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Abstract

Deductive mode-estimation has become an es-
sential component of robotic space systems, like
NASA’s deep space probes. Future robots will
serve as components of large robotic networks.
Monitoring these networks will require modeling
languages and estimators that handle the sophisti-
cated behaviors of robotic components. This pa-
per introduces RMPL, a rich modeling language
that combines reactive programming constructs
with probabilistic, constraint-based modeling, and
that offers a simple semantics in terms of hidden
Markov models (HMMs). To support efficient real-
time deduction, we translate RMPL models into a
compact encoding of HMMs called probabilistic
hierarchical constraint automata (PHCA). Finally,
we use these models to track a system’s most likely
states by extending traditional HMM belief update.

1 Introduction
Highly autonomous systems are being developed, such
as NASA’s Deep Space One probe (DS-1) and the X-34
Reusable launch vehicle, that involve sophisticated model-
based planning and mode-estimation capabilities to support
autonomous commanding, monitoring and diagnosis. Given
an observation sequence, a mode estimator, such as Living-
stone [Williams and Nayak, 1996], incrementally tracks the
most likely state trajectories of a system, in terms of the cor-
rect or faulty modes of every component.

A recent trend is to aggregate autonomous systems into
robotic networks, for example, that create multi-spacecraft
telescopes, perform coordinated Mars exploration, or perform
multi vehicle search and rescue. Novel model-based methods
need to be developed to monitor and coordinate these com-
plex systems.

An example of a complex device is DS-1, which flies by an
asteroid and comet using ion propulsion. DS-1’s basic func-
tions include weekly course correction (called optical naviga-
tion), thrusting along a desired trajectory, taking science read-
ings and transferring data to earth. Each function involves a
complex coordination between software and hardware. For
example, optical navigation (OPNAV) works by taking pic-
tures of three asteroids, and by using the difference between

actual and projected locations to determine the course error.
OPNAV first shuts down the Ion engine and prepares its cam-
era concurrently. It then uses the thrusters to turn to each of
three asteroids, uses the camera to take a picture of each, and
stores each picture on disk. The three images are then read,
processed and a course correction is computed. One of the
more subtle failures that OPNAV may experience is a cor-
rupted camera image. The camera generates a faulty image,
which is stored on disk. At some later time the image is read,
processed, and only then is the failure detected. A monitoring
system must be able to estimate this event sequence based on
the delayed symptom.

Diagnosing the OPNAV failure requires tracking a trajec-
tory that reflects the above description. Identifying this tra-
jectory goes well beyond Livingstone’s abilities. Livingstone,
like most diagnostic systems, focuses on monitoring and di-
agnosing networks whose components, such as valves and
bus controllers, have simple behaviors. However, the above
trajectory spends most of its time wending its way through
software functions. DS-1 is an instance of modern embedded
systems whose components involve a mix of hardware, com-
putation and software. Robotic networks extend this trend to
component behaviors that are particularly sophisticated.

This paper addresses the challenge of modeling and moni-
toring systems composed of these complex components. We
introduce a unified language that can express a rich set of
mixed hardware and software behaviors (the Reactive Model-
based Programming Language [RMPL]). RMPL merges con-
structs from synchronous programming languages, quali-
tative modeling, Markov models and constraint program-
ming. Synchronous, embedded programming offers a class
of languages developed for writing control programs for re-
active systems [Benveniste and Berry, 1991; Saraswat et
al., 1996] — logical concurrency, preemption and exe-
cutable specifications. Markov models and constraint-based
modeling[Williams and Nayak, 1996] offer rich languages for
describing uncertainty and continuous processes at the quali-
tative level.

