
Proc. ‘ISAIRAS 2005 Conference’, Munich, Germany,
5-8 September 2005 (ESA SP-603, September 2005)

PROGRESS TOWARDS TASK-LEVEL COLLABORATION BETWEEN ASTRONAUTS
AND THEIR ROBOTIC ASSISTANTS

Robert Effinger(1), Andreas Hofmann(1), Brian Williams(1)

(1)MIT Computer Science and Artificial Intelligence Lab, MIT

32 Vassar St., rm. 32 - 275
Cambridge, MA 02139 (USA)

 effinger@mit.edu, hofma@csail.mit.edu, williams@mit.edu

ABSTRACT

In the future, NASA envisions robotic assistants
seamlessly interacting with astronauts. These robots
must be capable of understanding abstract tasks, and
must also reliably execute the tasks. We make
progress towards these goals by firstly developing a
task-level programming language, called RMPL, that
robots can directly interpret and understand. Secondly,
we develop a hybrid executive that can execute the
tasks reliably, even while adapting to disturbances and
execution uncertainties.

1. INTRODUCTION

Current research in space robotics has shown that many
of the tasks performed by astronauts could also be
performed by robotic assistants. In the lab, these robots
have demonstrated the capability to perform space-
truss assembly, EVA setup and teardown, Shuttle tile
inspection, and ISS maintenance and repair operations
[1][4]. Robotic assistants have the potential to
decrease astronaut workload and increase human safety
by performing time-consuming and dangerous on-orbit
tasks in place of the astronaut. To this purpose, they
must be capable of seamlessly interacting with the
astronaut team. This means that they must be able to
1.) interpret task-level commands issued by astronauts,
and 2.) execute the tasks in a safe and reliable manner,
even under disturbances and execution uncertainties.

We make progress along both fronts by presenting
current research on an activity planner, named
Kirk[3wil.et.al], which 1.) accepts as inputs task-level
commands written in a task-level programming
language called RMPL, and 2.) converts the task-level
commands into a lower-level temporally flexible plan
that autonomous robots are able to execute robustly
while adapting to disturbances and uncertainties.

First, we introduce RMPL, a task-level programming
language, and describe how task-level commands in
RMPL are converted into a temporally flexible plan
representation called a Temporal Plan Network (TPN).
Next, we introduce an incremental algorithm that

enables replanning at any point when the current TPN
fails. Finally, we introduce a hybrid executive that
exploits the temporal flexibility in the TPN to safely
and reliably adapt to disturbances. We demonstrate the
hybrid executive on a particularly challenging example
of a robotic assistant, a bipedal walking machine.

2. A MOTIVATING EXAMPLE

To motivate the utility of robotic assistants in space,
we re-examine the original Apollo Lunar Roving
Vehicle (LRV) deployment sequence, but with a twist!
The tasks originally performed by one of the astronauts
will now be performed by a humanoid robotic
assistant. In this ambitious example, we assume only
one astronaut has landed on the Moon, but with a
legged and capable humanoid robot as a sidekick.
Fig. 1 shows an illustration of two Apollo astronauts
deploying the LRV. The original deployment sequence
is presented in Fig 2. First, one astronaut removes the
heating blanket and operating tapes. Next, the two
astronauts simultaneously lower the LRV and deploy
the front and aft wheels by pulling on the deployment
cables. Finally, one of the astronauts deploys the seats
and footrests. In the following sections, we show how
this task-level plan can be expressed in RMPL,
converted into a TPN, and then executed by a hybrid
executive even under disturbances and execution
uncertainties.

Fig. 1. LRV Deployment. (*courtesy of NASA)

Fig. 2. Apollo 15 LRV Deployment Sequence.

(*courtesy of NASA)

3. RMPL: A TASK-LEVEL PROGRAMMING
LANGUAGE

A robotic assistant must be capable of interpreting
task-level commands issued by the astronaut. We
progress towards this goal by developing the Reactive
Model-based Programming Language (RMPL). RMPL
allows humans to intuitively construct networks of
tasks in a language that is interpretable by a robot.
RMPL supports concurrency, flexible execution times,
maintaining conditions, synchronization, metric
constraints and contingencies. These constructs are
shown in Fig. 3, and are described briefly in the
following paragraph. A more thorough description and
analysis of RMPL can be found in [11].

