To appear in Proc. of ICAPS’05 Workshop on Verification and Validation of Model-based Planning and Scheduling Systems 1

Probabilistic Monitoring from Mixed Software and Hardware Specifications

Tsoline Mikaelian, Brian C. Williams, Martin Sachenbacher
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
32 Vassar St. Room 32-275, Cambridge, MA 02139
{tsoline, williams, sachenba}@mit.edu

Abstract

We introduce a capability for online monitoring and diagnosis
of stochastic systems with complex behavior. Our work com-
plements offline verification techniques for embedded sys-
tems. In most complex systems today, hardware is augmented
with software functions that influence the system’s behav-
ior. In this paper hardware models are extended to include
the behavior of associated embedded software, resulting in
more comprehensive estimates of a system’s state trajecto-
ries. Capturing the behavior of software is much more com-
plex than that of hardware due to the potentially enormous
state space of a program. This complexity is addressed by
using probabilistic, hierarchical, constraint-based automata
(PHCA) that allow the uniform and compact encoding of both
hardware and software behavior. We introduce a novel ap-
proach that frames PHCA-based diagnosis as a soft constraint
optimization problem over a finite time horizon. The problem
is solved using efficient, decomposition-based optimization
techniques. The solutions correspond to the most likely evo-
lutions of the software-extended system.

Introduction

Traditionally, model-based verification of embedded sys-
tems has focused on determining program correctness using
techniques such as symbolic model checking (J. R. Burch
& Hwang 1992). However, verification is performed offline
during design and development, and is not guaranteed to ver-
ify against all possible system failures. To complement of-
fline verification techniques, we introduce a novel capability
for online monitoring and diagnosis of systems with com-
plex, non-deterministic behavior. While verification tech-
niques typically result in counterexamples, monitoring and
diagnosis result in estimates of the system’s state trajecto-
ries.

Model-based monitoring has mainly operated on hard-
ware systems (de Kleer & Williams 1987; Dressler & Struss
1996). For instance, given an observation sequence, the Liv-
ingstone (Williams & Nayak 1996) diagnostic engine esti-
mates the state of hardware components based on hidden
Markov models that describe each component’s behavior in
terms of nominal and faulty modes. Researchers at the other
end of the spectrum have applied model-based diagnosis to
software debugging (Mayer & Stumptner 2004). This paper
explores the middle ground between the two, in particular

the online monitoring and diagnosis of systems with com-
bined hardware and software behavior.

Many complex systems today, such as spacecraft, robotic
networks, automobiles and medical devices consist of hard-
ware components whose functionality is extended or con-
trolled by embedded software. Examples of devices with
software-extended behavior include a communications mod-
ule with an associated device driver, and an inertial naviga-
tion unit with embedded software for trajectory determina-
tion. The embedded software in each of these systems in-
teracts with the hardware components and influences their
behavior. In order to correctly estimate the state of these
devices, it is essential to consider their software-extended
behavior.

As an example of a complex system, consider vision-
based navigation for an autonomous rover exploring the sur-
face of a planet. The camera used within the navigation sys-
tem is an instance of a device that has software-extended
behavior: the image processing software embedded within
the camera module augments the functionality of the cam-
era by processing each image and determining whether it’s
corrupt. A sensor measuring the camera voltage may be used
for estimating the physical state of the camera. A hardware
model of the camera describes its physical behavior in terms
of inputs, outputs and available sensor measurements. A di-
agnosis engine such as Livingstone that uses only hardware
models will not be able to reason about a corrupt image.
The embedded software provides additional information on
the quality of the image that is essential for correctly diag-
nosing the navigation system. To see why this is the case,
consider a scenario in which the camera sensor measures a
zero voltage. Based solely on hardware models of the cam-
era, the measurement sensor and the battery, the most likely
diagnoses will include camera failure, low battery voltage
and sensor fault. However, given a software-extended model
of the camera that models the process of obtaining a corrupt
image, the diagnostic engine may use the information on the
quality of the image. Knowing that the processed image is
not corrupt, the most likely diagnosis that the measurement
sensor is broken may be deduced.