Given an RMPL model, we frame the problem of monitor-
ing robotic components as a variant of belief update on a hid-
den Markov model (HMM), where the HMM of the system is
described in RMPL. A key issue is the potentially enormous
state space of RMPL models. We address this by introducing
a hierachical, constraint-based encoding of an HMM, called a



probabilistic, hierarchical, constraint automata (PHCA). Next
we show how RMPL models can be compiled to equiva-
lent PHCAs. Finally, we demonstrate one approach in which
RMPL belief update can be performed by operating directly
on the compact PHCA encoding.

2 HMMs and Belief Update
The theory of HMMs offers a versatile tool for framing hid-
den state interpretation problems, including data transmis-
sion, speech and handwriting recognition, and genome se-
quencing. This section reviews HMMs and state estimation
through belief update.

An HMM is described by a tuple ���������	��
��
�����	� ��� . �
and � denote finite sets of feasible states ��� and observations� � . The initial state function, � 
�� � ��������� , denotes the proba-
bility that ��� is the initial state. The state transition function,
��� � ��� ��� �"!# ��� �$� %'&(� � , denotes the conditional probability that
��� ��� %)&(� is the next state, given current state �*� ��� � at time + . The
observation function, � � � ��� ��� � !# � � �$� ��� denotes the condi-
tional probability that � � ��� � is observed, given state �*� �$� � .

Belief update incrementally computes the current belief
state, that is, the likelihood that the system is in any state��� , conditioned on each control action performed and obser-
vation received, respectively:

, �.-
� %'&��/� � �0�21 P � � �(��� %'&��43 � �����5
6 �8787978� � ��� �5
: ��; �����5	6 78797�; ��� �5	: �
, ��� %)&�-	�/� ��� �21 P � �9� ��� %'&��43 � �����5 6 �8787978� � ��� %'&��5
: %'& ��; �����5 6 78787
; ��� �5 : �

Exploiting the Markov property, the belief state at time +=<?>
is computed from the belief state and control actions at time+ and observations at +'<@> using the standard equations. For
simplicity, control actions are made implicit within � � :
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The space of possible trajectories of an HMM can

be visualized using a Trellis diagram, which enumer-
ates all possible states at each time step and all tran-
sitions between states at adjacent times. Belief up-
date associates a probability to each state in the graph.
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3 Design Desiderata for RMPL
Returning to our example, OPNAV is best expressed at top-
level as a program:

OpNav() :: L
TurnCameraOn,
if EngineOn thennext SwitchEngineStandBy,
do

when EngineStandby M CameraOn donext L
TakePicture(1);
TakePicture(2);
TakePicture(3);L

TurnCameraOff,
ComputeCorrection()NN

watching PictureError O OpticalNavError,
when OpticalNavError donext OpNav(),
when PictureError donext OpNavFailedN

In this program comma delimits parallel processes and semi-
colon delimits sequential processes.

OPNAV highlights four key design features for RMPL.
First, the program exploits full concurrency, by intermingling
sequential and parallel threads of execution. For example, the
camera is turned on and the engine is turned off in parallel,
while pictures are taken serially. Second, it involves condi-
tional execution, such as switching to standby if the engine
is on. Third, it involves iteration; for example, “when En-
gine Standby 78797 donext 79787 ” says to iteratively test to see
if the engine is in standby and if so proceed. Fourth, the pro-
gram involves preemption; for example, “do 79787 watching ”
says to perfom a task, but to interrupt it as soon as the watch
condition is satisfied. Subroutines used by OpNav, such as
TakePicture, exploit similar features.

OpNav also relies on hardware behaviors, such as:

Camera :: always L
choose LL

if CameraOn then L
if TurnCameraOff thennext MicasOff
elsenext CameraOn,
if CameraTakePicture thennext CameraDoneN

,
if CameraOff then

if TurnCameraOn thennext CameraOn
elsenext CameraOff,

if CameraFail then
if MicasReset thennext CameraOff
elsenext CameraFailN

with0.99,
next CameraFail with 0.01NN

OpNav’s tight interaction with hardware makes the overall
process stochastic. We add probabilistic execution to our
design features to model failures and uncertain outcomes.
We add constraints to represent co-temporal interactions be-
tween state variables. Summarizing, the key design features
of RMPL are full concurrency, conditional execution, itera-
tion, preemption, probabilistic choice, and co-temporal con-
straint.



