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ABSTRACT 
 
In the future, NASA envisions robotic assistants 
seamlessly interacting with astronauts.  These robots 
must be capable of understanding abstract tasks, and 
must also reliably execute the tasks.  We make 
progress towards these goals by firstly developing a 
task-level programming language, called RMPL, that 
robots can directly interpret and understand.  Secondly, 
we develop a hybrid executive that can execute the 
tasks reliably, even while adapting to disturbances and 
execution uncertainties. 
 

1. INTRODUCTION 
 
Current research in space robotics has shown that many 
of the tasks performed by astronauts could also be 
performed by robotic assistants. In the lab, these robots 
have demonstrated the capability to perform space-
truss assembly, EVA setup and teardown, Shuttle tile 
inspection, and ISS maintenance and repair operations 
[1][4].  Robotic assistants have the potential to 
decrease astronaut workload and increase human safety 
by performing time-consuming and dangerous on-orbit 
tasks in place of the astronaut.  To this purpose, they 
must be capable of seamlessly interacting with the 
astronaut team.  This means that they must be able to 
1.) interpret task-level commands issued by astronauts, 
and 2.) execute the tasks in a safe and reliable manner, 
even under disturbances and execution uncertainties.   
 
We make progress along both fronts by presenting 
current research on an activity planner, named 
Kirk[3wil.et.al], which 1.) accepts as inputs task-level 
commands written in a task-level programming 
language called RMPL, and 2.) converts the task-level 
commands into a lower-level temporally flexible plan 
that autonomous robots are able to execute robustly 
while adapting to disturbances and uncertainties.   
 
First, we introduce RMPL, a task-level programming 
language, and describe how task-level commands in 
RMPL are converted into a temporally flexible plan 
representation called a Temporal Plan Network (TPN). 
Next, we introduce an incremental algorithm that 

enables replanning at any point when the current TPN 
fails.  Finally, we introduce a hybrid executive that 
exploits the temporal flexibility in the TPN to safely 
and reliably adapt to disturbances.  We demonstrate the 
hybrid executive on a particularly challenging example 
of a robotic assistant, a bipedal walking machine.  
 

2. A MOTIVATING EXAMPLE 
 
To motivate the utility of robotic assistants in space, 
we re-examine the original Apollo Lunar Roving 
Vehicle (LRV) deployment sequence, but with a twist!  
The tasks originally performed by one of the astronauts 
will now be performed by a humanoid robotic 
assistant.  In this ambitious example, we assume only 
one astronaut has landed on the Moon, but with a 
legged and capable humanoid robot as a sidekick.   
Fig. 1 shows an illustration of two Apollo astronauts 
deploying the LRV.  The original deployment sequence 
is presented in Fig 2.  First, one astronaut removes the 
heating blanket and operating tapes.  Next, the two 
astronauts simultaneously lower the LRV and deploy 
the front and aft wheels by pulling on the deployment 
cables.  Finally, one of the astronauts deploys the seats 
and footrests.   In the following sections, we show how 
this task-level plan can be expressed in RMPL, 
converted into a TPN, and then executed by a hybrid 
executive even under disturbances and execution 
uncertainties. 
 

 
Fig. 1. LRV Deployment.  (*courtesy of NASA) 



 
Fig. 2. Apollo 15 LRV Deployment Sequence.  

(*courtesy of NASA) 

3. RMPL:  A TASK-LEVEL PROGRAMMING 
LANGUAGE 

 
A robotic assistant must be capable of interpreting 
task-level commands issued by the astronaut.  We 
progress towards this goal by developing the Reactive 
Model-based Programming Language (RMPL).  RMPL 
allows humans to intuitively construct networks of 
tasks in a language that is interpretable by a robot.  
RMPL supports concurrency, flexible execution times, 
maintaining conditions, synchronization, metric 
constraints and contingencies.  These constructs are 
shown in Fig. 3, and are described briefly in the 
following paragraph.  A more thorough description and 
analysis of RMPL can be found in [11].   
 

RMPL := A [ lb , ub ]   |
c [ lb , ub ]   |
parallel  ( TPN1 , TPN2 , … )   |
sequence  ( TPN1 , TPN2 , … )   |
choose  ( TPN1 , TPN2 , … )  |             
if (c) thennext ( TPN1 )   |
do ( TPN1 ) maintaining (c)

 
Fig. 3. A Formal Definition of RMPL. 