RMPL := A [lb , ub] |
c [lb , ub] |
parallel (TPN1 , TPN2 , …) |
sequence (TPN1 , TPN2 , …) |
choose (TPN1 , TPN2 , …) |
if (c) thennext (TPN1) |
do (TPN1) maintaining (c)

Fig. 3. A Formal Definition of RMPL.

Lower case letters and words, like c, denote primitive
activities and conditions, and upper case letters and
words like A and TPN1 denote well-formed RMPL

expressions. A [lb, ub] is the basic construct for
expressing timing requirements, and implies that A
must not finish executing before lb time units, and must
finish executing before ub time units. The parallel
and sequence constructs are for concurrent and
sequential tasks, and choose is used to express multiple
strategies and contingencies. Together, c and
if (c) thennext (TPN1) provide the constructs for
synchronization, and do (TPN1) maintaining (c) acts
as a maintenance condition.

Next, we encode the Apollo LRV deployment
sequence in RMPL in Fig. 4. Each task beginning with
R: is to be performed by the humanoid robot, and each
task beginning with A: is to be performed by the
astronaut. The sequence and parallel constructs
provide the basic building blocks for piecing together
the network of tasks, the do … maintaining construct
ensures simultaneous lowering and deployment of the
LRV, and the choose construct allows multiple
strategies in the plan, for example, either the astronaut
or the robot can deploy the seats and footrests.

LRV-deployment-sequence() [5,20] = {
sequence(

R: Remove insulation blanket [1,3],
R: Remove operating tapes [1,3]
parallel(

A: Lower LRV w/braked reel [1,5],
do (

sequence(
R: deploy aft wheels [0.5,2],
R: deploy front wheels [0.5,2]

)
)maintaining (tension on cable)

)
choose(

A: deploy seats & footrests [1,5],
R: deploy seats & footrests [5,10]

)
)
} [5,20]

Fig. 4. LRV deployment sequence in RMPL.

The key observation here is that the LRV deployment
sequence is now expressed in a language directly
interpretable by the robotic assistant! Next, we show
how a robot interprets this task-level plan specification.

4. TEMPORAL PLAN NETWORKS

A robot interprets an RMPL program by compiling it
into a temporally flexible plan graph called a temporal
plan network (TPN). A TPN is similar to a simple
temporal network (STN)[3], that is, it includes
activities, predecessor and successor relations between
activities, and simple temporal constraints that relate
the start and end times of activities. Additionally, a
TPN represents options or contingencies in a plan by
augmenting the STN with choice nodes. Fig. 5

presents a concise definition of the TPN; the complete
development of a TPN, which includes mutex support
is available in [11]. The RMPL program for the LRV
deployment sequence is converted into a TPN in Fig. 6.

A [lb , ub]

sequence (TPN1 , TPN2 , …)

parallel (TPN1 , TPN2 , …)

choose (TPN1 , TPN2 , …)

A [lb , ub]

TPN1

TPN2

…

TPN1 TPN2 …

TPN1

TPN2
…

if (c) thennext (TPN1)

c [lb , ub]
[lb , ub]

Tell (c)

Ask (c) TPN1

do (TPN1) maintaining (c)
TPN1

Ask (c)

A [lb , ub]A [lb , ub]

sequence (TPN1 , TPN2 , …)

parallel (TPN1 , TPN2 , …)

choose (TPN1 , TPN2 , …)

A [lb , ub]

TPN1

TPN2

…

TPN1 TPN2 …TPN1 TPN2 …

TPN1

TPN2
…

TPN1

TPN2
…

if (c) thennext (TPN1)

c [lb , ub]
[lb , ub]

Tell (c)

[lb , ub][lb , ub]

Tell (c)

Ask (c) TPN1Ask (c) TPN1

do (TPN1) maintaining (c)
TPN1

Ask (c)

TPN1

Ask (c)

Fig. 5. Conversion from RMPL to TPN.