The above scenario demonstrates that a monitoring engine
for complex systems with software-extended behavior must:
1) monitor the behavior of both the hardware and its embed-
ded software so that the software state can be used for di-

To appear in Proc. of ICAPS’05 Workshop on Verification and Validation of Model-based Planning and Scheduling Systems 2

agnosing the hardware, and 2) reason about the system state
given delayed symptoms. An instance of a delayed symp-
tom is the image quality determined by the camera software
after it has completed all stages of image processing.

In this paper we introduce a novel model-based mon-
itoring and diagnostic system that operates on software-
extended behavior models, to meet requirements 1) and 2)
listed above. In contrast to previous work on model-based
verification and software debugging (Mayer & Stumptner
2004), the purpose of this work is to leverage information
within the embedded software to refine the estimates of
physical systems. As such, we are not addressing the prob-
lem of diagnosing software bugs. Without loss of generality,
we assume that software bugs discovered at runtime are han-
dled by a separate exception handling mechanism.

First, we address modeling issues. Capturing the behav-
ior of software is much more complex than that of hard-
ware due to the hierarchical structure of a program and
the potentially large number of its execution paths. We
address this complexity by using probabilistic, hierarchi-
cal, constraint-based automata (PHCA) (Williams, Chung,
& Gupta 2001) that can uniformly and compactly encode
both hardware and software behavior. Building upon our
previous work, we introduce a novel capability for moni-
toring systems with software-extended behavior in the pres-
ence of delayed symptoms. While Livingstone-2 (L2)
(Kurien & Nayak 2000) handles delayed symptoms for di-
agnosing hardware systems, our approach generalizes this
capability to software-extended behavior by posing the
PHCA-based diagnosis problem over a finite time hori-
zon. We frame diagnosis as constraint optimization prob-
lem based on soft constraints that encode the structure and
semantics of PHCA. The problem is solved using efficient,
decomposition-based optimization techniques, resulting in
the most likely estimates of the software-extended system.

Modeling Software-Extended Behavior

Figure 1 shows the software-extended camera module for
the vision-based navigation scenario described above. In
this example, the failure probabilities for each of the bat-
tery, camera and sensor are 10%, 5% and 1% respectively.
A typical behavioral model of the camera is shown on the
left of Figure 2. The camera can be in one of 3 modes: on,
off or broken. The hardware behavior in each of the modes is
specified in terms of inputs to the camera such as the power
and the behavior of camera components such as the shutter.
The broken mode is unconstrained in order to accommodate
novel types of failures. Mode transitions can occur proba-

Failure Probability

10% [Battery
5% Camera

1% Sensor

Battery

Camera

Image
processing

Figure 1: Camera Module for Navigation System

(Power_in = (:eo:(\)’)ekm D:
nominal) AND (shutter =
(shutter = open) closed) Nominal N01n1nal Battery=low
g ttery— &am Broken
g
J cmd = turnOn,’ g. am= Bro Sensor Broken
0.05 /0.05 E
N / < SensOﬁBroken

0 1

Power On and
Take Picture

Broken

Observe
Sensor

Unconstrained voltage = zero

Figure 2: lefi: Behavior Model for the Camera Component. right:
Most likely diagnoses of the camera module based on hardware
component models. Nominal state = no failures.

Nominal Sensor=Broken

Nominal Battery low

Bat t.ery/lcn/. Cam=Broken
Cam Broke Sensor Broken

Sensor Broken

Battery=low
[
® Cam=Broken

Aqeqoig

0 1 2
Observe

Sensor

Time

Power On and
Take Picture

S/W behavior =>
Image not corrupt

voltage = zero

Figure 3: Most likely diagnoses of the camera module based on
the software-extended behavior models.

bilistically, or as a result of issued commands. The battery
and the sensor components can be modeled in a similar way.
For the scenario introduced above, the most likely diagnoses
of the module can be generated based on the hardware mod-
els alone, as shown on the right of Figure 2. However, the
image processing software provides extended functionality
that is not described by the model in Figure 2. The specifica-
tion of the embedded software can offer important evidence
that substantially alters the diagnosis. A sample specifica-
tion of the behavior of the image processing software may
take the following form:

If an image is taken by the camera, process it to deter-
mine whether it’s corrupt. If the image is corrupt, dis-
card it and reset the camera; retry until a non-corrupt
image is obtained for navigation. Once a high quality
image is stored, wait for new image request from navi-
gation unit.

