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Abstract

Real-world applications of autonomous agents require coor-
dinated groups to work in collaboration. Dependable sys-
tems must plan and carry out activities in a way that is ro-
bust to failure and uncertainty. Previous work has produced
algorithms that provide robustness at the planning phase, by
choosing between functionally redundant methods, and the
execution phase, by dispatching temporally flexible plans.
However, these algorithms use a centralized architecture in
which all computation is performed by a single processor. As
a result, these implementations require significant computa-
tional capabilities, introduce a single point of failure, do not
scale well, and suffer from communication bottlenecks.

This paper introduces the plan extraction component of a ro-
bust, distributed executive for contingent plans. Contingent
plans are encoded as Temporal Plan Networks (TPNs), which
compose temporally flexible plans hierarchically and provide
a choose operator. First, the TPN is distributed over multiple
agents, by creating a hierarchical ad-hoc network and map-
ping the TPN onto this hierarchy. Second, candidate plans
are extracted from the TPN with a distributed, parallel algo-
rithm that exploits the structure of the TPN. Third, temporal
consistency of the candidate plans is tested using a distributed
Bellman-Ford algorithm. This algorithm is empirically vali-
dated on randomized contingent plans.

Introduction

The ability to command coordinated groups of autonomous
agents is key to many real-world tasks, such as the construc-
tion of a Lunar habitat. In order to achieve this goal, we must
perform robust execution of contingent, temporally flexible
plans in a distributed manner. Methods have been devel-
oped for the dynamic execution (Morris & Muscettola 1999)
of temporally flexible plans (Dechter, Meiri, & Pearl 1990).
These methods adapt to failures that fall within the margins
of the temporally flexible plans and hence add robustness to
execution uncertainties.

To address plan failure, (Kim, Williams, & Abramson
2001) introduced a system called Kirk, that performs dy-
namic execution of temporally flexible plans with contin-
gencies. These contingent plans are encoded as alternative
choices between functionally equivalent sub-plans. In Kirk,
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the contingent plans are represented by a Temporal Plan Net-
work (TPN) (Kim, Williams, & Abramson 2001), which
extends temporally flexible plans with a nested choose op-
erator. To dynamically execute a TPN, Kirk continuously
extracts a plan from the TPN that is temporally feasible,
given the execution history, and dispatches the plan, using
the methods of (Tsamardinos, Muscettola, & Morris 1998).
Dynamic execution of contingent plans adds robustness to
plan failure. However, as a centralized approach, Kirk is ex-
tremely brittle to the loss of the processor performing exe-
cution and, in the case of multi-agent coordination, is brittle
to loss of communication.

We address these two limitations through a distributed
version of Kirk, which performs distributed dynamic exe-
cution of contingent temporally flexible plans. This paper
focuses on the algorithm for dynamically selecting a feasi-
ble plan from a TPN. Methods for performing distributed
execution of the plan are presented in (Stedl 2004). Our key
innovation is a hierarchical algorithm for searching a TPN
for a feasible plan in a distributed manner. In particular,
our plan selection algorithm, called the Distributed Tempo-
ral Planner (DTP), is comprised of three stages.

1. Distribute the TPN across the processor network,

2. Generate candidate plans through distributed search on
the TPN, and

3. Test the generated plans for temporal consistency.

This paper begins with an example TPN and an overview
of the way in which DTP operates on it. We provide a formal
definition of a TPN and then discuss the three stages of DTP.
Finally, we discuss the complexity of the DTP algorithm and
present experimental results demonstrating its performance.

Example Scenario

In this section, we discuss at a high level the three step ap-
proach taken by DTP to solve an example problem. A TPN
is to be executed by a group of seven processors, p1, . . . , p7.
The TPN is represented as a graph in Fig. 1, where nodes
represent points in time and arcs represent activities. A
node at which multiple choices exist for the following path
through the TPN is a choice node and is shown as an in-
scribed circle.

