology
Component ModelComponent Model

LockedLocked

ResetReset

UnlockedUnlocked
homesethomeset --

cmdcmd
reachedreached --
homesethomeset --

cmdcmd

homesethomeset --
cmdcmd

Mode constraint:
(not (counter_delta = out)) No mode constraints

Mode constraint:
(not (counter_delta = out))

“likely”“likely”

“likely”“likely”

Internal MetrologyInternal Metrology
Component ModelComponent Model

LockedLocked

ResetReset

UnlockedUnlocked
homesethomeset --

cmdcmd
reachedreached --
homesethomeset --

cmdcmd

homesethomeset --
cmdcmd

Mode constraint:
(not (counter_delta = out)) No mode constraints

Mode constraint:
(not (counter_delta = out))

“likely”“likely”

“likely”“likely”

Figure 2: Transition system model for the Internal
Metrology component

sion, are provided in [6].

2.2 Remote Agent

The Remote Agent is a set of software allowing so-
phisticated monitoring and control for complex pro-
cess control problems. Flight-validated as an exper-
iment on the DS1 spacecraft [2], it has been repack-
aged as the foundation for process control in optical
interferometry applications. Remote Agent for Inter-
ferometry consists of two of the original RA software
elements, Livingstone and EXEC. Each of these ele-
ments will now be discussed in further detail.

2.2.1 Livingstone

Livingstone is a model-based monitoring, diagnosis
and reconfiguration engine that performs significant
deduction in the sense/response loop [7]. It uses
common-sense qualitative models of spacecraft com-
ponents and subsystems, expressed in a transition
system formulation. The model dynamics are cap-
tured in concurrent automata, as shown in Figure 2
for the simple ”Internal Metrology” component. The
states of each component automaton correspond to
modes, with behaviors described by associated con-
straints. Transitions between modes can be either
probabilistic or deterministic. System models are
built compositionally by connecting the transition
system models of the different components.

In the Internal Metrology component example, the
locked and reset modes are ”nominal” modes, and
the unlocked mode is a ”fault” mode. Mode con-
straints are expressed in terms of variables over finite
domains, e.g.:

counter delta ∈ { hold, track, slew, out }
Livingstone models compile down to propositional



Controller

Plant

mode
identification

mode 
reconfiguration

s’(t)

c(t)

ff
s (t)

gg

o(t)

Model GoalsController

Plant

mode
identification

mode 
reconfiguration

s’(t)

c(t)

ff
s (t)

gg

o(t)

Model Goals

Figure 3: Control diagram showing Livingstone in-
terface to a system (plant)

logic clauses, e.g.:
(mode = locked) ⇒ (¬(counter delta = out))
(mode = locked) ∧ (dl cmd in = homeset)

⇒ (next(mode = reset))

It should be noted that only transitions to nomi-
nal modes are modeled deterministically within the
clauses. Fault modes are associated with probability
values (e.g. ”likely”, in the example from Figure 2
corresponds to a probability value of 1%), which are
used during the diagnosis procedure.

As shown in Figure 3, Livingstone is essentially a
discrete model-based controller. Its sensing compo-
nent (Mode Identification) takes as inputs observa-
tions from the plant. Based on these observations
and its internal model of the system, it monitors
the state of the system. As soon as a discrepancy
between predicted and observed state is detected,
it reasons through the propositional models to de-
termine the most likely current state of the system.
In the event of a failure, Livingstone’s commanding
component (Mode Reconfiguration) can suggest a re-
covery action to take in order to achieve a desired
goal configuration.

2.2.2 EXEC

EXEC is a robust, event-driven, goal-oriented and
multi-threaded plan execution system. It is writ-
ten in a rich procedural language, Execution Sup-
port Language (ESL), which is an extension to multi-
threaded Common Lisp. ESL provides the following
features, allowing the encoding of execution knowl-
edge into embedded autonomous agents [8]:

• Contingency Handling - ESL provides con-
structs for signaling that failures have occurred
and for specifying recovery procedures.

• Timekeeping - ESL is designed to integrate
seamlessly with external timekeeping sources,

providing capabilities for scheduling and time-
out specification.

• Goal Achievement - ESL provides special
syntax for decoupling achievement conditions
and the methods of achieving those conditions.
These goal achievement capabilities are similar
to those provided by the RAPs executive [9].

• Task Management - ESL supports multiple
concurrent tasks, by leveraging Common Lisp’s
multi-threading features. Task synchronization
is provided by data objects called ’events’. A
task can be made to wait for an event, causing
it to block until another task signals that event.