Such a specification abstracts the behavior of the image
processing software implemented in an embedded program-
ming language such as Esterel (Berry & Gonthier 1992) or
RMPL (Williams, Chung, & Gupta 2001). For the above
scenario, the behavior of the embedded software provides
diagnostic information necessary to correctly estimate the
state of the camera module. Given that the image is not cor-
rupt, the possibility that the camera is broken becomes very
unlikely. This is illustrated in Figure 3.

Unlike a hardware component that can typically be de-
scribed by a single mode of behavior, monitoring soft-

»
>

Time

To appear in Proc. of ICAPS’05 Workshop on Verification and Validation of Model-based Planning and Scheduling Systems 3

ware behavior necessitates tracking simultaneous hierarchi-
cal modes. A modeling formalism that will allow the spec-
ification of software behavior must support: 1) full concur-
rency for modeling sequential and parallel threads of be-
havior, 2) conditional behavior, 3) iteration, 4) preemption,
5) probabilistic behavior for modeling uncertainty and 6)
propositional logic constraints for specifying co-temporal
relationships among variables. The following section re-
views the modeling framework for handling these require-
ments.

Probabilistic, Hierarchical Constraint-based
Automata (PHCA)

Probabilistic, hierarchical, constraint-based automata
(PHCA) were introduced in (Williams, Chung, & Gupta
2001) as a compact encoding of Hidden Markov Models
(HMMs), for modeling complex systems.

Definition 1 (PHCA)
A PHCA is atuple < X, Pg, I, O, C, Pr >, where:

e 3 is a set of locations, partitioned into primitive locations
> and composite locations X.. Each composite location
denotes a hierarchical, constraint automaton. A location
may be marked or unmarked. A marked location repre-
sents an active branch.

e Pg(0;) denotes the probability that ©; C X is the set of
start locations (initial state). Each composite location [; C
Y. may have a set of start locations that are marked when
{; 1s marked.

e Il is a set of variables with finite domains. C/[II] is the set
of all finite domain constraints over II.

e O C IIis the set of observable variables.

e (' : ¥ — CII] associates with each location /; C ¥ a
finite domain constraint C'(1;).

e Pr(l;), foreach [; C ¥, is a probability distribution over

2 x cm® —

ZE(H—U. Each transition function maps a marked location

into a set of locations to be marked at the next time step,
provided that the transition’s guard constraint is entailed.

Definition 2 (PHCA State)
The state of a PHCA at time ¢ is a set of marked locations
called a marking m®) C ¥.

a set of transition functions T'(l;) :

Figure 4 shows a PHCA model of the camera module in
Figure 1. The ”On” composite location contains three sub-
automata that correspond to primitive locations “Initializ-
ing”, ”’Idle” and “Taking Picture”. Each composite or prim-
itive location of the PHCA may have behavioral constraints.
The behavioral constraint of a composite location, such as
(power_in = nominal) for the ”On” location, is inherited
by each of the subautomata within that composite hierarchy.
In addition to the physical camera behavior, the model incor-
porates qualitative software behavior such as processing the
quality of an image. Furthermore, based on the image qual-
ity, the possible camera configurations may be constrained

(Power_in = zero)
AND
(shutter = closed)

L/

|4

Processing Image

TurnOn

(result(image, Algorithm
(Power_in = nominal) (Shutter = moving) X) = corrupt)
|

Reset|

C

TurnOff

10.05

005 /
Broken i

|

] 0999 [\

‘ Unconstrained ‘ shutter = open

Figure 4: PHCA model for the camera/image processing module.
Circles represent primitive locations, boxes represent composite lo-
cations and small arrows represent start locations.

by the embedded software. For example, if the image is
determined to be corrupt, the software attempts to reset the
camera. This restricts the camera behavior to transition to
the Initializing location.