First, the TPN itself is distributed over the processors to
allow the plan selection to take place in a distributed fash-
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Figure 1: Example TPN

ion. To facilitate this, a leader election algorithm is used to
arrange the processors into a hierarchy (Fig. 2). The hierar-
chical structure of the TPN is then used to map subnetworks
to processors. For example, the head processor p1 handles
the merging of multiple branches of the plan at the start node
(node A) and the end node (node B). It passes responsibility
for each of the two main subnetworks to the two processors
immediately beneath it in the hierarchy. Nodes C,D,E,F,G,H
are passed to p2 and nodes I,J,K,L,M,N are passed to p3.

p6

p3

p7

p1

p2

p4 p5

Figure 2: A three-level hierarchy formed by leader election

The processors then work together to extract a tempo-
rally consistent plan from the TPN. The first stage gener-
ates a candidate plan, which corresponds to selecting a sin-
gle subnetwork from the plan at each of the choice nodes.
This is done in a hierarchical fashion, where each processor
sends messages to its neighbors, requesting that they make
selections in the subnetworks for which they are responsible.
These selections are made in parallel. In this example, only
the subnetwork owned by p2 (nodes C,D,E,F,G,H) contains
a choice of path, so p2 must decide between ActivityA and
ActivityB, whereas p3 has no choice to make.

Having generated a candidate plan, the third and final step
of DTP is to test it for consistency. Again, this is done
in a hierarchical fashion, where consistency checks are first
made at the lowest level and successful candidates are then
checked at an increasingly high level. For example, p2 and
p3 simultaneously check that their subnetworks are inter-
nally consistent. If so, p1 then checks that the two candi-
dates are consistent when executed in parallel. In DTP, can-
didate generation and consistency checking are interleaved,
such that some processors generate candidates while others
simultaneously check consistency.

Temporal Plan Networks

A TPN augments temporally flexible plans with a choose

operator and is used by DTP to represent a contingent, tem-
porally flexible plan. The choose operator allows us to
specify nested choices in the plan, where each choice is an

alternative sub-plan that performs the same function.
The primitive element of a TPN is an activity[l, u],

which is a hardware command with a simple temporal con-
straint. The simple temporal constraint [l, u] places a bound
t+ − t− ∈ [l, u] on the start time t− and end time t+ of the
network to which it is applied. A TPN is built from a group
of activities and is defined recursively using the choose,
parallel and sequence operators, which derive from
the Reactive Model-based Programming Language (RMPL)
(Williams et al. 2003).

• choose(TPN1, . . . , TPNN ) introduces multiple sub-
networks of which only one is to be chosen. A choice
variable is used at the start node to encode the currently
selected subnetwork. A choice variable is active if it falls
within the currently selected portion of the TPN.

• parallel(TPN1, . . . , TPNN ) [l, u] introduces multi-
ple subnetworks to be executed concurrently. A simple
temporal constraint is applied to the entire network. Each
subnetwork is referred to as a child subnetwork.

• sequence(TPN1, . . . , TPNN ) [l, u] introduces multi-
ple subnetworks which are to be executed sequentially.
A simple temporal constraint is applied to the entire net-
work. For a given subnetwork, the subnetwork following
it in a sequence network is referred to as its successor.

Graph representations of the activity, choose,
parallel and sequence network types are shown in
Fig. 3. Nodes represent time events and directed edges rep-
resent simple temporal constraints.
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Figure 3: TPN Constructs

Definition 1 A feasible solution of a TPN is an assign-
ment to choice variables such that 1) all active choice vari-
ables are assigned, 2) all inactive choice variables are unas-
signed, and 3) the currently selected temporally flexible plan
is temporally consistent. A temporally flexible plan is tem-
porally consistent if there exist times that can be assigned to
all events such that all temporal constraints are satisfied.

TPN Distribution
The DTP algorithm distributes the computation involved in
finding a feasible solution to the TPN over all available pro-
cessors. Consequently, the processors must be able to com-
municate with each other, in order to coordinate their ac-
tions. We therefore establish an ad-hoc communication net-
work such that adjacent processors are able to communicate.
In addition, an overall leader must be selected to communi-
cate with the outside world and initiate planning.