4 RMPL: Primitive Combinators
Our preferred approach to developing RMPL is to introduce a
minimum set of primitives for constructing programs, where
each primitive is driven by one of the six design features of
the preceding section. To make the language usable we de-
fine on top of these primitives a variety of program combi-
nators, such as those used in the optical navigation example.
In the following we use lower case letters, like � , to denote
constraints, and upper case letters, like

�
and � , to denote

well-formed RMPL expressions. The term “theory” refers to
the set of all constraints that hold at some time point.
� . This program asserts that constraint � is true at the initial

instant of time.
if � thennext

�
. This program starts behaving like

�
in the

next instant if the current theory entails � . This is the basic
conditional branch construct.

unless � thennext
�

. This program executes
�

in the next
instant if the current theory does not entail c. This is the ba-
sic construct for building preemption constructs. It allows A
to proceed as long as some condition is unknown, but stops
when the condition is determined.� ��� . This program concurrently executes A and B, and is
the basic construct for forking processes.

always
�

. This program starts a new copy of
�

at each
instant of time, for all time. This is the only iteration construct
needed, since finite iterations can be achieved by using if or
unless to terminate an always .

choose � � with �'��� with � � . This is the basic combinator
for expressing probabilistic knowledge. It reduces to program�

with probability � , to program � with probability � , and so
on. For simplicity we would like to ensure that constraints in
the current theory do not depend upon probabilistic choices
made in the current state. We achieve this by restricting all
constraints asserted within

�
and � to be within the scope of

an if 78797 next or unless 78797 next.
These six primitive combinators cover the six design fea-

tures. They have been used to implement a rich set of de-
rived combinators [anonymous] including those in the Op-
Nav example, and most from the Esterel language [Berry and
Gonthier, 1992]. The derived operators for OpNav, built from
these primitives, is given in Appendix A.

5 Hierarchical, Constraint Automata
To estimate RMPL state trajectories we would like to map
the six RMPL combinators to HMMs and then perform be-
lief update. However, while HMMs offer a natural way of
thinking about reactive systems, as a direct encoding they
are notoriously intractable. One of our key contributions is a
representation, called Probabilistic, Hierarchical, Constraint
Automata (PHCA) that compactly encodes HMMs describing
RMPL models.

PHCA extend HMMs by introducing four essential at-
tributes. First, the HMM is factored into a set of concurrently
operating automata. Second, each state is labeled with a con-
straint that holds whenever the automaton marks that state.
This allows an efficient encoding of co-temporal processes,
such as fluid flows. Third, automata are arranged in a hierar-
chy – the state of an automaton may itself be an automaton,

which is invoked when marked by its parent. This enables the
initiation and termination of more complex concurrent and se-
quential behaviors. Finally, each transition may have multiple
targets, allowing an automaton to be in several states simulta-
neously. This enables a compact representation for recursive
behaviors like “always” and “do until”.

The first two attributes are prevalent in areas like dig-
ital systems and qualitative modeling. The third and
fourth form the basis for embedded reactive languages like
Esterel[Berry and Gonthier, 1992], Lustre[Halbwachs et al.,
1991], Signal[Guernic et al., 1991] and State Charts[Harel,
1987]. Together they allow complex systems to be modeled
that involve software, digital hardware and continuous pro-
cesses.

We develop PHCAs by first introducing a deterministic
equivalent, and then extending to Markov models. We de-
scribe a deterministic, hierarchical, constraint automaton
(HCA) as a tuple ����� 
 ��� ��� �	��
 � � 
 � , where:
� � is a set of states, partitioned into primitive states ��


and composite states ��� . Each composite state denotes
a hierarchical, constraint automaton.

