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Abstract. A novel capability of discrete model-based diagnosis
methods is the ability to handleunknown modeswhere no assump-
tion is made about the behavior of one or several components of the
system. This paper incorporates this novel capability of model-based
diagnosis into a hybrid estimation scheme by calculating partial fil-
ters. The filters are based on causal and structural analysis of the
specified components and their interconnection within the hybrid au-
tomaton model. Incorporating unknown modes provides a robust es-
timation scheme that can cope, unlike other hybrid estimation and
multi-model estimation schemes, with unmodeled situations and par-
tial information.

1 Introduction

Modern technology is increasingly leading to complex artifacts with
high demands on performance and availability. As a consequence,
fault-tolerant control and an underlying monitoring and diagno-
sis capability plays an important role in achieving these require-
ments. Monitoring and diagnosis systems that build upon the discrete
model-based reasoning paradigm[8] can cope well with complexity
in modern artifacts. As an example, the Livingstone system[22] suc-
cessfully monitored and diagnosed the DS-1 space probe in flight,
a system with approximately480 modes of operation. However, a
widespread application of discrete model-based systems is hindered
by their difficulty to reason about the continuous dynamics of an ar-
tifact in a comprehensive manner. Continuous behaviors are difficult
to capture by the pure qualitative models that are used by the rea-
soning engines. Nevertheless, additional reasoning in terms of the
continuous dynamics is vital for detecting functional failures, as well
as low-level incipient (i.e slowly developing) faults and subtle com-
ponent degradation.

Hybrid systems theory provides a modeling paradigm that inte-
grates both, continuous state evolution and discrete mode changes
in a comprehensive manner. Recent work in hybrid estimation[14,
16, 24, 9] attempts to overcome the shortcomings of discrete model-
based diagnosis cited above and provides schemes that integrate
model-based approaches with techniques from fault detection and
isolation (FDI)[23, 4] and multi-model adaptive filtering[13, 11, 10].
The hybrid estimation schemes, as well as their FDI and multi-model
filtering ancestors, work well whenever the underlying model(s) are
’close’ mathematical descriptions of the physical artifact. They can
fail severely whenever unforeseen situations occur. Therefore, it is
essential to provide models that capture the entire spectrum of possi-
ble behaviors/modes whenever we use the hybrid estimate for closed
loop control, for instance. Model-based diagnosis, in contrast, does
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not impose such a strong modeling assumption. Its concept of the
unknown modeallows diagnosis of systems where no assumption is
made about the behavior of one or several components of the sys-
tem. In this way, it captures unspecified and unforeseen behaviors
of the system under investigation. This paper provides an approach
to incorporate the concept of an unknown mode into our hybrid es-
timation scheme[9]. As a result we obtain an estimation capability
that can detect unforeseen situations. Furthermore, it allows us to
continue estimation on a degraded basis. We achieve this by causal
analysis[17, 20], structural analysis[7] and decomposition of the sys-
tem.

This paper starts with a brief introduction to our hybrid systems
modeling and estimation scheme. Upon this foundation, we extend
hybrid estimation to incorporate the unknown mode and demonstrate
the underlying structural analysis and decomposition task. Finally, an
experimental evaluation with computer simulated data for a Martian
live support system demonstrates the advantages of this extended hy-
brid estimation scheme.

2 Hybrid Systems

The hybrid automaton model used throughout this paper is based on
[9] and can be seen as a model that merges hidden Markov models
(HMM) with continuous discrete-time dynamical system models (we
present the model on the level of detail sufficient for this work and
refer the reader to the reference cited above for more detail).

2.1 Concurrent Hybrid Automata

Definition 1 A discrete-time probabilistic hybrid automaton (PHA)
A is described as a tuple〈x,w, F, T,Xd, Ts〉:

• x denotes the hybridstate variablesof the automaton3, composed
of x = {xd} ∪ xc. The discrete variablexd denotes themode
of the automaton and has finite domainXd. Thecontinuous state
variablesxc capture the dynamic evolution of the automaton.x
denotes thehybrid stateof the automaton, whilexc denotes the
continuous state.

• The set ofI/O variablesw = ud ∪ uc ∪ yc of the automaton
is composed of disjoint sets of discrete input variablesud (called
command variables), continuousinput variablesuc, and continu-
ousoutput variablesyc.

• F : Xd → FDE ∪ FAE specifies thecontinuous evolutionof the
automaton in terms ofdiscrete-time difference equationsFDE and
algebraic equationsFAE for each modexd ∈ Xd. Ts denotes the
sampling period of the discrete-time difference equations.