Ad-Hoc Processor Network Formation

We use the leader election algorithm in (Nagpal & Coore
1998) to arrange the processors into a hierarchical network,
an example of which is shown in Fig. 2. For each node,
the node immediately above it in the hierarchy is its leader,
those at the same level within that branch of the hierarchy
are its neighbor leaders and those directly below it in the
hierarchy are its followers. The leader election algorithm
forms the hierarchy using a message passing scheme and in
doing so, ensures that every node can communicate with its
leader, as well as all neighbor leaders and followers. In addi-
tion, the hierarchical nature of the network lends itself well
to the distribution of the TPN, which is also hierarchical.

TPN Distribution over the Processor Network

We implement the distribution of the DTP computation by
assigning to each processor responsibility for a number of
nodes from the TPN graph representation. Each processor
maintains all the data from the TPN relevant to the nodes for
which it is responsible.

This distribution scheme requires that processors respon-
sible for TPN nodes linked by temporal constraints are able
to communicate. The algorithm in Fig. 4 distributes the TPN
over the processor hierarchy such that this communication is
available. It allows distribution down to the level at which
a processor handles only a single node. This allows DTP to
operate on heterogeneous systems that include computation-
ally impoverished processors.

1: wait for TPN
2: n← number of followers of p
3: if TPN is of type activity then
4: assign start and end nodes of TPN to p
5: else
6: k ← number of subnetworks
7: assign start and end nodes to p
8: if n = 0 then
9: if p has a neighbor leader v then

10: send k

2
subnetworks of TPN to v

11: assign k

2
subnetworks of TPN to p

12: else
13: assign TPN to p
14: end if
15: else if n ≥ k then
16: for each of k subnetworks of TPN do
17: assign subnetwork of TPN to a follower of p
18: end for
19: else if n < k then
20: for each of n subnetworks of TPN do
21: assign subnetwork to a follower of p
22: end for
23: assign remaining (k − n) subnetworks of TPN to p
24: end if
25: end if

Figure 4: TPN Distribution Algorithm for node p

We now demonstrate the distribution algorithm using the
TPN in Fig. 1 and the processor hierarchy in Fig. 2. The
TPN is supplied from an external source, which establishes a
connection with the top leader, p1. The TPN is a parallel
network at the highest level, so processor p1 assigns the

start and end nodes (nodes A,B) to itself (line 7). There
are two subnetworks, which p1 assigns to its two follow-
ers, p2 and p3 (lines 15-18). p1 passes the choose net-
work (nodes C,D,E,F,G,H) to p2 and the sequence net-
work (nodes I,J,K,L,M,N) to p3. p2 and p3 then process
their networks in parallel. p2 assigns the start and end nodes
(nodes C,D) to itself (line 7). The network has two subnet-
works, which p2 assigns to two of its followers, p4 and p5
(lines 15-18). p2 passes ActivityA (nodes E,F) to p4 and
ActivityB (nodes G,H) to p5. Since activities can not be
decomposed, p4 and p5 assign nodes E,F and G,H, respec-
tively, to themselves (lines 3-4). Meanwhile, p3 receives
the sequence network and assigns the start and end nodes
(nodes I,J) to itself (line 7). The network has two subnet-
works, which p3 assigns to two of its followers, p6 and p7
(lines 15-18). p3 passes ActivityC (nodes K,L) to p6 and
ActivityD (nodes M,N) to p7. p6 and p7 then assign nodes
K,L and nodes M,N, respectively, to themselves (lines 3-4).

Candidate Plan Generation
Having distributed the TPN across the available processors,
DTP conducts search for candidate plans. These plans corre-
spond to different assignments to the choice variable at each
choice node (Mittal & Falkenhainer 1990). DTP uses paral-
lel, recursive, depth first search to make these assignments.
This use of parallel processing is one of the key advantages
of DTP over traditional centralized approaches. DTP is im-
plemented using a distributed message-passing architecture
and uses the following messages during candidate plan gen-
eration.