5. TASK DECOMPOSITION

If a task in an RMPL program is abstract, it must be
decomposed into lower-level tasks that are executable
by the robot. For example, the R: Deploy seats and
footrests task in Fig. 6 needs to be decomposed into to
be decomposed into several simpler, sequential tasks.
Since RMPL is a recursively defined language, the
abstract task is simply expanded into its component
sub-tasks using recursive RMPL constructs as shown
in Fig. 8.

So far, we have shown how a robot interprets an
RMPL plan specification by converting it into a
temporally flexible plan (a TPN) and also how abstract

tasks in the TPN can be decomposed into a lower-level
network of tasks that the robot knows how to execute.
Next we show how the robot determines if the
decomposed network of tasks is temporally consistent.

R: Deploy
seats

R: Deploy
footrests

R: Deploy
left seat

R: Walk to left
side of LRV

R: Deploy seats
and footrests

[5,10]

[3,7] [2,3]

R: Deploy
right seat

[1,2] [1,3] [1,2]

R: Deploy
seats

R: Deploy
footrests

R: Deploy
left seat

R: Walk to left
side of LRV

R: Deploy seats
and footrests

[5,10]

[3,7] [2,3]

R: Deploy
right seat

[1,2] [1,3] [1,2]

Fig. 8. An Example of Task Decomposition.

6. TEMPORAL CONSISTENCY OF A TPN

A TPN with each choice assigned is exactly an STN,
thus, we can determine temporal consistency in
polynomial time just as with STNs [3]. It is also
proven in [3] that an inconsistent distance graph causes
the shortest path calculation to loop continuously,
creating a negative cycle. This cycle can be detected
quickly by looking for self-loops in the set of support
[2]. Next, we introduce an algorithm that determines
temporal consistency of distance graphs incrementally.

7. INCREMENTAL CONSISTENCY OF A TPN

An important enabler for fast replanning is the ability
to quickly locate and repair inconsistencies in the plan.
We enable fast replanning by introducing an
incremental temporal consistency algorithm(ITC). ITC
supports fast consistency testing through an
incremental set of support [2], and through a set of
incremental update rules. ITC’s update rules can both
update a consistent distance graph and repair an
inconsistent distance graph. A simple example of each
is given below, and the full pseudocode for ITC is
developed in [9].

Ask(tension on deploy cable)

R: Deploy
front wheels

R: Deploy
aft wheels

[0.5,2]
R: Remove
Insulation
Blanket

[1,3]

R: Remove
Operating

Tapes

[1,3]
A: Lower LRV using

braked reel

[1,5]

[0.5,2]

A: Deploy seats
and footrests

R: Deploy seats
and footrests

[1,5]

[5,10]

Ask(tension on deploy cable)

R: Deploy
front wheels

R: Deploy
aft wheels

[0.5,2]
R: Remove
Insulation
Blanket

[1,3]

R: Remove
Operating

Tapes

[1,3]
A: Lower LRV using

braked reel

[1,5]

[0.5,2]

A: Deploy seats
and footrests

R: Deploy seats
and footrests

[1,5]

[5,10]

Ask(tension on deploy cable)

R: Deploy
front wheels

R: Deploy
aft wheels

[0.5,2]
R: Remove
Insulation
Blanket

[1,3]

R: Remove
Operating

Tapes

[1,3]
A: Lower LRV using

braked reel

[1,5]

[0.5,2]

A: Deploy seats
and footrests

R: Deploy seats
and footrests

[1,5]

[5,10]

Fig. 6. Temporal Plan Network of the Apollo 15 LRV deployment sequence.

7.1 Incrementally Update a Consistent Graph

ITC has three incremental update rules to update a
consistent distance graph. The three rules are divided
based on how a change affects the current shortest-
path: (1) no effect to the current shortest-path, (2)
improves the shortest-path, and (3) invalidates the
current shortest-path.