3 When clear from context, we use lowercase bold symbols, such asv, to
denote asetof variables{v1, . . . , vl}, as well as avector [v1, . . . , vl]

T

with componentsvi.



• The finite set,T , of transitionsspecifies the probabilistic discrete
evolution of the automaton.

Complex systems are modeled as a composition of concurrently
operating PHA that represent the individual system components. A
concurrent probabilistic hybrid automata (cPHA)specifies this com-
position as well as its interconnection to the outside world:

Definition 2 A concurrent probabilistic hybrid automaton (cPHA)
CA is described as a tuple〈A,u,yc,vs,vo, Nx, Ny〉:

• A = {A1,A2, . . . ,Al} denotes the finite set of PHAs that repre-
sent the componentsAi of the cPHA (we denote the components
of a PHAAi by xdi,xci,udi,uci,yci, Fi,Xdi).

• Theinput variablesu = ud ∪uc of the automaton consists of the
sets of discrete input variablesud = ud1 ∪ . . . ∪ udl (command
variables) and continuous input variablesuc ⊆ uc1 ∪ . . . ∪ ucl.

• Theoutput variablesyc ⊆ yc1 ∪ . . . ∪ ycl specify the observed
output variables of the cPHA.

• The observation process is subject to additive, zero mean Gaussian
sensor noise. Ny : Xd → IRm×m specifies the mode dependent4

disturbancevo in terms of the covariance matrixR = diag(ri).
• Nx specifies additive, zero mean Gaussiandisturbancesthat act

upon the continuous state variablesxc = xc1 ∪ . . . ∪ xcl. Nx :
Xd → IRn×n specifies the mode dependent disturbancevs in
terms of the covariance matrixQ.

Definition 3 The hybrid statex(k) of a cPHA at time-stepk spec-
ifies the mode assignmentxd,(k) of the mode variablesxd =
{xd1, . . . , xdl} and the continuous state assignmentxc,(k) of the
continuous state variablesxc = xc1 ∪ . . . ∪ xcl.

Interconnection among the cPHA componentsAi is achieved via
shared continuous I/O variableswc ∈ uci∪yci only. Fig. 1 illustrates
a simple example composed of 3 PHAs.
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Figure 1. Example cPHA composed of three PHAs

A cPHA specifies a mode dependent discrete-time model for a
plant with command inputsud, continuous inputsuc, continuous
outputsyc, modexd, continuous state variablesxc and additive, zero
mean Gaussian disturbancesvs, vo. The discrete-time evolution of
xc andyc is described by the nonlinear system of difference equa-
tions (sampling periodTs)

xc,(k) = f(k)(xc,(k−1),uc,(k−1)) + vs,(k−1)

yc,(k) = g(k)(xc,(k),uc,(k)) + vo,(k).
(1)

The functionsf(k) andg(k) are obtained by symbolically solving5

the set of equationsF1(xd1,(k)) ∪ . . . ∪ Fl(xdl,(k)) given the mode
xd,(k) = [xd1,(k), . . . , xdl,(k)]

T .

4 E.g. sensors can experience different magnitudes of disturbances for differ-
ent modes.

5 Our symbolic solver restricts the algebraic equations and nonlinear func-
tions to ones that can be solved explicitly and utilizes a Gröbner Basis
approach[3] to derive a set of equations of form (1).

Consider the illustrative cPHA in Fig. 1 with

A1 = 〈{xd1}, {ud1, uc1, wc1}, F1, T1, {m11, m12}...〉
A2 = 〈{xd2, xc1}, {ud2, wc1, yc1}, F2, T2, {m21, m22}...〉
A3 = 〈{xd3, xc2, xc3}, {ud2, uc1, yc1, yc2}, F3, T3, {m31}...〉.

F1, F2 and F3 provide for a cPHA mode xd,(k) =
[m11, m21, m31]

T the equations

F1(m11) = {uc1 = 5.0 wc1}
F2(m21) = {xc1,(k) = 0.8 xc1,(k−1) + wc1,(k−1),

yc1 = xc1}
F3(m31) = {xc2,(k) = xc3,(k−1) + yc1,(k−1),

xc3,(k) = 0.4 xc2,(k−1) + 0.5 uc1,(k−1),

yc2 = 2.0 xc2 + xc3}.