• findfirst instructs a network to make the initial search
for a consistent set of choice variable assignments.

• findnext is used when a network is consistent internally,
but is inconsistent with other networks. In this case, DTP
uses findnext messages to conduct a systematic search
for a new consistent assignment, in order to achieve global
consistency. findnext systematically moves through the
subnetworks and returns when the first new consistent as-
signment is found. Therefore, a successful findnext
message will cause a change to the value assigned to a sin-
gle choice variable, which may in turn cause other choice
variables to become active or inactive.

• fail indicates that no consistent set of assignments was
found and hence the current set of assignments within the
network is inconsistent.

• ack, short for acknowledge, indicates that a consistent set
of choice variable assignments has been found.

Whenever a node initiates search in its subnetworks, using
findfirst or findnext messages, the relevant processors
search the subnetworks simultaneously. This is the origin of
the parallelism in the algorithm.

DTP operates on three network types formed from the
four types fundamental to a TPN. These are activity,
parallel-sequence and choose-sequence, as shown
in Fig. 5, where the subnetworks Ai, . . . , Zi are of any of
these three types. We handle the simple temporal constraint
present on a sequence network by considering a sequence
network as a special case of a parallel-sequence net-
work, in which only one subnetwork exists.
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Figure 5: Constructs for DTP

This choice of network types requires that a network is
able to communicate directly with any its successor. This is
made possible by the Sequential Network Identifier (SNI),
which is a pointer to the start node of the successor network.

The following three sections describe the actions carried
out by the start node of each network type on receipt of a
findfirst or findnext message. Note that while a sim-
ple temporal constraint [l, u] is locally inconsistent if l > u,
we assume that the TPN is checked prior to running DTP, to
ensure that all temporal constraints are locally consistent.
This assumption means that only parallel-sequence

networks can introduce temporal inconsistencies.

Activity During search, an activity node propagates re-
quest messages forward and response messages backward.

Parallel-Sequence Network On receipt of a findfirst

message, the start node v of a parallel-sequence net-
work S calls parallel-findfirst(v) (Fig. 6). The node
initiates a search of S’s subnetworks and of any successor
network, in order to find a temporally consistent plan. First,
the start node sends findfirst messages to the start node
of each child subnetwork of the parallel structure (lines
2-4) and to the start node of the successor network, if present
(lines 5-7). These searches are thus conducted in parallel. If
any of the child subnetworks or the successor network re-
turns a fail message (line 12), then no consistent assign-
ment to the choice variables exists and the start node returns
fail (line 13).

Conversely, suppose that all child subnetworks and the
successor network return ack messages, indicating that vari-
able assignments have been made such that each is inter-
nally temporally consistent. The start node must then check
for consistency of the entire parallel network S (line 15).
This is performed by a distributed Bellman Ford consistency
checking algorithm, which is explained in the next section.
If the consistency check is successful, the start node returns
an ack message to its parent (line 16) and the search of the
parallel network is complete.

If, however, the consistency check is not successful, the
start node must continue searching through all permutations

1: parent← sender of msg
2: for each child do
3: send findfirst to w
4: end for
5: if successor B exists then
6: send findfirst to B
7: end if
8: wait for all responses from children
9: if successor B exists then

10: wait for response from B
11: end if
12: if any of the responses is fail then
13: send fail to parent
14: else
15: if check-consistency( v ) then
16: send ack to parent
17: else
18: if search-permutations(v) then
19: send ack to parent
20: else
21: send fail to parent
22: end if
23: end if
24: end if

Figure 6: parallel-findfirst(node v)

of assignments to the child subnetworks for a globally con-
sistent solution. It calls search-permutations(v) (line
18) and sends an ack message to its parent if this is success-
ful and a fail message otherwise.