� 
�� � is the set of start states (also called the initial
marking).

� � is a set of variables with each � ����� ranging over
a finite domain � � � � � . � � � � denotes the set of all finite
domain constraints over � .

� � � � is the set of observable variables.
� ��
�� � 
�# � � � � , associates with each primitive state �*�

a finite domain constraint � 
�� � ��� that holds whenever � �
is marked.

� � 
��'� 
�� � � � � #! � associates with each primitive
state ��� a transition function � 
 � ��� � . Each � 
 � �9� � �
� � � � #" � , specifies a set of states to be marked at
time + < > , given assignments to � at time + .

At any instant + the “state” of an HCA is the set of marked
states #�� ��� �%$ � , called a marking. & denotes the set of
possible markings, where & B  � .

Consider the combinator always
�

, which maps to:

� always
�

This automaton starts a new copy of
�

at each time instant.
The states � of the automaton consist of primitive state � C('*) ,
drawn to the left as a circle, and composite state

�
, drawn to

the right as a rectangle. The start states 
 are � C('*) and
�

, as
is indicated by two short arrows.

A PHCA models physical processes with changing inter-
actions by enabling and disabling constraints within a con-
straint store (e.g., opening a valve causes fuel to flow to an
engine). RMPL currently supports propositional state logic
as its constraint system. In state logic each proposition is an
assignment � � B,+ � E , where variable � � ranges over a finite
domain � � � �-� . Constraints � 
 are indicated by lower case



letters, such as � , written in the middle of a primitive state. If
no constraint is indicated, the state’s constraint is implicitly
True. In the above example � C('*) implicitly has constraint
True; other constraints may be hidden within

�
.

Transitions between successive states are conditioned on
constraints entailed by the store (e.g., the presence or absence
of acceleration). This allows us to model indirect control and
indirect effects. For each primitive state � we represent the
transition function � 
 � � � as a set of (transition) pairs ��� �
�	��� � ,
where � � � � , and � � is a set of labels of the form 3 B � or�3 B � , for some � � � � � � . This corresponds to the traditional
representation of transitions, as labeled arcs in a graph, where� and ��� are the source and destination of an arc with label � � .
For convenience, in our diagrams we use � to denote the label3 B � , and � to denote the label

�3 B � . If no label is indicated, it
is implicitly 3 B True. The above example has two transitions,
both with labels that are implicitly 3 B True.

Our HCA encoding has three key properties that distin-
guish it from the hierarchical automata employed by reac-
tive embedded languages[Benveniste and Berry, 1991; Harel,
1987]. First, multiple transitions may be simultaneously tra-
versed. This allows an extremely compact encoding of the
state of the automaton as a set of markings. Second, transi-
tions are conditioned on what can be deduced, not just what is
explicitly assigned. This provides a simple but general mech-
anism for incorporating constraint systems that reason about
indirect effects. Third, transitions are enabled based on lack
of information. This allows default executions to be pursued
in the absence of better information, enabling advanced pre-
emption constructs.

6 Executing HCA
To execute an automata A, we first initialize it using
#�� � 
 � � �	� , which marks the start states of all its subau-
tomata, and then step it using � +���� � � � , which maps its cur-
rent marking to a next marking. 1

A trajectory of automaton
�

is a sequence of mark-
ings #�� ����� �	# E �H&�� �878797 such that #�� �$�	� is the initial
marking #�� � 
 � , and for each �	��
 , # � �
��%)&(� B
� +���� � � ��# E �
�$� � .