• Logical Database - A logical database is pro-
vided as a modular functionality in ESL. The
database can be used by an executive to store
the monitored state variables of the system.

• Property Locks - ESL provides a mechanism
for controlling inter-task conflicts (e.g. one task
thread trying to turn on a device while a concur-
rent task requires it to be off). Property locks
are used to coordinate tasks so they do not try
to achieve different values for a single property
at the same time.

Using ESL constructs corresponding to the above
features, EXEC code can be structured so as to pro-
vide plan running and sequencing capabilities for
the RA [10]. Since the RAI architecture does not
currently include a planner/scheduler component,
the discussion in this paper will refer to EXEC’s
sequencing capabilities, rather than plan running.
EXEC’s ability to express time-driven, event-driven,
and context-sensitive relationships between activities
provides a rich framework for robust sequencing.

3 RAI/RTC Architecture

As illustrated in the system architecture diagram
(Figure 4), the Remote Agent and Real-Time Con-
trol software can run on separate processors. In the
ground testbed environment, the Unix station host-
ing RA communicates with the PowerPC board run-
ning the VxWorks-based RTC, via a CORBA (Com-
mon Object Request Broker Architecture) interface.
Commands flow from the EXEC element of the RA
to the RTC, while telemetry streams from RTC are
received by the RA monitor processes, and con-
verted to the qualitative information used by Living-
stone. The monitor values can be sent to Livingstone
directly, or they can be ”disguised” as commands
(called ”pseudo-commands”) if the monitor values
need to be able to trigger nominal state changes.
These translations to pseudo-commands are neces-



EXEC

Livingstone

RecoveriesCommands

RTC

Telemetry 
Server

REMOTE AGENT

ACE -TAO ORB

ALLEGRO ORBLINK

CLASH IPC
Monitors

Recovery
Requests

State
updates

Pseudo -
Commands

Monitor
Values

CLASH MESSAGES
CORBA MESSAGES

Telemetry Data

Telemetry Data

Commands

ACE -TAO ORB

EXEC

Livingstone

RecoveriesCommands

RTC

Telemetry 
Server

REMOTE AGENT

ACE -TAO ORB

ALLEGRO ORBLINK

CLASH IPC
Monitors

Recovery
Requests

State
updates

Pseudo -
Commands

Monitor
Values

CLASH MESSAGES
CORBA MESSAGES

Telemetry Data

Telemetry Data

Commands

ACE -TAO ORB

Figure 4: RAI and RTC system architecture

sary, because direct monitor values (”observables”)
can only be used to trigger failure transitions.

Interfacing between EXEC and Livingstone is done
through CLASH, a socket-based inter-process com-
munication system. The interface allows for infor-
mation exchange in the form of commands, state up-
dates, recovery strategy requests and recovery sug-
gestions. Livingstone uses the telemetry information
from RTC and knowledge of the EXEC-issued com-
mands to monitor the state of the system, and in-
forms EXEC of any inferred configuration changes.
This interaction with MIR provides a level of abstrac-
tion to the EXEC, allowing it to reason at the level
of system states. If a transition to a failure state is
diagnosed, EXEC uses Livingstone’s mode reconfig-
uration capability to come up with a recovery action,
which it can then execute by issuing the appropriate
commands to RTC.

4 Livingstone Modeling

This section of the paper provides an overview of
the various interferometer component models built
for Livingstone, with the goal of conveying the com-
plexity of their behavior and interactions. The mod-
els discussed here are those required to establish lin-
ear metrology and fringe tracking for a single inter-
ferometer baseline of the SIM Test Bed 3 (STB-3)
at JPL. The components modeled for this task are:
delay line, front and back limit switch sensors, path
dither, laser counter, internal metrology and fringe
tracker. Space limitations preclude a full descrip-
tion of each assembled component model. However,
a brief overview of each model follows, highlighting
the inputs, outputs and modes.

Limit Switch Sensor - The limit switch sensors for
the delay line are modeled as distinct components. A
common model for sensors is used, allowing instan-
tiation of limit switches at the front and back of the

idle−
cmd

homeset−
cmd

reached−
homeset−
cmd

ping back−
cmd

front−
cmd

track−
cmd

reached−
back−
cmd

reached−
front−
cmd

reached−
track−
cmd

offline idle homing home

off
backing back

unknown
fronting front

slewing track

Figure 5: Delay Line model (not all possible transi-
tions are shown)

trolley track. These sensors indicate when the trolley
has reached the front or back of its travel. This type
of component takes no input, and outputs an on-off
signal, as well as a health state. The model for the
limit switch is very simple, consisting of one nominal
mode (in which the signal output is ”on” when the
DL is on the sensor, and ”off” otherwise), and one
broken mode (capturing any off-nominal behavior).
It should be noted that there is currently no measure
of the health-state of a sensor on STB-3. This lack of
observability precludes transitions into broken mode.