 
Lower case letters and words, like c, denote primitive 
activities and conditions, and upper case letters and 
words like A and TPN1 denote well-formed RMPL 

expressions.  A [ lb, ub] is the basic construct for 
expressing timing requirements, and implies that A 
must not finish executing before lb time units, and must 
finish executing before ub time units.  The parallel 
and sequence constructs are for concurrent and 
sequential tasks, and choose is used to express multiple 
strategies and contingencies.  Together, c and  
if (c) thennext (TPN1) provide the constructs for 
synchronization, and do (TPN1) maintaining (c) acts 
as a maintenance condition.  
 
Next, we encode the Apollo LRV deployment 
sequence in RMPL in Fig. 4.  Each task beginning with 
R: is to be performed by the humanoid robot, and each 
task beginning with A: is to be performed by the 
astronaut.  The sequence and parallel constructs 
provide the basic building blocks for piecing together 
the network of tasks, the do … maintaining construct 
ensures simultaneous lowering and deployment of the 
LRV, and the choose construct allows multiple 
strategies in the plan, for example, either the astronaut 
or the robot can deploy the seats and footrests.   
 

LRV-deployment-sequence() [5,20] = {
sequence( 

R: Remove insulation blanket [1,3], 
R: Remove operating tapes [1,3] 
parallel(

A: Lower LRV w/braked reel [1,5],
do (

sequence( 
R: deploy aft wheels [0.5,2],
R: deploy front wheels [0.5,2]

)
)maintaining (tension on cable)

)
choose(

A: deploy seats & footrests [1,5], 
R: deploy seats & footrests [5,10] 

)
)
} [5,20]  

Fig. 4. LRV deployment sequence in RMPL. 
 
The key observation here is that the LRV deployment 
sequence is now expressed in a language directly 
interpretable by the robotic assistant!  Next, we show 
how a robot interprets this task-level plan specification. 
 

4. TEMPORAL PLAN NETWORKS 
 
A robot interprets an RMPL program by compiling it 
into a temporally flexible plan graph called a temporal 
plan network (TPN).  A TPN is similar to a simple 
temporal network (STN)[3], that is, it includes 
activities, predecessor and successor relations between 
activities, and simple temporal constraints that relate 
the start and end times of activities.  Additionally, a 
TPN represents options or contingencies in a plan by 
augmenting the STN with choice nodes.  Fig. 5 



presents a concise definition of the TPN; the complete 
development of a TPN, which includes mutex support 
is available in [11].  The RMPL program for the LRV 
deployment sequence is converted into a TPN in Fig. 6.   
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Fig. 5. Conversion from RMPL to TPN. 

 

5. TASK DECOMPOSITION 
 
If a task in an RMPL program is abstract, it must be 
decomposed into lower-level tasks that are executable 
by the robot.  For example, the R: Deploy seats and 
footrests task in Fig. 6 needs to be decomposed into to 
be decomposed into several simpler, sequential tasks.  
Since RMPL is a recursively defined language, the 
abstract task is simply expanded into its component 
sub-tasks using recursive RMPL constructs as shown 
in Fig. 8.     
 
So far, we have shown how a robot interprets an 
RMPL plan specification by converting it into a 
temporally flexible plan (a TPN) and also how abstract 

tasks in the TPN can be decomposed into a lower-level 
network of tasks that the robot knows how to execute.  
Next we show how the robot determines if the 
decomposed network of tasks is temporally consistent.  
 

R: Deploy
seats 

R: Deploy 
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R: Deploy 
left seat 
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[3,7] [2,3]
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right seat 

[1,2] [1,3] [1,2]
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Fig. 8. An Example of Task Decomposition. 

 

6. TEMPORAL CONSISTENCY OF A TPN 
 
A TPN with each choice assigned is exactly an STN, 
thus, we can determine temporal consistency in 
polynomial time just as with STNs [3].  It is also 
proven in [3] that an inconsistent distance graph causes 
the shortest path calculation to loop continuously, 
creating a negative cycle.  This cycle can be detected 
quickly by looking for self-loops in the set of support 
[2].  Next, we introduce an algorithm that determines 
temporal consistency of distance graphs incrementally. 
 

7. INCREMENTAL CONSISTENCY OF A TPN 
 
An important enabler for fast replanning is the ability 
to quickly locate and repair inconsistencies in the plan.  
We enable fast replanning by introducing an 
incremental temporal consistency algorithm(ITC). ITC 
supports fast consistency testing through an 
incremental set of support [2], and through a set of 
incremental update rules.  ITC’s update rules can both 
update a consistent distance graph and repair an 
inconsistent distance graph.  A simple example of each 
is given below, and the full pseudocode for ITC is 
developed in [9]. 
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Fig. 6. Temporal Plan Network of the Apollo 15 LRV deployment sequence. 