In the search-permutations(node v) function
(Fig. 7), the start node sends findnext messages to each
subnetwork (lines 1-2). If a subnetwork returns fail, the
start node sends a findfirst message to that subnetwork
to reconfigure it to its original, consistent solution (lines
11-12) and we move on to the next subnetwork. If at any
point, a subnetwork returns ack, the start node tests for
global consistency and returns true if successful (lines
4-6). If the consistency check is unsuccessful, we try a
different permutation of variable assignments (line 8) and
continue searching. If all permutations are tested without
success, the function returns false (line 15).

1: for w = child-0 to child-n do
2: send findnext to w
3: wait for response
4: if response = ack then
5: if check-consistency( v ) then
6: return true
7: else
8: w ← child-0
9: end if

10: else
11: send findfirst to w
12: wait for response
13: end if
14: end for
15: return false

Figure 7: search-permutations(node v) function

When the start node v of a parallel-sequence

network receives a findnext message, it executes



parallel-findnext(v) (Fig. 8). First, the start node
calls search-permutations(v) to systematically search
all consistent assignments to its subnetworks, in order to find
a new globally consistent assignment (line 1). If this is suc-
cessful, the start node sends ack to its parent (line 2). If it
fails, however, the start node attempts to find a new assign-
ment to the successor network. If a successor network is
present, the start node sends a findnext message and re-
turns the response to its parent (lines 3-6). If no successor
network is present, then no globally consistent assignment
exists and the node returns fail (line 8).

1: if search-permutations() then
2: send ack to parent
3: else if successor B exists then
4: send findnext to B
5: wait for response
6: send response to parent
7: else
8: send fail to parent
9: end if

Figure 8: parallel-findnext(node v) function

Choose-Sequence Network When the start node of a
choose-sequence network receives a findfirst mes-
sage, it executes the choose-findfirst() function
(Fig. 9). The node searches for a consistent plan by mak-
ing an appropriate assignment to its choice variable. It also
initiates a search in any successor network. To do so, it
first sends a findfirst message to the successor network
if present (lines 2-4). It then systematically assigns each
possible value to the network’s choice variable and, in each
case, sends a findfirst message to the enabled subnet-
work (lines 5-7). If a subnetwork returns fail, indicating
that no consistent assignment exists, the current value of the
choice variable is trimmed from its domain to avoid futile
repeated searches (line 18), and the next value is assigned.

1: parent← sender of msg
2: if successor B exists then
3: send findfirst to B
4: end if
5: for w = child-0 to child-n do
6: choicevariable← w
7: send findfirst to w
8: wait for response from child w
9: if response = ack then

10: if successor B exists then
11: wait for response from successor B
12: send response to parent
13: else
14: send ack to parent
15: end if
16: return
17: else
18: remove w from child list
19: end if
20: end for
21: send fail to parent

Figure 9: choose-findfirst() function

As soon as a subnetwork returns ack, indicating that a

consistent assignment to the subnetwork was found, the start
node waits for a response from the successor network (if
present) to determine whether or not a consistent assignment
was found to it too (line 11). Once a response has been
received from the successor network, the start node forwards
this response to its parent and the search terminates (line 12).
If no successor network is present, the network is consistent
and the start node returns ack to its parent (line 14).

If all assignments to the network’s choice variable are
tried without receipt of an ack message from a child sub-
network, the start node returns fail to its parent, indicating
that no consistent assignment exists (line 21).

When the start node of a choose network receives a
findnext message, it executes the choose-findnext()

function (Fig. 10). The start node first attempts to find a new
consistent assignment for the network while maintaining the
current value of the choice variable. It does so by sending
findnext to the currently selected subnetwork (lines 1-2).
If the response is ack, a new consistent assignment has been
found, so the start node returns ack to its parent and the
search is over (lines 4-6).