Delay Line - The delay line (DL) provides coarse
and fine path length control within an arm of an in-
terferometer baseline. However, control of the fine
stages is captured within the fringe tracker and path
dither models. As such, the DL model mainly cap-
tures the coarse action of the trolley stage. The
DL component takes as inputs signals from the front
and back limit switch sensors, the home sensor sig-
nal (which turns on when the trolley passes over the
fixed home sensor), the laser counter delta (rate of
change between successive laser counter readings),
and a delay line command. It outputs a DL servo-
state telemetry item. Figure 5 illustrates the model
for the DL, including the modes and some of the
commanded transitions. Here, as for all the following
components, the mode constraints are omitted from
the figure for the sake of clarity. It should also be
noted that all transition label commands beginning
with ”reached” correspond to pseudo-commands, as
described in Section 3 (e.g. when the DL trolley
finally settles onto the home sensor after being is-
sued the ’homeset’ command, the ’reached-homeset’
pseudo-command is fired).

Path Dither - The path dither (PD) component is
modeled as distinct from the DL, though it repre-
sents dithering of its piezo stage. Once the form of
the dither signal has been calibrated, the PD enables



on−cmd

off−cmd

off−cmd

off−cmd calibrate−
cmd

calibrate−
cmd

reached−
calibrated−
cmd

off uncalibrated

calibrating

calibrated

Figure 6: Path Dither model

"any DL
 motion
 cmd"

"any DL
 motion
 cmd"

reached−
homeset−
cmd

zero−
cmd

reached−
homeset−
cmd

zero−
cmd

not−zeroed

implicitly−
zeroed

zeroed

unknown

Figure 7: Laser Counter model

an integrated measurement over a full wavelength of
the science light. The PD component takes as input
a PD command, and outputs a health state. There is
currently no telemetry for PD health on STB-3, so it
is assumed to behave nominally. Figure 6 illustrates
the model for the PD.

Laser Counter - The laser counter (LC) compo-
nent is used to measure the relative delay between
two arms of an interferometer baseline. It counts the
number of metrology laser beam wavefronts seen on
its detector, starting from a ”zero” reference point.
The LC takes as inputs a laser counter command and
a delay line command (the LC gets implicitly-zeroed
when the ’reached-homeset’ pseudo-command is is-
sued). The LC outputs the counter value and the
counter delta (sudden jumps in the counter delta
value signal that metrology lock has been broken).
Figure 7 describes the LC model.

Internal Metrology - The internal metrology (IM)
state is modeled as a distinct component, separate
from the LC. The IM system takes as inputs the LC
counter delta and DL command. The model is sim-
ple, as shown in Figure 2. The IM is reset when
the ’homeset’ DL command is issued, and becomes
locked when the ’reached-homeset’ pseudo-command
is fired. IM becomes unlocked if a jump in counter
delta is detected, as a result of the metrology laser
beam being broken.

idle−
cmdidle−

cmd

track−
cmd

idle−
cmd

idle−
cmd

idle−
cmd

ping reached−
search−
cmd

reached−
search−
cmd

reached−
semi−lock−
cmd

reached−
search−
cmdreached−

lock−
cmd

idleoffline track

off
search

semi−
lock

lock

unknown

Figure 8: Fringe Tracker model (not all possible tran-
sitions are shown)

Fringe Tracker - The fringe tracker (FT) compo-
nent encompasses the closed-loop system involving
the DL and the science camera. As mentioned above,
the fine stages of the DL are controlled by the FT.
It should be noted that correct operation of the FT
component depends on the activation and successful
calibration of the PD component. The FT compo-
nent takes as input the FT command, and it outputs
a FT servo-state telemetry item. Figure 8 describes
the FT model. The track, search and semi-lock are
transient intermediate states passed through on the
way to the lock mode. Lock is achieved once the RTC
indicates via telemetry that the closed-loop control
of the FT is successfully tracking the science fringe.

Other models, corresponding to components of the
starlight pointing subsystem (including the star
tracker) and components of the angular metrology
subsystem, have been developed, but they will not be
discussed here. The angular metrology subsystem is
required to establish and maintain the IM laser beam
link between the individual free-flying spacecraft in
a separated spacecraft interferometer.