7.1     Incrementally Update a Consistent Graph 
 
ITC has three incremental update rules to update a 
consistent distance graph.  The three rules are divided 
based on how a change affects the current shortest-
path: (1) no effect to the current shortest-path, (2) 
improves the shortest-path, and (3) invalidates the 
current shortest-path.  
 
(1) Arc Change without Effect to Shortest Path 
An arc can change in such a way that the shortest-path 
to a node is unaffected.  The graph in this case requires 
no updates, because the shortest-path distances do not 
change.  For example, in Fig. 9, the current best way to 
reach node j is to go through node g, as specified by 
the predecessor pointer (p=g) of node j.  The arc 
change has no effect on the shortest-path, and no 
further updates need to be performed. 
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  Fig. 9. No Effect to Shortest-Path. 

 
(2) Arc Change Improves Shortest-Path 

An arc distance decrease can improve the shortest-path 
to one or more nodes.  In this case, the shortest-path 
distance value of the node at the head of the changed 
arc needs to be updated, and this updated distance 
value should be propagated to successor nodes.  For 
example, in Fig. 10, arcij reduces in cost from 3 to 0.  
With this change, the shortest-path distance to node j 
can be decreased from 7 to 6, through node i.  Since the 
successor nodes of node j could be affected, the 
outgoing arcs from node j must be examined. 
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               Fig. 10. Shortest-Path Improvement. 

 
(3) Arc Change Invalidates Shortest-Path 
In the third case, an increase in arc distance can 
invalidate the current shortest-path to a node.  In this 
case, all nodes depending on the invalidated node for 
support must also be invalidated.  Then, new shortest 
path values must be propagated by re-examining the 
invalidated node’s parents.  For example, in Fig. 11, an 
increase to arcij invalidates node j’s shortest-path 

value.  First, all nodes that use node j in their shortest 
path must be invalidated.  Then, node j’s parents are 
added to the Q so new shortest-path values and 
predecessor pointers will be propagated to all of the 
invalidated nodes.   
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Fig. 11. Shortest-Path Improvement. 

 
This completes a brief overview of ITC’s three update 
rules to update a consistent distance graph.  Next we 
describe how ITC reasons incrementally to repair an 
inconsistent distance graph. 
 
7.2      Incrementally Repair an Inconsistency 
 
When ITC discovers a negative cycle, three steps must 
be performed to repair the distance graph and maintain 
a correct set of support: 1) reset every node in the 
negative cycle by setting d(n) to ∞, and the predecessor 
pointer to unknown, 2) reset all nodes that depend on 
the negative cycle by recursively invalidating supports,   
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Fig. 12. Shortest-Path Improvement. 

and 3) for every node that was reset in steps 1 or 2, 
insert onto the Q any parent of that node that has not 
also been invalidated.  For example, Figure 12, shows a 
distance graph just after ITC has detected the negative 
cycle, ABDCA, and then performed all three 
incremental repair steps. 
 
3.2 Experimental Results of ITC 
 
The Kirk planner was tested on a set of realistic aerial 
vehicle missions, and also a set of randomly generated 
plans, shown in Fig. 14.  In both test cases, planning 
with ITC improves Kirk’s planning speed by an order 
of magnitude. A detailed analysis of these 
experimental results is available in [9]. 
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Fig. 13. Randomly Generated Plan Results. 
 

8. MOTION EXECUTION 
 
Movement of the robot is most naturally specified as a 
sequence of qualitative behaviors culminating in the 
task goal.  Consider, for example, the walking task 
subgoal in Fig. 8.  A walking gait cycle can be 
described as a sequence alternating between single 
support and double support.  We call each step in such 
a sequence a control epoch, and the overall sequence, a 
qualitative state plan, QSP.  Qualitative behavior 
within an epoch is specified with a set of state-space 
region and temporal range constraints.  Thus, a 
qualitative state plan is an extension of the previously 
described temporal plan;  besides specifying temporal 
constraints, a QSP specifies spatial requirements using 
state-space region constraints. 
 
Translating such a qualitative description into control 
actions is a challenging problem because the robot is 
highly nonlinear, has high dimensionality and has input 
constraints that limit controllability.  Systems of this 
type include continuous, as well as discrete state 
variables, so we refer to such systems as hybrid.  
Whereas an executive for a discrete state system 
ignores the detailed dynamics of the system being 
controlled, an executive for a hybrid system must take 
these into account, along with associated controllability 
limits.   
 