(1) Arc Change without Effect to Shortest Path
An arc can change in such a way that the shortest-path
to a node is unaffected. The graph in this case requires
no updates, because the shortest-path distances do not
change. For example, in Fig. 9, the current best way to
reach node j is to go through node g, as specified by
the predecessor pointer (p=g) of node j. The arc
change has no effect on the shortest-path, and no
further updates need to be performed.

3 j d=7
p=g

i
d=6

g

h

2

2

3
d=5

d=5

Distance graph End3 j d=7
p=g

i
d=6

g

h

2

2

3
d=5

d=5

Distance graph End

 Fig. 9. No Effect to Shortest-Path.

(2) Arc Change Improves Shortest-Path

An arc distance decrease can improve the shortest-path
to one or more nodes. In this case, the shortest-path
distance value of the node at the head of the changed
arc needs to be updated, and this updated distance
value should be propagated to successor nodes. For
example, in Fig. 10, arcij reduces in cost from 3 to 0.
With this change, the shortest-path distance to node j
can be decreased from 7 to 6, through node i. Since the
successor nodes of node j could be affected, the
outgoing arcs from node j must be examined.

p=g i
3 0 j d=7i

d=6

g

h

2

3
d=5

d=5

6Distance graph Endp=g i
3 0 j d=7i

d=6

g

h

2

3
d=5

d=5

6Distance graph End

 Fig. 10. Shortest-Path Improvement.

(3) Arc Change Invalidates Shortest-Path
In the third case, an increase in arc distance can
invalidate the current shortest-path to a node. In this
case, all nodes depending on the invalidated node for
support must also be invalidated. Then, new shortest
path values must be propagated by re-examining the
invalidated node’s parents. For example, in Fig. 11, an
increase to arcij invalidates node j’s shortest-path

value. First, all nodes that use node j in their shortest
path must be invalidated. Then, node j’s parents are
added to the Q so new shortest-path values and
predecessor pointers will be propagated to all of the
invalidated nodes.

?d=6
?

40 ji
d=6

g

h

2

3
d=5

d=5

p = iDistance graph End?d=6
?

40 ji
d=6

g

h

2

3
d=5

d=5

p = iDistance graph End

Fig. 11. Shortest-Path Improvement.

This completes a brief overview of ITC’s three update
rules to update a consistent distance graph. Next we
describe how ITC reasons incrementally to repair an
inconsistent distance graph.

7.2 Incrementally Repair an Inconsistency

When ITC discovers a negative cycle, three steps must
be performed to repair the distance graph and maintain
a correct set of support: 1) reset every node in the
negative cycle by setting d(n) to ∞, and the predecessor
pointer to unknown, 2) reset all nodes that depend on
the negative cycle by recursively invalidating supports,

D

B

2 3

-1

3 8

-2

-2

-8

d=2
p=S

d=4
p=A

d=?
p=?

S
2

d=0
p=none

-1

d=?
p=?A

C

Queue: C B A DS

∞
?

∞

?

S

∞
?

∞

?

D

B

2 3

-1

3 8

-2

-2

-8

d=2
p=S

d=4
p=A

d=?
p=?

S
2

d=0
p=none

-1

d=?
p=?A

C

Queue: C B A DS

∞
?

∞

?

S

∞
?

∞

?

Fig. 12. Shortest-Path Improvement.

and 3) for every node that was reset in steps 1 or 2,
insert onto the Q any parent of that node that has not
also been invalidated. For example, Figure 12, shows a
distance graph just after ITC has detected the negative
cycle, ABDCA, and then performed all three
incremental repair steps.

3.2 Experimental Results of ITC

The Kirk planner was tested on a set of realistic aerial
vehicle missions, and also a set of randomly generated
plans, shown in Fig. 14. In both test cases, planning
with ITC improves Kirk’s planning speed by an order
of magnitude. A detailed analysis of these
experimental results is available in [9].

Planner Performance Tests
(on 100 randomly generated TPNs)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120

Th
ou

sa
nd

s

of Choice Nodes

of

 A
rc

 U
pd

at
es

 in
Chronological BT
w ithout ITC
Chrono BT w ith ITC

Dynamic BT w ith
ITC

Fig. 13. Randomly Generated Plan Results.