5 EXEC Constructs

In order to construct a robust sequencing engine
for an interferometer system, many of the features
provided by ESL are leveraged. The EXEC code
must incorporate constructs for exception handling,
timeouts, concurrent thread spawning, event syn-
chronization, goal achievement, and resource man-
agement.

In building up the EXEC sequencing constructs, a
hierarchical object-based approach was adopted, to
maximize modularity of the procedural code. The
following architectural principles were established:



1. Use a single Application Programming Interface
(API) for low-level commanding of all devices

2. Provide a common API for issuing state achieve-
ment requests to all devices

3. Bound all operations and commands by well-
defined timeouts, to allow exception handling in
case of communication or hardware failures

4. Allow context-sensitive recovery actions, for all
anticipated failure scenarios

5. Define a common structure for similar EXEC
objects associated with different devices

The set of EXEC constructs is divided into gen-
eral and component-specific constructs. The gen-
eral constructs include code for issuing commands
over the CLASH and CORBA links, state database
initialization, and state transition event definition.
The component-specific constructs include timeout
definitions, state achievement functions, and re-
covery procedures. By layering and combining
the component-specific constructs, it then becomes
straightforward to define ”composite” or subsystem-
level constructs, e.g. constructs enabling achieve-
ment and maintenance of fringe tracking, which re-
quires establishing IM lock (by homesetting the delay
line and implicitly zeroing the laser counter), estab-
lishing delay line tracking, activating and calibrating
the path dither, and finally, closing the fringe tracker
servo loop.

6 Demonstrated Capabilities

Using the Livingstone models presented in Section
4 and the EXEC code described in Section 5, au-
tonomous control of a nominal operation scenario
was demonstrated on the STB-3 testbed. A vari-
ety of features were successfully implemented, rang-
ing from basic interactive commanding of testbed
components to more complex constructs for state
achievement and maintenance, with autonomous re-
coveries. The demonstrated scenario consisted of
bringing the interferometer instrument online from
an idle state, achieving internal metrology lock, and
acquiring the science fringe. In particular, the steps
of the nominal procedure were as follows:

• Initial state: DL and FT both in idle mode, LC
not-zeroed, PD off, IM unlocked ;

• Send DL to front of track;
• Calibrate PD;
• Homeset DL (which zeroes LC and locks IM);
• Slew DL to estimated fringe position;
• With DL tracking, perform fringe search;

• When science fringe is detected, FT locks onto
fringe.

Robustness of the system was tested by artificially
introducing a fault into the system while fringe track-
ing: in this case, causing the internal metrology to
lose lock (by introducing a transient interruption in
the metrology beam). The RAI system correctly di-
agnosed the fault and initiated a recovery sequence,
resulting in re-acquisition of internal metrology lock,
followed by re-acquisition of fringe tracking.

7 Lessons Learned

The principal lessons learned during development,
integration and testing of the RAI modules were:

Interface complexity - Dealing with the complex
interfaces between various modules in the system
(Livingstone, EXEC, and RTC) proved to be one
of the most significant challenges encountered. This
highlights the importance of establishing clear inter-
face specifications for future integration efforts.

Scoping of the models - As currently modeled,
there are Livingstone models of ”primitive” compo-
nents, like the limit switch sensors, more complex
components like the delay line and fringe tracker
(which encompasses some delay line functionality
coupled with a science camera), and at an even
more abstract level, the internal metrology compo-
nent (which is not a physical component at all, but
rather an abstraction for the lock state of the delay
line/laser counter subsystem). Although the current
model captures the required functionality, scoping
the models differently might prove more effective.

Flexibility of the Interface Definition Lan-
guage (IDL) - For the purposes of this task, the IDL
established by the RTC system was assumed fixed.
The RA models proved flexible enough to accommo-
date the fixed command and object vocabulary, at
least for the purposes of this preliminary demonstra-
tion. However, in order to optimize the effectiveness
of the system for future development, feedback from
the RA modeling process should be used in defin-
ing/refining the IDL. Parallel and mutually influenc-
ing development of the RA process control code and
the RTC software can only improve the overall per-
formance of the system.

System observability - One frustration that was
frequently encountered was the absence or inaccessi-
bility of a desired telemetry item (e.g. limit switch
health, path dither calibration status). This chal-
lenge points again to the potential benefit of using
the RA modeling process to help define the RTC



telemetry structure for optimal system performance.