Recall that Figure 3 shows the most likely state trajecto-
ries based on the software-extended PHCA model. At time
step 2, as the sensor measurement indicates zero voltage, the
most likely diagnosis trajectories are 1) battery = low with
10% probability, 2) camera = broken with 5% probability
and 3) sensor is broken with 1% probability. For the first
trajectory that indicates that the battery is low, the power to
the camera is not nominal, hence the camera will stay in the
”Off” location. For the second trajectory, the camera will be
in the ”Broken” location. For the third trajectory that indi-
cates that the sensor is broken, the power input to the camera
will be unconstrained, and hence the PHCA state of the cam-
era may include a marking of the ”On” location. Although
the evolutions of this third trajectory have an initially low
probability of 1%, at time step 6 they become more likely
than the others as the embedded software determines that
the image is valid. The reason is because the second most
likely trajectory at time 2 with camera = "Broken” location
marked has a 0.001 probability of generating a valid image,
thus making the probability of that trajectory 0.005% at time
6. This latter trajectory is less probable than those trajecto-
ries stemming from the sensor being broken with 1% prob-
ability. Similarly, the first trajectory with battery = low and
camera = Off becomes less likely at time step 6 as there is
0.001% probability of processing a valid image while the
camera is "Off”.

PHCA models have the following advantages that support
their use for diagnosing systems with software-extended be-
havior. First, since HMMs may be intractable, PHCA en-
coding is essential to support real-time, model-based deduc-
tion. Second, PHCAs provide the expressivity to model the
behavior of embedded software by satisfying requirements
1)-6) above. Third, the hierarchical nature of the automata

(result(image, Algorithm
X = not corrupt)

To appear in Proc. of ICAPS’05 Workshop on Verification and Validation of Model-based Planning and Scheduling Systems 4

enables modeling of complex concurrent and sequential be-
haviors, similar to hierarchical Statecharts (Harel 1987). As
an example of concurrency, the PHCA in Figure 4 allows
the simultaneous marking of the ”On” location of the cam-
era, as well as the “Initializing”, ’Idle”, or "Taking Picture”
locations. This is in contrast to diagnosis based on non-
hierarchical models that can estimate each component to be
in a single mode of operation. State estimates of compo-
nents may be required at different levels of granularity. For
example, an image-based navigation function may require
high level camera state estimates such as ”On” or ”Off”. On
the other hand, a function that coordinates imaging activi-
ties may need more detailed camera state estimates such as
“Initializing” or “Taking Picture”. Simultaneous marking
of several camera locations such as ”On” and ”Initializing”,
allows their use within functions that require estimates at
different levels of granularity.

The following sections introduce a novel diagnostic sys-
tem based on the PHCA modeling framework. We first
introduce our approach for diagnosis over a single time
step, and then extend it to handle delayed symptoms. Our
approach results in a capability for diagnosing systems
with software-extended behavior in the presence of delayed
symptoms. Furthermore, our formulation of the diagnosis
problem enables the use of powerful decomposition tech-
niques for efficient solution extraction.

Diagnosis as Constraint Optimization based
on PHCA Models

We frame diagnosis based on PHCA models as a soft
constraint optimization problem (COP) (Schiex, Fargier,
& Verfaillie 1995). The COP encodes the PHCA models
as probabilistic constraints, such that the optimal solutions
correspond to the most likely PHCA state trajectories. The
soft constraint formulation allows a separation between
probability specification and variables to be solved for.
Thus, we can associate probabilities with constraints that
encode transitions, while solving for state variables.

Definition 3 (Constraint Optimization Problem)

A constraint optimization problem (COP) is a triple
(X,D,F) where X = {X,...,X,} is a set of variables
with corresponding set of finite domains D = {D», ..., D, },
and F' = {F1,..., F,,} is a set of preference functions Fj :
(Si, R;) — C; where (S;, R;) is a constraint and C; is a
set of preference (or cost) values. Each constraint (S;, R;)
consists of a scope S; = {X;1,..., X;x} representing a
subset of variables X, and a relation R; C D;; X ... X D;j,
on S; that defines all tuples of values for variables in 5; that
are compatible with each other. Each preference function
F; maps the tuples of (S;, R;) to values C;. The solution
to variables of interest (solution variables) Y C X is an
assignment to Y that is consistent with all constraints, has
a consistent extension to all variables X, and minimizes (or
maximizes) a global objective function defined in terms of
preference functions Fj.