8. MOTION EXECUTION

Movement of the robot is most naturally specified as a
sequence of qualitative behaviors culminating in the
task goal. Consider, for example, the walking task
subgoal in Fig. 8. A walking gait cycle can be
described as a sequence alternating between single
support and double support. We call each step in such
a sequence a control epoch, and the overall sequence, a
qualitative state plan, QSP. Qualitative behavior
within an epoch is specified with a set of state-space
region and temporal range constraints. Thus, a
qualitative state plan is an extension of the previously
described temporal plan; besides specifying temporal
constraints, a QSP specifies spatial requirements using
state-space region constraints.

Translating such a qualitative description into control
actions is a challenging problem because the robot is
highly nonlinear, has high dimensionality and has input
constraints that limit controllability. Systems of this
type include continuous, as well as discrete state
variables, so we refer to such systems as hybrid.
Whereas an executive for a discrete state system
ignores the detailed dynamics of the system being
controlled, an executive for a hybrid system must take
these into account, along with associated controllability
limits.

8.1 Approach
 As with traditional temporal plans used for discrete
state systems [8], a qualitative state plan is composed
of activities related by simple temporal constraints.
However, a qualitative state plan differs in that an
activity specifies the legal evolution of a state variable,
rather than an executable activity. As shown in Fig.
14a, foot placement constraints define qualitative poses
such as double support, or left single support, but the
details of the joint positions are omitted. A goal region
for the forward position at the end of the gait sequence

defines the goal. A temporal range constraint specifies
task completion time requirements.
 Such a qualitative behavior description is much
more convenient than an activity plan, but translation
into control actions is difficult. We solve this problem
by synthesizing a set of adaptive controllers,
customized for the state plan. Performing such a
synthesis on-line is not feasible because this process is
computationally intensive. On the other hand, fixing all
control parameters offline limits flexibility. Therefore,
we use a mixed on-line/off-line approach, where an
off-line plan compiler computes a set of bounds on
control parameters, and an on-line hybrid dispatcher
efficiently adapts control settings, within these bounds,
to respond to disturbances. The plan compiler and
hybrid dispatcher comprise a model-based executive
[12], as shown in Fig. 14b.
 To simplify controller synthesis, we utilize a
feedback linearizing multivariable controller, which
transforms the highly nonlinear, tightly coupled biped
system into a loosely coupled set of linear 2nd-order
single-input single-output (SISO) systems [6]. This
SISO abstraction greatly simplifies the plan compiler’s
job, because the control parameters computed are for a
small set of linear control laws, rather than for a
complex nonlinear system.

Fig. 14 – a. Qualitative task specification (left), b.
Model-based executive (right)

8.2 Qualitative State Plan
 A qualitative state plan is used to represent the
desired state evolution of the plant. Given a state plan
and a plant, the execution task is to generate a
sequence of control actions that moves the plant to a
state consistent with that required by the plan.
 A qualitative state plan specifies state evolution
using sequences of activities as shown in Fig. 15. Each
activity is part of a control epoch (column in Fig. 15).
The control epochs in Fig. 15 correspond to the
qualitative poses shown in Fig. 14. Vertical bars in
Fig. 15, between rows, represent synchronization
constraints.

Rf_1

x

y Lf_1

Rf_2

Lf_2X_lb X_ub

Y_lb

Y_ub

Foot placement

Qualitative Gait Poses

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Double support
left foot in front

Left single
support

Double support
right foot in front

Right single
support

x - forward
y - lateral

[20, 30] t

Spatial goal region
specification

Temporal range
specification

Model-based
Executive

State Plan

Hybrid Dispatcher

Plan Compiler

SISO Linear Systems

Control
parametersState

Control
Plan

 Each activity may have a temporal duration range
constraint, indicated by [lb, ub] (lb indicates lower
bound, ub, upper bound). In addition, range constraints
on initial and goal regions for quantities may be
specified using rectangles in position/velocity phase
space. Note that the duration and region constraints are
optional, and these constraints are omitted for many
activities. In Fig. 15, we care about the initial and final
region of the CM, but not about the details in between.
Similarly, we care that the gait cycle be completed
within time range [t_lb, t_ub], but not about the
specific duration of each activity.
 Formally, we define a state plan as a set, A , of
activities, ()jia , , where i refers to the quantity, and
j to the control epoch. An activity is defined by the

tuple nexttemporalgoaltubeinit aRRRR ,,,, where initR ,

tubeR , and goalR specify, respectively, initial,
operating, and goal regions in state space for the
controlled variable associated with the activity, and

temporalR specifies temporal constraints. The activity

nexta is the activity to transition to when the current
activity is finished.