Given a set of automata # to be initialized, # � � # � creates
a full marking, by recursively marking the start states of #
and all their descendants:

# � � # � B #������ # � � 
 � � ��� 3 � � # �	� is composite �
For example, applying #�� to automata always

�
, returns the

set consisting of always
�

, � C('*) ,
�

and any start states con-
tained within

�
.� +���� transitions an automaton A from one full marking to

the next:� +���� � � ��# � ��� �	� # # E ��� %)&(� ::
> 7�� > � B ��� �%# � ��� � 3 � is primitive �
 7�� � B��	����� & � 
�� � � 7��  � B"!#����� & � 
 � � ��� �$ 7 return #�� � �  �

1Execution “completes” when no marks remain, since the empty
marking is a fixed point.

� +���� involves identifying the marked primitive states (Step
1), collecting the constraints of these marked states into a
constraint store (Step 2), identifying the transitions of marked
states that are enabled by the store and the resulting states
reached (Step 3), and, initializing any automata reached by
this transition (Step 4). The result is a full marking for the
next time step.

To transition in step 3, let ��� ������� � � � 
 � � � be any transi-
tion pair of a currently marked primitive state � . Then � � is
marked in the next instant if � � is entailed by the current con-
straint store, � (computed in step 2). A label � � is said to be
entailed by � , written � 3 B%� � , if & 3 B � � � �(7'� 3 B � , and for
each

�3 B � � �0� 7 � �3 B � .2
Applying � +���� to the initial marking of always

�
causes� C('*) to transition to

�
and back to � C(' ) , and for

�
to tran-

sition internally. The new mark on
�

invokes a second copy
of
�

, by marking
�)( � start states. More generally, � C(' ) is re-

sponsible for initiating A during every time step after the first.
A transition back to itself ensures that � C('*) is always marked.
The transition to

�
puts a new mark on

�
at every next step,

each time invoking a virtual copy of
�

. The ability of an au-
tomaton to have multiple states marked simultaneously is key
to the compactness of this novel encoding, by avoiding the
need for explicit copies of A.

7 A Simple Example
As an example consider the RMPL expression:

do
� always ���
when * donext always if � thennext + �

watching ,
This expression roughly maps to:

� +
,

* ,

* ,
,

,
� ,

The automaton has two start states, both of which are com-
posite. Every transition is labeled

�3 B , , hence all transitions
are disabled and the automaton is preempted whenever d be-
comes true. The first state has one primitive state, which as-
serts the constraint � . If , does not hold, then it goes back
to itself — thus it repeatedly asserts � until , becomes true.
The second automaton has a primitive start state. Once again,
at anytime if , becomes true, the entire automaton will im-
mediately terminate. Otherwise it waits until * becomes true,
and then goes to its second state, which is composite. This
automaton has one start state, which it repeats at every time
instant until , holds. In addition, it starts another automaton,
which checks if � holds, and if true generates + in the next

2Formally, -).0/21436587:9 L 1<;>=?/A@B;�3�1<;270C	-D.0/21<7E3�5"=9F@G; N .



state. Thus, the behavior of the overall automaton is as fol-
lows: it starts asserting � at every time instant. If * becomes
true, then at every instant thereafter it checks if � is true, and
asserts + in the succeeding instant. Throughout it watches for, to become true, and if so halts.

8 Probabilistic HCA
We extend HCA to Markov processes by replacing the single
initial marking and transition function of HCA with a prob-
ability distribution over possible initial markings and transi-
tion functions. We describe a probabilistic, hierarchical, con-
straint automata by a tuple ��� �	� 
 ��� ��� �	��
 �
� � 
 � , where:
� � , � , � and ��
 are the same as for HCA.
� � 
 � #�� � denotes the probability that # � � � is the ini-

tial marking.
� � � 
 � ��� � , for each �*� � � 
 , denotes a distribution over

possible transition functions � 
 E
� � ��� � � � � � #  � .

The transition function � � 
 � � ��� is encoded as an AND/OR
tree. We present an example at the end of the next section,
when describing the choose combinator.

PHCA execution is similar to HCA execution, except that
# � probabilistically selects an initial marking, and �"+����
probabilistically selects one of the transition functions in��� 
 for each marked primitive state. The probability of

a marking # ����� � is computed by the standard belief update
equations given in Section 2. This involves computing � �
and � � .