(2)

This leads to the discrete-time model:

xc1,(k) = 0.8 xc1,(k−1) + 0.2 uc1,(k−1) + vs1,(k−1)

xc2,(k) = xc1,(k−1) + xc3,(k−1) + vs2,(k−1)

xc3,(k) = 0.4 xc2,(k−1) + 0.5 uc1,(k−1) + vs3,(k−1)

yc1,(k) = xc1,(k) + vo1,(k)

yc2,(k) = 2.0 xc2,(k) + xc3,(k) + vo2,(k)

(3)

2.2 Estimation of Hybrid Systems

To detect the onset of subtle failures, it is essential that a monitoring
and diagnosis system is able to accurately extract the hybrid state of
a system from a signal that may be hidden among disturbances, such
as measurement noise. This is the role of a hybrid observer. More
precisely:

Hybrid Estimation Problem: Given a cPHACA, a sequences
of observations{yc,(0),yc,(1), . . . ,yc,(k)} and control inputs
{u(0),u(1), . . . ,u(k)}, estimate the most likely hybrid state
x̂(k) at time-stepk.

A hybrid state estimatêx(k) consists of acontinuous state esti-
mate, together with the associatedmode. We denote this by the tuple

x̂(k) := 〈xd,(k), x̂c,(k),P(k)〉,

wherex̂c,(k) specifies the mean andP(k) the covariance for the con-
tinuous state variablesxc. The likelihood of an estimatêx(k) is de-
noted by thehybrid belief-stateh(k)[x̂].

We perform hybrid estimation as extended version of HMM-style
belief-state update that accounts for the influence of the continuous
dynamics upon the system’s discrete modes. A major difference be-
tween hybrid estimation and an HMM-style belief-state update, as
well as multi-model estimation, is, however, that hybrid estimation
tracks a set of trajectories, whereas standard belief-state update and
multi-model estimation aggregate trajectories which share the same
mode. This difference is reflected in the first of the following two
recursive functions which define our hybrid estimation scheme:

h(•k)[x̂i] = PT (mi|x̂j,(k−1),ud,(k−1))h(k−1)[x̂j ] (4)

h(k)[x̂i] =
h(•k)[x̂i]PO(yc,(k)|x̂i,(k),uc,(k))∑
j h(•k)[x̂j ]PO(yc,(k)|x̂j,(k),uc,(k))

(5)

h(•k)[x̂i] denotes an intermediate hybrid belief-state, based on tran-
sition probabilities only. Hybrid estimation determines for each



x̂j,(k−1) at the previous time-stepk − 1 the possible transitions,
thus specifying candidate successor states to be tracked. Consecu-
tive filtering provides the new hybrid statêxi,(k) and adjusts the hy-
brid belief-stateh(k)[x̂i] based on the hybrid probabilistic observa-
tion functionPO(yc,(k)|x̂i,(k),uc,(k)). The estimatêxj,(k) with the
highest belief-stateh(k)[x̂j ] = maxi(h(k)[x̂i]) is taken as the hybrid
estimate at time-stepk.

Tracking all possible trajectories of the system is almost always
intractable because the number of trajectories becomes too large after
only a few time-steps. In [9] we present an approximative anytime
anyspace algorithm that copes with the exponential growth, as well as
the large number of modes in a typical concurrent hybrid automaton
model.

Hybrid estimation and other multi-model estimation schemes have
in common that they require models that are ’close’ mathematical de-
scriptions of the system. They can fail severely whenever unforeseen,
i.e. unmodeled, situations occur. As a consequence, we have to pro-
vide models for all operational modes as well as an exhaustive set
of models for possible failure modes. Providing all possible failure
models can be problematic even under the assumption of an exhaus-
tive failure mode effect analysis (FMEA). For instance, consider an
incipient fault in a servo valve that causes the valve to drift off its
nominal opening value. The drift (positive, negative, slow, fast...) is
subject to the fault. It is surely difficult to provide a mathematical
model with the correct parameter values that captures all possible
drift situations. Nor is it helpful to introduce a sufficiently large set
of modes that captures possible situations of the drift fault as this
would introduce additional complexity for hybrid estimation by in-
creasing the number of modes unnecessarily.

This requirement of hybrid mode estimation is in contrast to dis-
crete model-based diagnosis schemes, such as GDE (e.g. [5, 6, 19]).
Model-based diagnosis deduces the possible mode of the system
based on nominal models, and few specified fault models only. The
onset of possible fault scenarios are covered by the so calledun-
known modewhich does not impose any constraints on the system’s
variables.

The next section provides an approach that systematically incor-
porates the concept of the unknown mode into our hybrid estimation
scheme.