Given a PHCA state at time ¢ and an assignment to ob-

servable and command variables in II (see Definition 1) at
times ¢ and ¢ + 1, in order to estimate PHCA state at time
t + 1, we encode both the structure and execution semantics
of the PHCA as a COP, consisting of:

e Set of variables Xy, U II U Xggee, Where Xy =
{L1,..., L} is a set of variables that correspond to PHCA
locations I; € X, II is the set of PHCA variables, and
XEggee = {E1, ..., E, } is a set of auxiliary variables used
for encode the execution semantics of the PHCA.

e Set of finite, discrete-valued domains Dx,, U Dp U
Dx,.... where Dx, = {Marked, Unmarked} is the
domain for each variable in Xy, Dyy is the set of domains
for PHCA variables II, and Dg,.. is a set of domains for
variables X g cc.

e Set of constraints R that include the behavioral constraints
associated with locations within the PHCA, as well as en-
coding of the PHCA execution semantics.

e Preferences in the form of probabilities associated with
tuples of constraints 2. Tuples of hard constraints that are
disallowed by the constraint are assigned probability 0.0,
while the tuples allowed by the constraint are assigned
probability 1.0. Tuples of soft constraints are mapped to
a range of probability values based on the PHCA model.
These probability values reflect the probability distribu-
tion Pg of PHCA start states and probabilities associated
with PHCA transitions Pr.

e The optimal solution to the COP is an assignment to so-
lution variables Xy, that represent the state of the PHCA,
while maximizing the probability of the transitions that
lead to that state from the previous time step. This corre-
sponds to a state assignment that maximizes the product
of the probabilities of the enabled constraint tuples.

A key to framing PHCA-based diagnosis as COP is the
formulation of the constraints R that capture the execu-
tion semantics of the PHCA. PHCA execution involves de-
termining the entailment of behavioral constraints, identi-
fying enabled transitions from a current PHCA state, and
taking those transitions to determine the next state. Re-
ferring back to the PHCA example in Figure 4, if we as-
sume that at time t the PHCA state is < On < Idle >>
and that the transition guard constraint (command =
TakePicture) is entailed, and at time t+1 the behavioral
constraint (shutter = moving) of the transition’s target
location is entailed, then the PHCA state at time t+1 will
be < On < TakingPicture >>. To encode entailment of
conditions such as (command = TakePicture), a variable
Er is introduced with domain { Entailed, Not— Entailed}
to denote whether the transition guard condition is entailed.
Entailment of a condition is then formulated as a COP con-
straint that allows the assignment Fp = Entailed to be as-
sociated with tuples that list all possible assignments to the
variable command that entail the condition (command =
TakePicture). Entailment constraints are generated for all
locations that have behavioral constraints and for all transi-
tions that have guard constraints.

The following example on the left of Figure 5 shows a
probabilistic choice between two transitions for a section of

To appear in Proc. of ICAPS’05 Workshop on Verification and Validation of Model-based Planning and Scheduling Systems 5

the PHCA in Figure 4. In order to encode this probabilistic
choice, we first introduce a location variable X g}f for time
t, with domain {Marked, Unmarked}. Then auxiliary
variables B} and E\') with domain { Enabled, Disabled}

are introduced for transitions T1 and T2 respectively.

Xon® Ep® | Er,® | Prob.

0.05 Marked | Enabled | Disabled | 0.95
™\) T 2 Broken Marked | Disabled | Enabled | 0.05

Unmarked | Disabled | Disabled 1.0

Figure 5: left: PHCA with two probabilistic transitions. right:
Probabilistic transition constraint.

The COP constraint that encodes the probabilistic choice
among the two transitions T1 and T2 is formulated logically:

XS5}, = Marked = 3T € {T1,T2} | : B =
Enabled A (VT € {{T1,T2} — T} | : EY)) = Disabled))
A Xg}f = Unmarked = VT € {T1,T2} | : E(Tt) =
Disabled)

This logical formula is compiled into a set of tuples with
associated probability values, as shown in Figure 5 (right).

The tuples are mapped to probability values by the following
preference function:

| Prob(Ty) if BT : EY) = Enabled)
T 1.0 otherwise

The above constraint identifies the enabled transition, but
does not encode taking the transition. In general, the follow-
ing constraint encodes taking enabled transitions, unless the
behavior constraint of the transition’s target location is not
entailed:

~VLeX| (@371 e {TTarget(T) = L} |
Eg*l) = FEnabled) N Beham’or(Lt) = FEntailed) =

Xét) = Marked)

where E. represents a transition variable, Behaviory, is
an entailment variable for the behavior constraints of loca-
tion L U its composite parent if L is within a hierarchy, and
X, is the location variable of L. The constraint is instanti-
ated for each location of the PHCA, as indicated by V L €
3.