To calculate transition function � � for marking #�� recall
that a transition � is composed of a set of primitive tran-
sitions, one for each marked primitive state � � , and that the
PHCA specifies the transition probability for each primitive
state through � � 
 � �9� � . We make the key assumption that
primitive transition probabilities are conditionally indepen-
dent, given the current marking. This is analogous to the
failure independence assumptions made by GDE[de Kleer
and Williams, 1987] and Livingstone[Williams and Nayak,
1996], and is a reasonable assumption for most engineered
systems. Hence, the composite transition probability between
two markings is computed as the product of the transition
probabilities from each primitive state in the first marking to
a state in the second marking.

We calculate the observation function � � for marking
#�� from the model, similar to GDE[de Kleer and Williams,
1987]. Given the constraint store � for # � from step 2 of� +���� , we test if each observation in � � is entailed or refuted,
giving it probability 1 or 0, respectively. If no prediction is
made, then an a priori distribution on observables is assumed
(e.g., a uniform distribution of >���� for � possible values).

This completes PHCA belief update. Our remaining tasks
are to compile RMPL to PHCA, and to implement belief up-
date efficiently.

9 Mapping RMPL to PHCA
Each RMPL primitive maps to a PHCA as defined below.
RMPL sub-expressions, denoted by upper case letters, are re-
cursively mapped to equivalent PHCA.

� . Asserts constraint � at the initial instant of time:

�

The start state has no exit transitions, so after this automaton
asserts � in the first time instant it terminates.

if � thennext
�

. Behaves like
�

in the next instant if the
current theory entails � . Given the automaton for

�
, we add a

new start state, and a transition from this state to
�

when � is
entailed:

�
�

if � thennext
�

unless � thennext
�

. Executes
�

in the next instant if
the current theory does not entail c. This mapping is anal-
ogous to if � thennext

�
. It is the only construct that in-

troduces condition
�3 B � . This introduces non-monotonicity;

however, since these non-monotonic conditions hold only in
the next instant, the logic is stratified and monotonic in each
state. This avoids the kinds of causal paradoxes possible in
languages like Esterel[Berry and Gonthier, 1992].

�
�

unless � thennext
�

� ��� . This is the parallel composition of two automata.
The composite automaton has two start states, given by the
two automata for

�
and � .

� �
� ���

always
�

. Starts a new copy of
�

at each time instant, as
described in Section 5.

choose � � with �'��� with � � . Reduces to
�

with proba-
bility � , to � with probability � , and so on. Recall that we
required that all constraints asserted within

�
and � must

be within the scope of a next. This ensures that probabili-
ties are associated only with transitions. The corresponding
automaton is encoded with a single probabilistic start transi-
tion, which allows us to choose between

�
and � . This is the

only combinator that introduces probabilistic transitions.

�
� �

�

choose � � with �'��� with � �



Encoding probabilistic choice requires special attention
due to the use of nested choose expressions. We encode the
transition function � 
 � � �-� as a probabilistic AND-OR tree
(below, left), enabling a simple transformation from nested
choose expressions to a PHCA.

� & ��� � & ��� � & ��� � & ���
� & ���

� & � � ��� ���
=

� & � �
� � ��� � & ���

� � � �

A B C D A C B C A D B D

In this tree each leaf is labeled with a set of one or more
target states in � , which the automaton transitions to in the
next time step. The branches * � # +�� E of a probabilis-
tic OR node * � represent a distribution over a disjoint set
of alternatives, and are labeled with conditional probabilities
P � + � E 3 * � � . These are � & 78797 � � in the left tree. The proba-
bilities of branches emanating from each OR node * � sum to
unity.