8.1 Approach 
 As with traditional temporal plans used for discrete  
state systems [8], a qualitative state plan is composed 
of activities related by simple temporal constraints.  
However, a qualitative state plan differs in that an 
activity specifies the legal evolution of a state variable, 
rather than an executable activity. As shown in Fig. 
14a, foot placement constraints define qualitative poses 
such as double support, or left single support, but the 
details of the joint positions are omitted.  A goal region 
for the forward position at the end of the gait sequence 

defines the goal.  A temporal range constraint specifies 
task completion time requirements. 
 Such a qualitative behavior description is much 
more convenient than an activity plan, but translation 
into control actions is difficult.  We solve this problem 
by synthesizing a set of adaptive controllers, 
customized for the state plan.  Performing such a 
synthesis on-line is not feasible because this process is 
computationally intensive. On the other hand, fixing all 
control parameters offline limits flexibility.  Therefore, 
we use a mixed on-line/off-line approach, where an 
off-line plan compiler computes a set of bounds on 
control parameters, and an on-line hybrid dispatcher 
efficiently adapts control settings, within these bounds, 
to respond to disturbances.   The plan compiler and 
hybrid dispatcher comprise a model-based executive 
[12], as shown in Fig. 14b.   
 To simplify controller synthesis, we utilize a 
feedback linearizing multivariable controller, which 
transforms the highly nonlinear, tightly coupled biped 
system into a loosely coupled set of linear 2nd-order 
single-input single-output (SISO) systems [6].  This 
SISO abstraction greatly simplifies the plan compiler’s 
job, because the control parameters computed are for a 
small set of linear control laws, rather than for a 
complex nonlinear system.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 – a. Qualitative task specification (left), b. 
Model-based executive (right) 
 
8.2 Qualitative State Plan 
 A qualitative state plan is used to represent the 
desired state evolution of the plant.  Given a state plan 
and a plant, the execution task is to generate a 
sequence of control actions that moves the plant to a 
state consistent with that required by the plan.  
    A qualitative state plan specifies state evolution 
using sequences of activities as shown in Fig. 15.  Each 
activity is part of a control epoch (column in Fig. 15).  
The control epochs in Fig. 15 correspond to the 
qualitative poses shown in Fig. 14.  Vertical bars in 
Fig. 15, between rows, represent synchronization 
constraints. 
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   Each activity may have a temporal duration range 
constraint, indicated by [lb, ub] (lb indicates lower 
bound, ub, upper bound).  In addition, range constraints 
on initial and goal regions for quantities may be 
specified using rectangles in position/velocity phase 
space.  Note that the duration and region constraints are 
optional, and these constraints are omitted for many 
activities.  In Fig. 15, we care about the initial and final 
region of the CM, but not about the details in between.  
Similarly, we care that the gait cycle be completed 
within time range [t_lb, t_ub], but not about the 
specific duration of each activity.   
 Formally, we define a state plan as a set, A , of 
activities, ( )jia , , where i  refers to the quantity, and 
j  to the control epoch.  An activity is defined by the 

tuple nexttemporalgoaltubeinit aRRRR ,,,,  where initR , 

tubeR , and goalR  specify, respectively, initial, 
operating, and goal regions in state space for the 
controlled variable associated with the activity, and 

temporalR specifies temporal constraints.  The activity 

nexta  is the activity to transition to when the current 
activity is finished. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 – Qualitative State Plan 
 
 
 The region constraints, initR , tubeR , and goalR  are 
of the 
form ( ) ( )maxminmaxmin iiiiii yyyyyy &&& ≤≤∧≤≤  for 
controlled quantities, and ( )maxmin iii yyy ≤≤  for 
input quantities.  An activity may begin if its quantity 
is in the region defined by initR .  An activity cannot 
end unless the quantity is in goalR .  The quantity must 
stay within tubeR  for the entire duration of the activity.   
 temporalR  is of the form parallelduration AR , , where 

durationR  is a simple temporal constraint [ ]ublb, , and 
parallelA  is a set of activities that must finish 

simultaneously with the current one (vertical bars in 
Fig. 15).  For example, for a biped, movement of the 
stepping foot must be synchronized with forward 
movement of the center of mass.  