Some semantic rules apply to PHCA hierarchies. For ex-
ample, when a composite location becomes marked, all of its
start locations become marked. Since “Initializing” is a start
location of the composite ”On” location, a PHCA in state <
Of f > may transition to state < On < Initializing >>.
Furthermore, a composite location should be marked if any
of its subautomata are marked. The COP constraints must
correctly capture such PHCA semantics and encode mu-
tual exclusions to avoid interference and conflicting effects
among the constraints. For brevity, the complete encoding
of constraints is not presented.

The formulation of diagnosis as COP is performed offline.
Given a PHCA, we have implemented a compiler that auto-
matically generates the corresponding COP. The COP is then
used in an online solution phase by dynamically updating it

to incorporate constraints on new observations and issued
commands. The solutions to the COP can be generated up
to a given probability threshold using a constraint optimiza-
tion solver for soft constraints (Sachenbacher & Williams
2004). The solutions incorporate the probability distribution
on the initial states as encoded by the COP. The most likely
solutions generated at a time step t dynamically update the
COP to constrain the set of start states for solving the COP
at time step t+1. For example, as Figure 3 shows, state esti-
mates at time 2 may only be reached through those at time
1. Thus limiting the number of state trajectories maintained
at each time step has implications for diagnosing faults that
manifest delayed symptoms.

Diagnosis with Delayed Symptoms

Ideally, diagnosis will maintain a complete probability dis-
tribution of all possible system states. However, maintaining
all possible state trajectories at each time step is intractable
because of exponential growth in state space. Thus at every
time step a limited number of trajectories are typically main-
tained. A potential problem with this approach is that it
may miss the best diagnosis if a trajectory through a pruned
state that is initially very unlikely becomes very likely af-
ter additional evidence. Figure 6 illustrates this situation
for the camera module, where the initially unlikely state
(Sensor = Broken) is pruned, resulting in the best diagno-
sis to be unreachable when additional evidence is available
at time 6.

Nominal Nominal Sensor=Broken

it .X Best state
missed

Battery=low
® — —a =
CameBroken - @ Battery=low
—>® Cam=Broken
———————— - = >/ = = = = = = = == === —K-Best

Xsensor
Sensor=Broken

0 1
S/W behavior =>
Image not corrupt|

Power On and Take Picture
Figure 6: Missed diagnosis as a result of tracking a limited num-
ber of trajectories () -Best)

Annqeqoig

Dealing with delayed symptoms is particularly impor-
tant for diagnosing systems with software-extended behav-
ior, due to typically delayed observations associated with
software processing. Livingstone-2 (L2) (Kurien & Nayak
2000) addresses the problem of delayed symptoms for diag-
nosing hardware systems. We generalize the L2 capability
to PHCA-based diagnosis.

We extend our COP formulation of PHCA-based diagno-
sis to provide flexibility for regenerating the most likely di-
agnoses over a finite time horizon rather than a single pre-
vious step. Thus, we frame the COP over a finite time hori-
zon (IN-stages) and leverage the N-stage history of obser-
vations and issued commands to generate the most likely
diagnosis trajectories over the horizon. This involves aug-
menting the COP in the previous section to include model
variables and constraints for each time step within the V-
stage horizon. The solutions to the COP become assign-

To appear in Proc. of ICAPS’05 Workshop on Verification and Validation of Model-based Planning and Scheduling Systems 6

ments to location variables Xg), t € {0..N}, represent-
ing PHCA state trajectories that have maximum probabil-
ity within the horizon. This probability corresponds to the
product of transition probabilities enabled within that tra-
jectory, multiplied by the probability of the initial state of
the trajectory. As time progresses during the online solution
phase, the N-stage horizon is shifted from (¢ — t + N) to
(t+1—t+ N + 1) and the COP over the new horizon is
dynamically updated by constraining its start states at time
t+1 to match the solutions from the previous iteration. This
reformulation still limits the number of trajectories tracked
to a given probability threshold, as described in the previous
section. Referring to Figure 6, if we consider a time horizon
(0 — 6), diagnosis trajectories will be regenerated starting
from the (Nomainal) state at time 0. Therefore, even though
the number of trajectories is limited, the trajectory ending
at state (Sensor = Broken) at time 6 will have the highest
probability based on the delayed observation. Consequently,
the state (Sensor = Broken) at time 2 will be maintained
because it is part of the most likely trajectory at time 6.