The branches of a deterministic AND node represent an in-
clusive set of choices. The node is indicated by a horizontal
bar through its branches. Each branch is labeled by a set of
conditions � � E , as defined for HCA. These are � & and ��� in the
left tree. During a transition, every branch in an AND node
is taken that has its label satisfied by the current state (i.e.,
P � +�� E 3 * ��� � � E � B > ).

To map this tree to � 
 � ��� � , each AND-OR tree is compiled
to a two level tree (shown above, right), with the root node
being a probabilistic OR, and its children being deterministic
ANDs. Compilation is performed using distributivity, shown
by the figure, and commutativity. Commutativity allows ad-
jacent AND nodes to be merged, by taking conjunctions of
labels, and adjacent OR nodes to be merged, by taking prod-
ucts of probabilities. This two level tree is a direct encoding
of � 
 � ��� � . Each AND node represents one of the transition
functions � 
 E

� �9� � , while the probability on the OR branch,
terminating on this AND node, denotes � � � 
 E

� � ���	� .
10 PHCA Estimation as Beam Search
We demonstrate PHCA belief update with a simple imple-
mentation of mode estimation, called RMPL-ME, that fol-
lows Livingstone[Williams and Nayak, 1996]. Livingstone
tracks the most likely trajectories through the Trellis diagram
by using beam search, which expands only the highest prob-
ability transitions at each step. To implement this we first
modify � +���� , defined for HCA, to compute the likely states of, �.-
� %'&���� #�� � . This new version, Step 
 , returns a set of mark-
ings, each with its own probability.

� +���� 
 � � �	#�� ��� � � # # E ��� %)&(� ::
> 7 � > � B �*� � #�� ��� � 3 � is primitive �
 7 � � B��#����� & � 
�� � � * 7��  * � B � ����� & � 
 � � � � � +*7 �  + � B � � # � � ! C� F & ���9��� � � � C� F & � � �3 � � � & � � & � �9787879� � � C � � C � � ���  * � ��7 # E ��� %'&�� � B � � � � K �
	�� 
 � ��� ��
 � �43�� � � � � ���  + �$ 7 return # E �$� %'&(�

Step 3a builds the sets of possible primitive transitions. Step
3b computes for each set the combined next state mark-
ing and transition probability. Step 3c sums the probabili-
ties of all composite transitions with the same target. Step
4 returns this approximate belief state. In Steps 3a and
b, we enumerate transition sets in decreasing order of like-
lihood until most of the probability density space is cov-
ered (e.g., ����� ). Best first enumeration is performed using
our OPSAT system, generalized from [Williams and Nayak,
1996]. OPSAT finds the leading solutions to the problem
“ *������������ ��� � subject to � ��� � ,” where � is a state vector,� ��� � is a set of propositional state constraints, and � ��� � is
an additive, multi-attribute utility function. OPSAT tests a
leading candidate for consistency against � ��� � . If it proves
inconsistent, OPSAT summarizes the inconsistency (called a
conflict) and uses the summary to jump over leading candi-
dates that are similarly inconsistent.

After computing the leading states of , �.-
� %'&(�8� #�� � , RMPL-
ME computes � � � # ����� � !# � ����� ��� using the constraint store
extracted in step 2, and uses these results to compute the final
result , ��� %'&
-	��� # �A� , from the standard equation.

11 Implementation and Discussion

Implementations of the RMPL compiler, RMPL-ME and OP-
SAT are written in Common Lisp. The full RMPL language
is an object-oriented language, in the style of Java, that sup-
ports all primitive combinators (Section 4) and a variety of
defined combinators. The RMPL compiler outputs PHCA
as its object code. RMPL-ME uses the compiled PHCAs to
perform online incremental belief update, as outlined above.
To support real-time embedded applications, RMPL-ME and
OPSAT are being rewritten in C and C++.