3 Estimation with Unknown Modes

The estimation scheme [9] requires a fully specified mode assign-
mentxdi,(k) for each candidate trajectory that is tracked in the course
of hybrid estimation. Only a fully specified mode allows us to deduce
the mathematical model (1) for the overall system. This model is the
basis for the dynamic filter (e.g. extended Kalman filter) that is used
in the course of hybrid estimation.

uc1

yc1

yc2
P
O

xc1

xc2

xc3

MIMO Filter

Figure 2. MIMO filter (e.g. extended Kalman filter) for the cPHA example

For our illustrative 3 component example introduced above
this would mean that hybrid estimation calculates a multi-input

multi-output (MIMO) filter (see Fig. 2) for modexdi,(k) =
[m11, m21, m31]

T based on the mathematical model (3). This filter
provides the hybrid state estimatex̂i,(k) as well as the value for the
hybrid probabilistic observation functionPO(yc,(k)|x̂i,(k),uc,(k))
for the hybrid estimator (see Appendix A for the extended Kalman
filter estimation details).

Let us assume the modexdi,(k) = [?, m21, m31]
T which speci-

fies that component 1 (A1) is in unknown mode. A component in un-
known mode imposes no constraints (equations) among its variables
(uc1 and the internal variablewc1, in our case). As a consequence,
we cannot deduce an overall mathematical model of the form (1) and
fail to provide the basis for the hybrid estimation scheme, the MIMO
filter for modexdi,(k) = [?, m21, m31]

T .
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Figure 3. Example cPHA with explicit noise inputs

However, a close look on the PHA interconnection (Fig. 3 - the
figure extends Fig. 1 by including the implicit noise inputs, as well
as indicating the causality for the internal I/O variables) reveals that
we can still estimate component 3 by its observed outputyc2 and the
observationyc1 as a substitute for the value of its input. This intuitive
approach utilizes a decomposition of the cPHA as shown in Fig. 4.

1

vs1

2

3

vs3

yc2

yc1

vo1

vo2

vo1yc1

uc1
A A

A

vs2

uc1

Figure 4. Decomposed cPHA

The decomposition allows us to treat the concurrent parts of the
system independently and calculate afilter cluster consisting of 2
independent filters. However, when calculating the individual filters
for the cluster, we have to take into account that we use themea-
surementof the input to the third component (yc1) in replacement to
its true value. This can be interpreted as having additional additive
noise at the component’s input as indicated in Fig. 4. The following
modification of the covariance matrixQ3 for the state variables of
A3 takes this into account:

Q̃3 = b3r1b
T
3 + Q3, (6)

wherer1 denotes the variance of disturbancevo1 andb3 = [0, 1]T
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Figure 5. Decomposed filter

denotes the input vector6 of A3 with respect toyc1.
A filter cluster consisting of extended Kalman filters and the

MIMO extended Kalman filter are interchangeable as they provide
the same expected value for the continuous state (E(x̂c)) whenever
the mode of the automaton is fully specified. However, the decom-
posed filter has the advantage that the probabilistic observation func-
tion PO of the overall system is given by

PO =
∏

j

POj , (7)

wherePOj denotes the probabilistic observation function of thej’th
filter in the filter cluster.

This factorization of the probabilistic observation function allows
us to calculate an upper bound forPO whenever one or more com-
ponents of the system are in unknown mode. We simply take the
product over the remaining filters in the cluster. This is equivalent
with considering the upper bounds of the inequalitiesPOj ≤ 1 for
each unknown filterj. In our example with unknown componentA1

this would mean:
PO ≤ PO2,

wherePO2 denotes the observation function for the filter that esti-
mates the continuous state of componentA3.

The following subsection provides a graph-based approach for
filer cluster deduction that grounds the informally introduced decom-
position on a more versatile basis.

3.1 System Decomposition and Filter Cluster
Calculation

Starting point for the decomposition of the system for a cPHA mode
xd is the set of equations

F1(xd1,(k)) ∪ . . . ∪ Fl(xdl,(k)) =: F(xd), (8)

whereFj(xdj,(k)) returns the appropriate set of equations for a com-
ponentAi wheneverxdj,(k) ∈ Xdj or the empty set whenever the
component is in unknown mode, i.e.xdj,(k) =?. Although we still
have to solve the set of equations to arrive at the mathematical
model of form (1) we can interpret the set of equations (8) as the

6 In the general case, we have to calculatebj for a cPHA componentAj
and observed inputsuyc by linearization, more specifically:bj,(k) =

∂fj/∂uyc|x̂cj,(k−1),ucj,(k−1)
, wherefj denotes the right-hand side of

the difference equation for componentAj , uyc refers to the observed
variables that are used as inputs to the component (i.e.uyc ⊂ yc) and
x̂cj,(k−1) as well asucj,(k−1) represent the state estimate and the contin-
uous input for componentAj at the previous time-step, respectively.

raw modelfor the system given modexd. The following decom-
position performs a structural analysis of the raw model-based on
causal analysis[17, 20], structural observability analysis[7] and graph
decomposition[1].