Fig. 15 – Qualitative State Plan

 The region constraints, initR , tubeR , and goalR are
of the
form () ()maxminmaxmin iiiiii yyyyyy &&& ≤≤∧≤≤ for
controlled quantities, and ()maxmin iii yyy ≤≤ for
input quantities. An activity may begin if its quantity
is in the region defined by initR . An activity cannot
end unless the quantity is in goalR . The quantity must
stay within tubeR for the entire duration of the activity.
 temporalR is of the form parallelduration AR , , where

durationR is a simple temporal constraint []ublb, , and
parallelA is a set of activities that must finish

simultaneously with the current one (vertical bars in
Fig. 15). For example, for a biped, movement of the
stepping foot must be synchronized with forward
movement of the center of mass.

 A valid plan execution is defined as follows. An
activity finishes if its goalR , durationR , and parallelA
constraints are satisfied. After it finishes, it transitions
to the successor, nexta , immediately. An activity, a ,
is executed successfully iff there exists a start time, ts ,
and a finish time, tf , for the activity, such that

ubtstflb ≤−≤ , and there exists a trajectory for the
associated controlled variable y such that ()tsy and
()tsy& satisfy initR , ()tfy and ()tfy& satisfy goalR , and

()ty and ()ty& satisfy tubeR for tftts ≤≤ . A state
plan is executed successfully iff each activity, ()jia , ,
is executed successfully, and the associated finish time,
()jitf , , is such that if the activity has a successor,
()1, +jia , then () ()1,, += jitsjitf , and for any parallel

activity, ()jka , , listed in parallelA , () ()jktfjitf ,, = .

8.3 Plan Compiler
 Restrictions on control parameters are determined at
compile time and are captured in a control plan. The
precise control parameter setting for each activity is
then determined by the dispatcher at run-time. A
control plan consists of the activities from the state
plan, with two additions: 1) SISO control parameter
information is included, and 2) the region constraints,

initR , tubeR , and goalR , and the duration constraint,
durationR , specify non-infinite bounds. Control

parameter constraints are of the form
max2min2max1min1 ,,, kkkk , and specify bounds on

control parameters for the linear control laws used in
the SISO abstraction.
 In computing bounds on the control parameters, the
compiler performs an adaptive controller synthesis. In
order to maximize robustness to disturbances, the
compiler attempts to maximize the size of initial
regions, and tubes, and maximize controllable temporal
activity duration ranges. Maximizing controllable
temporal range makes synchronization with other
controlled quantities easier. To perform this
optimization, we utilize an SQP (Sequential Quadratic
Programming) optimizer, and formulate the problem as
an NLP (Nonlinear Program).
 The NLP formulation for the control plan
computation is as follows. For each activity, ija ,
parameters to optimize are:

maxmaxminmin ,,, initinitinitinit yyyy && (parameters of
initR), maxmaxminmin ,,, goalgoalgoalgoal yyyy &&

(parameters of goalR), maxmin , tt (parameters of
durationR), and max2min2max1min1 ,,, kkkk , the

bounds on the control parameters. In order to
understand how this computation works, it is necessary
to understand two trajectories that represent extremes
of behavior: the guaranteed fastest trajectory (GFT),
and the guaranteed slowest trajectory (GST). The
GFT represents a lower bound on the time needed to
get from anywhere in the initial region, to somewhere

Lateral
CM

[t_lb, t_ub]