 A valid plan execution is defined as follows.  An 
activity finishes if its goalR , durationR , and parallelA  
constraints are satisfied.  After it finishes, it transitions 
to the successor, nexta , immediately.  An  activity, a , 
is executed successfully iff there exists a start time, ts , 
and a finish time, tf , for the activity, such that 

ubtstflb ≤−≤ , and there exists a trajectory for the 
associated controlled variable y such that ( )tsy  and 
( )tsy&  satisfy initR , ( )tfy  and ( )tfy&  satisfy goalR , and 

( )ty  and ( )ty&  satisfy tubeR  for tftts ≤≤ .  A state 
plan is executed successfully iff each activity, ( )jia , , 
is executed successfully, and the associated finish time,  
( )jitf , , is such that if the activity has a successor, 
( )1, +jia , then ( ) ( )1,, += jitsjitf , and for any parallel 

activity, ( )jka , , listed in parallelA , ( ) ( )jktfjitf ,, = .   
 
8.3 Plan Compiler 
 Restrictions on control parameters are determined at 
compile time and are captured in a control plan.  The 
precise control parameter setting for each activity is 
then determined by the dispatcher at run-time.  A 
control plan consists of the activities from the state 
plan, with two additions:  1)  SISO control parameter 
information is included, and 2)  the region constraints, 

initR , tubeR , and goalR , and the duration constraint, 
durationR , specify non-infinite bounds.  Control 

parameter constraints are of the form 
max2min2max1min1 ,,, kkkk , and specify bounds on 

control parameters for the linear control laws used in 
the SISO abstraction. 
 In computing bounds on the control parameters, the 
compiler performs an adaptive controller synthesis.  In 
order to maximize robustness to disturbances, the 
compiler attempts to maximize the size of initial 
regions, and tubes, and maximize controllable temporal 
activity duration ranges.    Maximizing controllable 
temporal range makes synchronization with other 
controlled quantities easier.  To perform this 
optimization, we utilize an SQP (Sequential Quadratic 
Programming) optimizer, and formulate the problem as 
an NLP (Nonlinear Program).   
 The NLP formulation for the control plan 
computation is as follows.  For each activity, ija , 
parameters to optimize are: 

maxmaxminmin ,,, initinitinitinit yyyy &&  (parameters of 
initR ), maxmaxminmin ,,, goalgoalgoalgoal yyyy &&  

(parameters of goalR ), maxmin , tt  (parameters of 
durationR ), and max2min2max1min1 ,,, kkkk , the 

bounds on the control parameters.  In order to 
understand how this computation works, it is necessary 
to understand two trajectories that represent extremes 
of behavior:  the guaranteed fastest trajectory (GFT), 
and the guaranteed slowest trajectory (GST).  The 
GFT represents a lower bound on the time needed to 
get from anywhere in the initial region, to somewhere 
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in the goal region.  The GST represents the 
corresponding upper bound.    
 Consider the initial and goal regions shown in Fig. 
16a.  For the GFT, the worst-case starting point in the 
initial region is point B, which corresponds to 

minmin , initinit yy & .  By accelerating as quickly as 
possible, the GFT reaches point D.  This represents the 
fastest finish point in the goal region.  For the GST, the 
worst-case starting point is point A.  This represents 
the fastest possible start.  By accelerating as slowly as 
possible, the GST reaches p;oint C, the slowest finish 
point.   
 The times for each trajectory are designated GFTt  

and GSTt .  If GSTGFT tt < , then there exists a temporal 

range, [ ]GSTGFT tt , , during which the endpoint of a 
trajectory beginning from anywhere in the initial 
region can be guaranteed to be in the goal region.  The 
existence of this temporal range is important for 
synchronizing with other controlled quantities.  Thus, 
the GFT and GST are useful for determining a 
maximum initial region, given a particular goal region, 
such that the controllable temporal range exists. 
 GFT and GST can be understood intuitively by 
considering a single acceleration spike control.  If this 
spike is applied at the beginning of the trajectory, then 
maximum velocity is reached immediately, resulting in 
the GFT, as shown in Fig. 16b.  If it is applied at the 
end, then the trajectory will progress at minimum 
velocity resulting in the GST. 
 