A cPHA model does not impose a fixed causal structure that spec-
ifies directionality of automaton interconnections. Causality is im-
plicitly specified by the set of equations. This increases the expres-
siveness of the modeling framework but requires us to perform a
causal analysis of the raw model (8) as a first step. The deduc-
tion of the causal dependencies is done by applying the bipartite-
matching based algorithm presented in [17]. The resulting directed
graph records the causal dependencies among the variables of the
system (Fig. 6 shows the graph for the the illustrative 3 PHA ex-
ample). Each vertex of the graph represents one equationei ∈ F

uc1 xc1wc1 yc1 xc2 xc3 yc2

Figure 6. Causal graph for the cPHA example

or an exogenous variable specification (e.g.uc1) and is labeled by
its dependent variable which also specifies the outgoing edge (in the
following, we will use the variable name to refer to the correspond-
ing vertex in the graph). Vertices without incoming edges specify the
exogenousvariables.

Definition 4 A causal graphof a cPHACA at a modexd is a di-
rected graph that records the causal dependencies among the vari-
ablesv ∈

⋃
i xci ∪ uci ∪ yci of CA. We denote the causal graph

by CG(CA,xd) and sometimes omit arguments where no confusion
seems likely.

Goal of our analysis is to obtain a set of independent subsystems
that utilize observed variables as virtual inputs. Therefore, we slice
the graph at observed variable vertices with outgoing edges, insert a
new vertex to represent a virtual input and re-map the sliced outgo-
ing edges to this vertex. Fig. 7 demonstrates this re-mapping for the
causal graph of Fig. 6. The observed variables areyc1 andyc2. Only
the vertex with dependent variableyc1 has an outgoing edge, thus we
slice the graph atyc1 → xc2 and re-map the edge to the virtual input
uyc1.

uc1 xc1wc1 yc1

xc2 xc3 yc2
uyc1

Figure 7. Remapped causal graph for the cPHA example

A dynamic filter (e.g. extended Kalman filter) can only estimate
the observable part of the model. Therefore, it is essential to perform



an observability analysis prior calculating the filter so that non ob-
servable parts of the model are excluded. We perform this analysis
on a structural basis7.

Definition 5 We call a variablev of a cPHACA at modexd struc-
turally observable (SO)whenever it is directly observed, i.e.v ∈ yc,
or there exists at least one path in the causal graphCG(CA,xd) that
connects the variablez to an output variableyc ∈ yc of CA.

A filter estimates the state variablesxc of a dynamic system based
on observationsyc and the inputsuc that act upon the state variables
xc. The required knowledge about the inputsuc indicates that the
structural observability criteria is not yet sufficient to determine the
submodel for estimation. We have to make sure, that no unknown ex-
ogenous input influences a variable. To illustrate this, consider again
the 3 PHA example with modexd = [?, m21, m31]

T . Component
1 in unknown mode omits the equation that relates the variablesuc1

andwc1. This leads to a causal graph̃CG (Fig. 8), wherewc1 is la-
beled as exogenous (no incoming edges). This unknown exogenous
input influences the state variablexc1 and, as a consequence, pre-
vents us from estimating it!

uc1 xc1wc1 yc1

xc2 xc3 yc2
uyc1

Figure 8. Remapped causal graph for the cPHA example with unknown
componentA1

We extend our structural analysis of the causal graph by the fol-
lowing criteria:

Definition 6 We call a variablev of a cPHACA at modexd struc-
turally determined (SD)whenever it is an input variable of the au-
tomaton, i.e.v ∈ uc, or there does not exist a path in the causal
graphCG(CA,xd) that connects an exogenous variableue /∈ uc

with v.

Furthermore, it is helpful to eliminate loops in the causal graph
prior checking variables against both structural criteria. For this pur-
pose, we calculate thestrongly connected componentsof the causal
graph[1].

Definition 7 A strongly connected component (SCC)of the causal
graphCG is a maximal setSCC of variables in which there is a path
from any one variable in the set to another variable in the set.

Fig. 9 shows the remapped causal graph for the 3 PHA example after
grouping variables into strongly connected components.

The strong interconnection among variables in an SCC implies
that:

1. Structural observability of variables in an SCC follows directly
from structural observability of at least one variable in the SCC.