Forward
CM

[]11, yy &

[]22 , yy &

1 2 3 4 5

j j+1
ija

[lb, ub]

quantity

control
epoch

goal
region

initial
region

in the goal region. The GST represents the
corresponding upper bound.
 Consider the initial and goal regions shown in Fig.
16a. For the GFT, the worst-case starting point in the
initial region is point B, which corresponds to

minmin , initinit yy & . By accelerating as quickly as
possible, the GFT reaches point D. This represents the
fastest finish point in the goal region. For the GST, the
worst-case starting point is point A. This represents
the fastest possible start. By accelerating as slowly as
possible, the GST reaches p;oint C, the slowest finish
point.
 The times for each trajectory are designated GFTt

and GSTt . If GSTGFT tt < , then there exists a temporal

range, []GSTGFT tt , , during which the endpoint of a
trajectory beginning from anywhere in the initial
region can be guaranteed to be in the goal region. The
existence of this temporal range is important for
synchronizing with other controlled quantities. Thus,
the GFT and GST are useful for determining a
maximum initial region, given a particular goal region,
such that the controllable temporal range exists.
 GFT and GST can be understood intuitively by
considering a single acceleration spike control. If this
spike is applied at the beginning of the trajectory, then
maximum velocity is reached immediately, resulting in
the GFT, as shown in Fig. 16b. If it is applied at the
end, then the trajectory will progress at minimum
velocity resulting in the GST.

Fig. 16 – a. GFT (dotted) and GST (solid), left, b. for
acceleration spike control laws, right
 In the NLP formulation, existence of initial and goal
regions is expressed as
 maxmin initinit yy < , maxmin initinit yy && < (5)
 maxmin goalgoal yy < , maxmin goalgoal yy && <
To guarantee contraction, the goal region of an activity
must fit inside the initial region of its successor.
 () ()1,, minmin +≥ jiyjiy initgoal (6)
 () ()1,, minmin +≥ jiyjiy initgoal &&
 () ()1,, maxmax +≤ jiyjiy initgoal
 () ()1,, maxmax +≤ jiyjiy initgoal &&
Constraints representing the GFT are expressed as

()minmax2max1minmin1min ,,,, tkkyyfy initinitgoal &= (7)
()minmax2max1minmin2max ,,,, tkkyyfy initinitgoal && =

Constraints representing the GST are expressed as
()maxmin2min1maxmax1max ,,,, tkkyyfy initinitgoal &= (8)
()maxmin2min1maxmax2max ,,,, tkkyyfy initinitgoal && =

The requirement for temporal controllability is
expressed as maxmin tt < . Synchronization constraints
are

() () () ()() ...,1,1 maxmaxminmin ∧≤≤≤ jtjtjtjt transtrans

() () () ()()jitjtjtjit transtrans ,, maxmaxminmin ≤≤≤
Thus, () ()[]jtjt transtrans maxmin , is the temporal range
when transition out of control epoch j may occur.
 The cost function maximizes initial region size and
controllable temporal range.

8.4 Hybrid Dispatcher
 The hybrid dispatcher executes the qualitative
control plan. It acts as an adaptive controller, adjusting
control parameters, to guide each controlled quantity
into its goal region at the correct time. When all
quantities are in their respective goal regions, the
hybrid dispatcher transitions to the next control epoch.
 At the beginning of a new control epoch, j, the
dispatcher computes a target transition time, ()jttrans .
For each controlled quantity, the dispatcher then
monitors progress by computing a prediction of the
point in state space for the controlled quantity at

()jttrans . This prediction is computed analytically in
the same manner as eq. 1, so it is fast. If the predicted
point is within the goal region, then the dispatcher does
nothing. If it is outside the goal region, then the
dispatcher adjusts the control parameters to attempt to
move the predicted point back into the goal region. If
this is unsuccessful, the plan execution fails, and the
dispatcher requests a new plan.