 
 
 
 
 
 
 
 
Fig.  16 – a. GFT (dotted) and GST (solid), left, b. for 
acceleration spike control laws, right 
 In the NLP formulation, existence of initial and goal 
regions is expressed as 
  maxmin initinit yy < , maxmin initinit yy && <  (5) 
 maxmin goalgoal yy < , maxmin goalgoal yy && <  
To guarantee contraction, the goal region of an activity 
must fit inside the initial region of its successor. 
 ( ) ( )1,, minmin +≥ jiyjiy initgoal  (6) 
 ( ) ( )1,, minmin +≥ jiyjiy initgoal &&  
 ( ) ( )1,, maxmax +≤ jiyjiy initgoal  
 ( ) ( )1,, maxmax +≤ jiyjiy initgoal &&  
Constraints representing the GFT are expressed as 

( )minmax2max1minmin1min ,,,, tkkyyfy initinitgoal &=   (7) 
( )minmax2max1minmin2max ,,,, tkkyyfy initinitgoal && =  

Constraints representing the GST are expressed as 
( )maxmin2min1maxmax1max ,,,, tkkyyfy initinitgoal &=  (8) 
( )maxmin2min1maxmax2max ,,,, tkkyyfy initinitgoal && =  

The requirement for temporal controllability is 
expressed as maxmin tt < .  Synchronization constraints 
are  

( ) ( ) ( ) ( )( ) ...,1,1 maxmaxminmin ∧≤≤≤ jtjtjtjt transtrans
 

( ) ( ) ( ) ( )( )jitjtjtjit transtrans ,, maxmaxminmin ≤≤≤  
Thus, ( ) ( )[ ]jtjt transtrans maxmin ,  is the temporal range 
when transition out of control epoch j may occur. 
 The cost function maximizes initial region size and 
controllable temporal range. 
 
8.4 Hybrid Dispatcher 
 The hybrid dispatcher executes the qualitative 
control plan.  It acts as an adaptive controller, adjusting 
control parameters, to guide each controlled quantity 
into its goal region at the correct time.  When all 
quantities are in their respective goal regions, the 
hybrid dispatcher transitions to the next control epoch.  
 At the beginning of a new control epoch, j, the 
dispatcher computes a target transition time, ( )jttrans .  
For each controlled quantity, the dispatcher then 
monitors progress by computing a prediction of the 
point in state space for the controlled quantity at 

( )jttrans .  This prediction is computed analytically in 
the same manner as eq. 1, so it is fast.  If the predicted 
point is within the goal region, then the dispatcher does 
nothing.  If it is outside the goal region, then the 
dispatcher adjusts the control parameters to attempt to 
move the predicted point back into the goal region.  If 
this is unsuccessful, the plan execution fails, and the 
dispatcher requests a new plan.   
 
8.5 Movement Execution Results and Discussion 
 Fig. 18 shows control plan regions computed by the 
second step of the plan compiler.  Fig. 18a shows 
lateral CM (velocity vs. position), and Fig. 18b shows 
forward CM.  As can be seen in Fig. 18b, good 
contraction is achieved for forward CM;  the goal 
regions fit well inside the initial regions for the 
subsequent mode.  Contraction is not as good for 
lateral CM;  the goal regions barely fit inside the initial 
regions (Fig. 18a).  This is due to the fact that 
controllability in the lateral direction is more limited, 
because the support base is narrower.   
 The motion sequence in Fig. 19 shows a nominal 
execution of this control plan, which results in dynamic 
walking at medium speed.  The motion sequence in 
Fig. 20 shows a similar walking pattern, but with 
irregular foot placements due to the need to step on the 
stones.  The motion sequence in Fig. 21 shows 
recovery from a lateral push disturbance. 
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Fig. 17 – Initial (dotted) and goal (solid) regions for 
control epochs 1 – 4, a.  lateral CM (left), b. forward 
CM (right), plots show region in velocity-position 
phase space. 
 
 
 
 
 
 
 
 
       
      
 Fig. 18 Motion sequence for dynamic walking  
 
 
 
 
 
 
 
 
 
 
Fig. 19 – Motion sequence for plan requiring careful 
foot placement 
 
 
 
 
 
 
 
 
 
 
Fig. 20 – Motion sequence for recovery from lateral 
push disturbance 
 

9. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we show how an abstract task-level plan, 
written in RMPL, can be interpreted and decomposed 
by a robot into a detailed temporally flexible plan, a 
TPN.  We then show how that TPN can be updated 
incrementally, and then executed reliably by a hybrid 
executive. We demonstrate this approach on a 
particularly challenging example of a robotic assistant, 

a bipedal walking machine.  In the future, we plan to 
demonstrate this system on two cooperating 4DOF 
robotic manipulators, and also the Robonaut Simulator, 
a simulation of a humanoid robot. 
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