7 Throughout the paper we assume that loss of observability is caused by
a structural defect of the model. Otherwise, it is necessary to perform an
additional numerical observability test [18] as structural observability only
provides anecessarycondition for observability.

uc1 xc1wc1 yc1

xc2, xc3 yc2uyc1

Figure 9. Causal SCC graph for cPHA example

2. A variable in an SCC is structurally determined, if and only if all
variables in the SCC are structurally determined.

As a consequence, we can apply our structural analysis to strongly
connected components directly and operate on the SCC graph, i.e
a causal graph without loops. The analysis of a strongly connected
component with respect to structural observability and structural de-
termination (SOD) can be outlined as follows:

function determine-SOD-of-SCC(SCC,uc, k)
whenSOD-undetermined?(SCC)

if exogenous?(SCC)
then vi← independent-var(SCC)

if vi ∈ uc then SD(SCC)← True
elseSD(SCC)← False

else V ← uplink-SCCs(SCC)
loop for SCCi in V

do determine-SOD-of-SCC(SCCi,uc, k)
SO(SCC)← True
SD(SCC)← all-uplink-SCCs-are-SD?(V)
cluster-index(SCC)← k ∪ cluster-indices(V)

SOD-determined(SCC)← True
return Nil

Our structural analysis algorithm determines structural observabil-
ity and determination (SOD) of a variable by traversing the SCC
graph backwards from the observed variables towards the inputs.
In the course of this analysis we label non-exogenous strongly con-
nected components with an index that refers to their cluster mem-
bership. This indexing scheme allows us to cluster the variables into
non-overlapping clusters with respect to the observed variables. The
direct relation between a variable, its determining equation, and the
cPHA component that specified this equation leads to the compo-
nent clusters sought. The structural analysis can be summarized as
follows:

function component-clustering(CA,xd)
returns a set of cPHA component clusters
yc← observed-vars(CA)
C̃G ← remap-causal-graph(CG(CA,xd),yc)
uc← virtual-inputs(C̃G) ∪ input-vars(CA)
CGSCC ← strongly-connected-component-graph(C̃G)
k← 0
loop for SCCi in output-SCCs(CGSCC ,yc)

do determine-SOD-of-SCC(SCCi,uc, k)
k← k + 1

graph-clusters← get-SOD-SSC-clusters(CGSCC )
return automaton-clusters(CA, graph-clusters)
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Figure 10. Labeled and partitioned causal SCC graph for the 3 cPHA
example

Each component cluster defines the observable and determined
raw model for a subsystem of the cPHA. This raw model can be
solved symbolically and provides the nonlinear system of difference
equations (a model similar to (1), but with the additional virtual in-
puts) that is the basis for the corresponding filter in the filter cluster.
In this way we exclude the unobservable and/or undetermined parts
of the overall system from estimation.

Whenever a state variablexcj becomes unobservable and/or un-
determined (e.g. due to a mode change) during hybrid estimation,
we hold the value for the mean at its last known estimatex̂cj and
increase its varianceσ2

j = pjj by a constant factor at each hybrid
estimation step. This reflects a continuously decreasing confidence
in the estimatêxcj and allows us to restart estimation whenever the
variable becomes observable and determined again8.

4 Example - BIO-Plex

Our application is the BIO-Plex Test Complex at NASA Johnson
Space Center, a five chamber facility for evaluating biological and
physiochemical Martian life support technologies. It is an artificial,
biosphere-type, closed environment, which must robustly provide all
the air, water, and most of the food for a crew of four without in-
terruption. Plants are grown in plant growth chambers, where they
provide food for the crew, and convert the exhaledCO2 into O2. In
order to maintain a closed-loop system, it is necessary to control the
resource exchange between the chambers without endangering the
crew. For the scope of this paper, we restrict our evaluation to the
sub-system dealing withCO2 control in the plant growth chamber
(PGC), shown in Fig. 11.

The system is composed of several components, such as redundant
flow regulators (FR1, FR2) that provide continuousCO2 supply, re-
dundant pulse injection valves (PIV1, PIV2) that provide a means for
increasing theCO2 concentration rapidly, a lighting system (LS) and
the plant growth chamber (PGC), itself. The control system main-
tains a plant growth optimalCO2 concentration of1200 ppm during
the day phase of the system (20 hours/day).

Hybrid estimation schemes are key to tracking system operational
modes, as well as, detecting subtle failures and performing diag-
noses. For example, we simulate a failure of the second flow reg-
ulator. The regulator becomes off-line and drifts slowly towards its
positive limit. This fault situation is difficult to capture by an explicit
fault model as we do not know, in advance, whether the regulator

8 Whenever a state variablexcj is directly observed we also can utilize an
alternative approach suggested in [15] that restarts the estimator with the
observed value, thus improving the observer convergence time.
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Figure 11. BIO-Plex plant growth chamber

drifts towards its postitive or negative limit, nor do we know the mag-
nitude of the drift. A fault of this type, which develops slowly and
whose symptom is hidden among the noise in the system is a typical
candidate for our unknown-mode detection capability. However, we
also provide explicit failure models that describe typical situations.
For example, the PGC has 4 plant trays with one illumination bank
for each tray. A black out of one illumination bank can be interpreted
as a25% loss in light intensity. This situation can be modeled explic-
itly by a dynamical model that takes this reduced light intensity into
account.