8.5 Movement Execution Results and Discussion
 Fig. 18 shows control plan regions computed by the
second step of the plan compiler. Fig. 18a shows
lateral CM (velocity vs. position), and Fig. 18b shows
forward CM. As can be seen in Fig. 18b, good
contraction is achieved for forward CM; the goal
regions fit well inside the initial regions for the
subsequent mode. Contraction is not as good for
lateral CM; the goal regions barely fit inside the initial
regions (Fig. 18a). This is due to the fact that
controllability in the lateral direction is more limited,
because the support base is narrower.
 The motion sequence in Fig. 19 shows a nominal
execution of this control plan, which results in dynamic
walking at medium speed. The motion sequence in
Fig. 20 shows a similar walking pattern, but with
irregular foot placements due to the need to step on the
stones. The motion sequence in Fig. 21 shows
recovery from a lateral push disturbance.

A

B

y
y&

C

D

Initial

Goal

A

B

y
y&

C

D

Initial

Goal

Fig. 17 – Initial (dotted) and goal (solid) regions for
control epochs 1 – 4, a. lateral CM (left), b. forward
CM (right), plots show region in velocity-position
phase space.

 Fig. 18 Motion sequence for dynamic walking

Fig. 19 – Motion sequence for plan requiring careful
foot placement

Fig. 20 – Motion sequence for recovery from lateral
push disturbance

9. CONCLUSIONS AND FUTURE WORK

In this paper, we show how an abstract task-level plan,
written in RMPL, can be interpreted and decomposed
by a robot into a detailed temporally flexible plan, a
TPN. We then show how that TPN can be updated
incrementally, and then executed reliably by a hybrid
executive. We demonstrate this approach on a
particularly challenging example of a robotic assistant,

a bipedal walking machine. In the future, we plan to
demonstrate this system on two cooperating 4DOF
robotic manipulators, and also the Robonaut Simulator,
a simulation of a humanoid robot.

10. ACKNOWLEDGEMENTS

This research was supported in part by the DARPA
MICA program under contract N66001-01-C-8075, and
the NASA IS program under contract NCC-2-1235.

11. REFERENCES

1. Ambrose, R., Culbert, C., and Rehnmark, “An
experimental investigation of dexterous robots using
EVA tools and Interfaces, AIAA Space 2001,
Albuquerque, NM.
2. Cesta, A. and Oddi, A., “Gaining Efficiency and
Flexibility in the Simple Temporal Problem”, 3rd
Workshop on Temporal Representation and
Reasoning. TIME 1996.
3. Dechter, R.; Meiri, I.; Pearl, J., 1991. Temporal
Constraint Networks. Artificial Intelligence, 49:61-95.
4. Fredrickson, S.E., Lockhart, P.S., and
Wagenknecht, J.D. “Autonomous extravehicular
robotic camera (AERCam) for remote viewing. AIAA
International Space Station Service Vehicles
Conference 1999, Houston, TX.
5. A. Goswami. Postural stability of biped robots and
the foot rotation indicator (FRI) point. International
Journal of Robotics Research, July/August 1999
6. A. Hofmann, S. Massaquoi, M. Popovic, and H.
Herr. A sliding controller for bipedal balancing using
integrated movement of contact and non-contact limbs.
Proc. International Conference on Intelligent Robots
and Systems (IROS). Sendai, Japan
7. P. Morris, N. Muscettola, and T. Vidal. Dynamic
control of plans with temporal uncertainty.
Proceedings of the 17th International Joint Conference
on A.I. (IJCAI-01). Seattle (WA, USA).
8. N. Muscettola, P. Morris, and I. Tsamardinos.
Reformulating temporal plans for efficient execution.
Proc. Of Sixth Int. Conf. On Principles of Knowledge
Representation and Reasoning, 1998.
9. Shu, I., Effinger, R., Williams, B., “Enabling Fast
Flexible Planning through Incremental Temporal
Consistency with Conflict Extraction”. ICAPS, 2005.
10. E. Bradley and F. Zhao. Phase-space control
system design. Control Systems, 13(2),39-46 1993.
11. Williams, et.al., “Model-based Reactive
Programming of Cooperative Vehicles for Mars
Exploration.” iSAIRAS, St-Hubert, Canada, June 2001.
12. B. Williams and P. Nayak. A Reactive Planner for
a Model-based Executive. Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI, 1997)

1

23

4

y
y&

1 2 3 4

y
y&

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