1: w ← current assignment
2: send findnext to w
3: wait for response
4: if response = ack then
5: send ack to parent
6: return
7: end if
8: while w < child-n do
9: w ← next child

10: send findfirst to w
11: wait for response
12: if response = ack then
13: send ack to parent
14: return
15: else
16: remove w from child list
17: end if
18: end while
19: if successor B exists then
20: send findnext to B
21: for w = child0 to child-n do
22: choice variable← w
23: send findfirst to w
24: wait for response from child w
25: if response = ack then
26: break
27: end if
28: end for
29: wait for response from B
30: send response to parent
31: else
32: send fail to parent
33: end if

Figure 10: choose-findnext() function

If this fails, however, the start node searches through un-
explored assignments to the network’s choice variable, in
much the same way as it does on receipt of a findfirst

message (lines 8-18). Finally, if this strategy also fails, the
start node attempts to find a new consistent assignment in
any successor network, by sending a findnext message



to the node referenced by its SNI parameter (lines 19-20).
Note that the start node must reset the local network to the
previous consistent configuration, because the unsuccessful
search has left it in an inconsistent state. This is achieved by
repeating the search process used on receipt of a findfirst
message (lines 21-28). Once the successor network has
replied, the start node forwards the response to its parent
(lines 29-30).

Temporal Consistency Checking

Each of the candidate assignments generated during search
on the TPN must be tested for temporal consistency, which is
implemented by the check-consistency(node v) func-
tion. Consistency checking is performed with the distributed
Bellman-Ford Single Source Shortest Path algorithm (Lynch
1997), which is run on the distance graph corresponding to
the currently active portion of the TPN. Temporal inconsis-
tency is detected as a negative weight cycle (Dechter, Meiri,
& Pearl 1990). The consistency checking process is inter-
leaved with candidate generation, such that DTP simulta-
neously runs multiple instances of the distributed Bellman-
Ford algorithm on isolated subsets of the TPN.

The distributed Bellman-Ford algorithm has two key ad-
vantages. First, it requires only local knowledge of the net-
work at every processor. Second, when run synchronously,
it runs in time linear in the number of processors in the net-
work. DTP ensures synchronization by the fact that when-
ever a node initiates search in its subnetworks, it waits for
responses from all processors in the form of ack or fail
messages before proceeding.

Performance Analysis

The overall time complexity of the centralized planning al-
gorithm is worst-case exponential. The backtrack search
used to assign choice variables has worst-case time com-
plexity Ne, where N is the number of nodes and e is the
size of the domain of the choice variables. The Bellman-
Ford algorithm used for consistency checking has complex-
ity N2logN + NM , where M is the number of edges.

DTP also has exponential overall time complexity. The
backtrack search remains Ne in the worst case, but we gain
significant computational savings from the fact that the dis-
tributed Bellman-Ford algorithm runs in time N .

Discussion and Results

DTP was implemented in C++ and tested by simulating an
array of processors searching for a feasible solution of a
TPN, where exactly one node was assigned to each proces-
sor. The number of nodes in the TPN was varied between
1 and 100. In each case, the number of TPN constructs
(parallel, sequence or choose) was varied between 3
and 30 and the maximum recursive depth was varied be-
tween 4 and 10. Performance was measured by the num-
ber of listen-act-respond cycles completed by the processor
network.

Fig. 11 shows a plot of the number of cycles against the
number of nodes. The results showed that the variation in
the number of cycles, which is a measure of run-time, is

approximately linear with the number of nodes. The worst-
case time complexity of DTP is exponential, but this occurs
only when the TPN is composed entirely of choose net-
works, in which case there is no opportunity for parallel ex-
ecution. However, typical TPNs used in real applications
consist largely of parallel and sequence networks. This
allows processors to conduct parallel search and consistency
checks, which greatly reduces the time complexity of DTP.
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Figure 11: Number of cycles vs. number of nodes

This paper introduced the Distributed Temporal Planner
(DTP), which is the plan selection component of a dis-
tributed executive that operates on contingent, temporally
flexible plans. DTP distributes both data and processing
across all available agents. First, DTP forms a processor
hierarchy and assigns subnetworks from the TPN to each
processor. It then searches the TPN to generate candidate
plans, which are finally checked for temporal consistency.
DTP exploits the hierarchical nature of TPNs to allow paral-
lel processing in all three phases of the algorithm.
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