Multi-step recoveries - The MIR implementation
used for this task only provides single-step recovery
actions. In order to accomplish multiple-step recov-
ery procedures such as restoring internal metrology
lock, knowledge of the recovery sequences must be
encoded within EXEC. It would be better to allow
MIR to reason through multiple steps of model in-
teractions. This capability has been developed in the
Burton reactive planner [3]. Incorporation of Burton
into RAI is targeted as future work.

Commanded nominal transitions - Another lim-
itation of the MIR implementation used in this task
is that its underlying transition system model re-
quires that transitions between nominal modes be
conditioned only on commands. A workaround was
implemented within the RAI monitors, effectively al-
lowing transitions to be conditioned on observables
(in the form of pseudo-commands), but this is not an
elegant or particularly intuitive solution to the prob-
lem. A more general transition system model, allow-
ing transitions between nominal modes conditioned
on any variable, including observable and state vari-
ables, would lead to a more capable MIR module.

8 Future Work

The following tasks are identified for future work:

- Streamlining of the RAI/RTC interface code and
file structure, including replacement of CLASH in-
terfaces with CORBA.
- Improvement of model fidelity. Each component
has been modeled such that its operational states are
captured as modes. Future work might include inde-
pendent consideration of operational states, health
states, power states, and calibration states. A com-
ponent ”mode” would then consist of an assignment
to each of these states. Also, the interferometer sys-
tem performance might be improved by accurately
modeling the ”quality” of the FT lock, which might
degrade over the tracking process, and might require
returning to the search mode.
- Investigation of issues arising from concurrent com-
manding of multiple interferometer baselines, as will
be the case for SIM.
- RAI deployment on other interferometer testbeds.
- Integration of the Burton reactive planner.
- Integration of an updated C++ MIR system [11].
- Investigation of an alternative to EXEC, possi-
bly including an integrated model-based execution
framework [12], or an integrated planning/execution
system [13], both currently under development.

9 Acknowledgments

This paper describes work performed at the Jet
Propulsion Laboratory, California Institute of Tech-
nology, under contract from the National Aeronau-
tics and Space Administration.

References
[1] Bernard, D.E. et al., ”Design of the Remote

Agent Experiment for Spacecraft Autonomy”,
Proc. of the IEEE Aerospace Conference, 1999.

[2] Nayak, P.P. et al., ”Validating the DS1 Re-
mote Agent Experiment”, Proc. of iSAIRAS-
1999, 1999.

[3] Williams, B.C. and Nayak, P.P., ”A Reactive
Planner for a Model-Based Executive”, Proc. of
IJCAI-97, 1997.

[4] Chien, S. et al., ”An Autonomous Sciencecraft
Constellation”, Proc. of iSAIRAS-2001, 2001.

[5] Space Interferometry Mission - Taking the Mea-
sure of the Universe, Danner, R. and Unwin,
S., editors, NASA/JPL publication, California
Institute of Technology, Pasadena, CA, March
1999.

[6] Lay, O., ST3 Instrument Requirements and De-
sign Document, version 1.0, JPL Internal Doc-
ument ST3-3-5101, January 2000.

[7] Williams, B.C. and Nayak, P.P., ”A Model-
Based Approach to Reactive Self-Configuring
Systems”, Proc. of AAAI-96, 1996.

[8] Gat, E., ”ESL: A Language for Supporting Ro-
bust Plan Execution in Embedded Autonomous
Agents”, Proc. of the AAAI Fall Symposium on
Plan Execution, 1996.

[9] Firby, R.J., Adaptive Execution in Dynamic Do-
mains, Ph.D. Thesis, Yale University Depart-
ment of Computer Science, 1989.

[10] Pell, B. et al., ”The Remote Agent Execu-
tive: Capabilities to Support Integrated Robotic
Agents”, Proc. of the AAAI Spring Symposium
on Integrated Robotic Architectures, 1998.

[11] Kurien, J. and Nayak, P.P., ”Back to the Fu-
ture with Consistency-based Trajectory Track-
ing”, Proc. of AAAI-2000, 2000.

[12] Ingham, M., Ragno, R. and Williams, B.,
”A Reactive Model-based Programming Lan-
guage for Robotic Space Explorers”, Proc. of
iSAIRAS-2001, 2001.

[13] Muscettola, N., et al.,”A Unified Approach to
Model-Based Planning and Execution”, Proc. of
the 6th International Conference on Intelligent
Autonomous Systems (IAS-6), 2000.