In the following we describe the outcome of a simulated experi-
ment where the flow regulator fault with drifting symptom is injected
at time pointk = 700 and an additional light fault, that harms one
of the four illumination banks, is injected atk = 900. The faults are
’repaired’ atk = 1100 andk = 1300 for the flow regulator fault and
the lighting fault, respectively. This experiment illustrates unknown
mode detection and recovery from it, nominal failure mode detection,
and the multiple fault detection capability of our approach.
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Figure 12. BIO-Plex cPHA model

The simulated data is gathered from the execution of a refined sub-
set of NASA’s JSC’s CONFIG model for the BIO-Plex system[12].
Hybrid estimation utilizes a cPHA model that consists of 6 com-
ponents as shown in Fig. 12. To illustrate the complexity of the
hybrid estimation problem we should note, that the concurrent au-
tomaton has approximately56 ≈ 15000 modes. Each mode de-
scribes the dynamic evolution of the chamber system by a third or-
der system of difference equations. For example, the nominal op-
erational condition for plant growth is characterized by the mode



xd = [mr2, mr2, mv1, mv1, ml2, mp2], wheremr2 characterizes
an partially open flow regulator,mv1 a closed pulse injection valve,
ml2 100% light on, andmp2 plant growth mode at1200 ppm, re-
spectively. This mode specifies the raw model:

F1(mr2) = {xc1,(k) = 0.5 uc1,(k−1), yc1 = xc1}
F2(mr2) = {xc2,(k) = 0.5 uc1,(k−1), yc2 = xc2}
F3(mv1) = {wc2 = 0.0}
F4(mv1) = {wc3 = 0.0}
F5(ml2) = {wc1 = 1204.0}
F6(mp2) = {xc3,(k) = xc3,(k−1) + 20.163·

[−1.516 · 10−4f1(wc1,(k−1))f2(xc3,(k−1))+

yc1,(k−1) + yc2,(k−1) + wc1,(k−1) + wc2,(k−1)],

yc3 = xc3},
(9)

wheref1 andf2 denotes

f1(wc1) :=− 7.615 + 0.111 wc1 − 2.149 · 10−5 w2
c1

f2(xc3) := 72.0− 78.89 e−xc3/400.0.
(10)

xc1,(k) andxc2,(k) denote the gas flow ([g/min]) of flow regulator 1
and 2, respectively andxc3,(k) denotes theCO2 gas concentration
([ppm]) in the plant growth chamber.wc1,(k) andwc2,(k) denote the
gas flow ([g/min]) of the pulse injection valves andwc3,(k) denotes
the photosynthetic photon flux ([µ-mol/m2s]) of the lights above the
plant trays. The nonlinear expression

−1.516 · 10−4f1(wc1,(k−1))f2(xc3,(k−1))

approximates theCO2 gas production [g/min] due to photo-
synthesis according to theCO2 gas concentration and chamber
illumination[12]. This raw model defines a third order system of
discrete-time difference equations with sampling periodTs = 1
[min]:

xc1,(k) = 0.5 uc1,(k−1) + vs1,(k−1)

xc2,(k) = 0.5 uc1,(k−1) + vs2,(k−1)

xc3,(k) = xc3,(k−1) + 20.163[−1.041+

1.141e−xc3,(k)/400.0 + xc1,(k−1) + xc2,(k−1)] + vs3,(k−1)

yc1,(k) = xc1,(k) + vo1,(k)

yc2,(k) = xc2,(k) + vo2,(k)

yc2,(k) = xc3,(k) + vo3,(k),
(11)
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Figure 13. Causal graph of the BIO-Plex cPHA raw model (9)

The causal graph (Fig. 13) of the raw model (9) leads to the de-
composition of the system as shown in Fig. 14 (our implementation
of the causal analysis and decomposition algorithms treats constant
values, such as the value 1204.0 for the photosynthetic photon flux,
as known exogenous inputs with constant value). The decomposition
of the model leads to a filter cluster with 3 extended Kalman filters -
one for each flow regulator and one for the remaining system (pulse
injection valves, lighting system and plant growth chamber). This
enables us to estimate the mode and continuous state of the flow reg-
ulators independent of the remaining system. As a consequence, an
unknown mode in a flow regulator does not cause any implications
on the estimation of the remaining system.
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Figure 14. Partitioned causal SCC graph of the BIO-Plex cPHA model