The DS1 OpNav example provides a simple demonstra-
tion of RMP-ME. In addition RMPL-ME is being developed
in two mission contexts. First, the C prototype is being
demonstrated on the MIT Spheres formation flying testbed,
a “robotic network” of three, soccer ball sized spacecraft that
have flown on the KC-135. RMPL models are also being
developed for the John Hopkins APL NEAR (Near Earth As-
teroid Rendezous) mission.

Beam search is among the simplest of estimation ap-
proaches. It avoids an exponential blow up in the space of tra-
jectories explored and avoids explicitly generating the Trellis
diagram, but sacrifices completeness. Consequently it will
miss a diagnosis if the beginning of its trajectory is suffi-
ciently unlikely that it is clipped by beam search. A range of
solutions to this problem exist, including an approach, due to
[Hamscher and Davis, 1984], that uses a temporal constraint
graph analogous to planning graphs. This encoding coupled
with state abstraction methods has recently been incorporated
into Livingstone [Kurien and Nayak, 2000], with attractive
performance results. Another area of research is the incor-
poration of metric time. [Largouet and Cordier, 2000] intro-
duces an intriguing approach based on model-checking algo-
rithms for timed automata. Finally, [Malik and Struss, 1997]
explores the discriminatory power of transitions vs state con-
straints in a consistency-based framework.
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A RMPL Defined Operators
To express complex behaviors in RMPL, we use the six
RMPL primitives to define a rich set of constructs common
to embedded languages, such as recursion, conditional exe-
cution, next, sequence, iteration and preemption. This sec-
tion includes a representative sample of RMPL’s derived con-
structs, used to support the DS1 opnav example.

Recursion and procedure definitions. A recursive decla-
ration is of the form �,� � � � � � , where

�
may contain occur-

rences of procedure name � . We implement this declaration
with always if � then

� � � ��� � . At each time tick the expres-
sion looks to see if p is asserted (corresponding to p being
invoked), and if so starts A. This method allows us to do
parameterless recursion. Recursion with parameters is only
guaranteed to be compilable into finite state automata if the
recursion parameters have finite domains.

next
�

. This is simply if + ��� � thennext
�

. We
can also define if � thennext

� �����	��
�� ��
 � as
if � thennext

� � unless � thennext � .

A; B. This is the sequential composition of
�

and � . It
performs

�
until

�
is finished. Then it starts B. It can be

written in terms of the preceding constructs by detecting the
termination of

�
by a proposition, and using that to trigger

� . RMPL detects the termination of
�

by a case analysis
of the structure of

�
. [Fromherz et al., 1997] for details).

For efficiency, the RMPL compiler implements A; B directly,
rather than translating to basic combinators.

do
�

while � . Executes
�

, but if � is not true in a state, then�
is terminated immediately. This combinator can be derived

from the preceding combinators as follows:

do � while � 9������
do / if � thennext � 7 while � 9

if � M � thennext do � while �
do /�� 3��D7 while � 9 do � while �<3 do � while �
do / always � 7 while � 9�� 3 always if /�� M ��7 then/ do � while � 3 next � 7
do / unless � thennext � 7 while �09

if � then unless � thennext / do � while ��7
do / choose � � with� 3�� with ���B7 while � 9

choose / do � while � with� 3 do � while � with � 7
For efficiency, RMPL derives the automaton for

do
�

while � from the automaton for A by adding the
label 3 B � to all transitions in

�
, and in addition, replacing all

the propositional formulas  in the states by � #  . Thus if
� is not entailed by constraints outside of A, no transition or
constraint in this automaton will be enabled.

do
�

watching � . This is a weak preemption operator. It
executes

�
, but if � becomes true in any time instant, it termi-

nates execution of
�

in the next instant. The automaton for
this is derived from the automaton for

�
by adding the label�3 B � on all transitions in

�
.

when � donext
�

. This starts
�

at the instant after the first
one in which � becomes true. It is a temporally extended
version of if � thennext

�
. and is defined as:

when � donext
� B

always if � *"!%� � thennext
� � do always * watching �
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