Decreasing the probability threshold for the trajecto-
ries being tracked solves the delayed-symptom problem by
maintaining a larger number of states at each time step.
However, for a system with many combinations of similar
failure states with high probability, the number of trajecto-
ries maintained will have to be very large in order to be able
to account for a delayed symptom that supports an initially
low probability state. For such systems, considering even a
small number of previous time steps gives enough flexibility
to regenerate the correct diagnosis.

Implementation and Discussion

The PHCA model-based monitoring capability, described
above, has been implemented in C++. Figure 7 shows the
offline compilation phase and the online solution phase of

the diagnosis process.

Dynamic update Optimal

PHCA N-Slage. cop
H/W models Constraint of COP; Constraint
Horizon shifting || Solver

Graph
(code) ’% .
o % %
Decomposition

S/W specs

L3

Offline compilation phase Online solution phase

Figure 7: Process diagram for PHCA-based diagnosis

In the offline phase, the N-Stage COP is generated auto-
matically, given a PHCA model and parameter N. To en-
hance the efficiency of the online solution phase, tree de-
composition (Gottlob, Leone, & Scarcello 2000) is applied
to decompose the COP into independent subproblems. This
enables backtrack-free solution extraction during the online
phase (Dechter 2003). In our implementation, the COP is
decomposed using a tree decomposition package that imple-
ments bucket elimination (Kask, Dechter, & Larrosa 2003).

The online monitoring and diagnosis process uses both
the COP and its corresponding tree decomposition. The on-

line phase consists of a loop that shifts the time horizon,
updates and solves the COP at each iteration. The COP is
updated by incorporating new observations and commands,
and constraining the start states to track the trajectories ob-
tained within the previous horizon. At each iteration of the
loop, the updated COP is solved using an implementation of
the decomposition-based constraint optimization algorithm
in (Sachenbacher & Williams 2004) that can generate diag-
noses up to a given probability threshold.

For the camera model with N = 2, the COP has ~ 150
variables and ~ 100 constraints and is solved online in ~ 1
sec, resulting in more comprehensive diagnoses than previ-
ous hardware models. Future work includes evaluating the
efficiency of the COP formulation using several complex
scenarios, optimizing the COP formulation by minimizing
the number of variables and constraints generated, investi-
gating the optimal size of the diagnosis horizon and its rela-
tionship to the number of trajectories tracked.

Acknowledgments

This research is sponsored in part by NASA CETDP under
contract NNAO4CK91A and by the DARPA SRS program
under contract FA8750-04-2-0243.

References
Berry, G., and Gonthier, G. 1992. The esterel programming lan-
guage: design, semantics and implementation. Science of Com-
puter Programming 19(2):87-152.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97-130.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Dressler, O., and Struss, P. 1996. The consistency-based approach
to automated diagnosis of devices. Principles of Knowledge Rep-
resentation 267-311.
Gottlob, G.; Leone, N.; and Scarcello, F. 2000. A comparison
of structural csp decomposition methods. Artificial Intelligence
124(2):243-282.
Harel, D. 1987. Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8(3):231-274.
J. R. Burch, E. M. Clarke, K. L. M. D. L. D., and Hwang, J.
1992. Symbolic model checking: 10%° states and beyond. In
Information and Computation, volume 98(2), 142-170.
Kask, K.; Dechter, R.; and Larrosa, J. 2003. Unifying cluster-tree
decompositions for automated reasoning. Technical report, U. of
California at Irvine.
Kurien, J., and Nayak, P. 2000. Back to the future for consistency-
based trajectory tracking. In Proc. AAAI-00.
Mayer, W., and Stumptner, M. 2004. Approximate modeling for
debugging of program loops. In Proc. DX-04.
Sachenbacher, M., and Williams, B. C. 2004. Diagnosis as
semiring-based constraint optimization. In Proc. ECAI-04.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems:hard and easy problems. In Proc. IJCAI-95.
Williams, B. C., and Nayak, P. 1996. A model-based approach to
reactive self-configuring systems. In Proc. AAAI-96, 971-978.
Williams, B. C.; Chung, S.; and Gupta, V. 2001. Mode estima-
tion of model-based programs: monitoring systems with complex
behavior. In Proc. IJCAI-01.