Fig. 15 shows the continuous input (control signal)uc1, observed
flow rates for flow regulator 1 and 2 and theCO2 concentration for
the experiment. Both flow regulators provide half of the requested
gas injection rate up tok = 700. At this time point, the second flow
regulator starts to slowly drift towards its positive limit which it will
reach at approximatelyk = 800. The camber control system re-
acts immediately and lowers the control signal in order to keep the
CO2 concentration at the requested 1200 ppm concentration. This
transient behavior causes a slight bump in theCO2 concentration
as shown in Fig. 15-b. Our hybrid mode estimation system detects
this unmodeled fault atk = 727 and declares flow regulator 2 to be
in an unknown mode (we indicate the unknown mode by the mode
number 0 in Fig. 16). The flow regulator modestuck-open(mr5) be-
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Figure 16. Mode estimate detail for flow regulator 2

comes more and more likely as the regulator drifts towards its open
position. Hybrid mode estimation prefers this mode as symptom ex-
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Figure 15. Observed data and continuous estimation of theCO2 concentration in plant growth chamber

planation fromk = 769 onwards, although flow regulator 2 goes
into saturation a little bit later atk = 800.

The light fault atk = 900 is detected almost instantly atk = 904
(ml4). This good discrimination among the pre-specified modes
(failure and nominal) is further demonstrated at the termination
points of the faults. Repairs of the flow regulator 2 and the lighting
system are detected immediately atk = 1101 andk = 1301, re-
spectively. Fig. 17 shows the mode estimation result for the lighting
system and flow regulator 2 over the entire experiment horizon.
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5 Implementation and Discussion

The implementation of our hybrid estimation scheme extends previ-
ous work on hybrid estimation [9] and is written in Common LISP.

The hybrid estimator uses a cPHA description and performs decom-
position and estimation, as outlined above. Decomposition is done
on-line according to the mode hypotheses that are tested in the course
of hybrid estimation. In general, it can be assumed that the the mode
in the system evolves on a lower rate than the hybrid estimation
rate, which operates on the sampling periodTs. Therefore, we cache
recent decompositions and their corresponding filters for re-use as
a compromise between a-priori calculation (space complexity) and
pure on-line deduction (time complexity).

Optimized model-based estimation schemes, such as
Livingstone[22], utilize conflicts to focus the underlying search
operation. A conflict is a (partial) mode assignment that makes a
hypothesis very unlikely. This requires a more general treatment
of unknown modes compared to the filter decomposition task
introduced above. The decompositional model-based learning
system Moriarty[21] introduced continuous variants of conflicts,
so-calleddissents. We are currently reformulating these dissents for
hybrid systems and investigate their incorporation to improve the
underlying search scheme. This will lead to an overall framework
that unifies our previous work on Livingstone, Moriarty and hybrid
estimation.
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A Extended Kalman Filter

The disturbances and imprecise knowledge about the initial state
xc,(0) make it necessary to estimate the state by its meanx̂c,(k)

and covariance matrixP(k). We use an extended Kalman filter[2]
for this purpose, which updates its current state, like an HMM ob-
server, in two steps. The first step uses the model to predict mean
for the statêxc,(•k) and its covarianceP(•k), based on the previous

estimate〈x̂c,(k−1),P(k−1)〉, and the control inputuc,(k−1):

x̂c,(•k) = f(x̂c,(k−1),uc,(k−1)) (12)

A(k−1) =
∂f

∂x

∣∣∣∣
x̂c,(k−1),uc,(k−1)

(13)

P(•k) = A(k−1)P(k−1)A
T
(k−1) + Q. (14)

This one-step ahead prediction leads to a prediction residualr(k)

with covariance matrixS(k)

r(k) = yc,(k) − g(x̂c,(•k),uc,(k)) (15)

C(k) =
∂g

∂x

∣∣∣∣
x̂c,(•k),uc,(k)

(16)

S(k) = C(k)P(•k)C
T
(k) + R. (17)

The second filter step calculates the Kalman filter gainK(k), and
refines the prediction as follows:

K(k) = P(•k)C
T
(k)S

−1
(k) (18)

x̂c,(k) = x̂c,(•k) + K(k)r(k) (19)

P(k) =
[
I−K(k)C(k)

]
P(•k). (20)

The output of the extended Kalman filter, as used in our hybrid esti-
mation system, is a sequence of mean/covariance pairs〈x̂c,(k),P(k)〉
for xc,(k) as well as the hybrid probabilistic observation function

PO(y(k)|x̂(k),uc,(k)) = e
−rT

(k)S
−1
(k)r(k)/2

. (21)


