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ABSTRACT

As space exploration missions grow increasingly com-
plex and are required to operate over extended dura-
tions of time, there is an amplified demand for accurate
autonomous health management systems. In response,
model-based programming approaches have been devel-
oped as scalable solutions to autonomous health man-
agement. Previous model-based monitoring and diagno-
sis techniques, such as Livingstone, were demonstrated
to successfully and efficiently track nominal and failure
modes in an abundance of scenarios, but at the cost of
making simplifying assumptions about the observation
probability that can lead to erroneous diagnoses after ex-
tended operation. Extending on Best-First-Belief-State-
Enumeration (BFSE), this paper presents a new mode es-
timation technique called Best-First Belief State Update
(BFBSU) that eliminates the observation probability as-
sumption. BFBSU uses the full two-stage HMM belief
state update equations as its utility function, thus further
increasing estimator accuracy, while maintaining the effi-
ciency required for real-time monitoring and fault detec-
tion.

1. INTRODUCTION

Model-based inference reasons over a composition of in-
terconnected subsystem components, modeled as a fac-
tored variant of a Hidden Markov Model (HMM) called
Probabilistic Concurrent Constraint Automata (PCCA)
[1]. For PCCA, a belief state is computed using the stan-
dard HMM belief state update equations [2] that require
a priori knowledge of conditional observation probabil-
ities. The observation probability distribution for PCCA
was defined in [3, 1] but is difficult to calculate due to
the large state space of sensory observations and com-
ponent modes. As a result, many previous model-based
diagnosis techniques assume the observation probability
to be 1 or 0 depending on if the observation is simply
consistent or inconsistent with the projected state. For a

failure mode with one or more consistent observations,
the total observation probability space is incorrectly ≥ 1
and results in a probabilistic bias toward the failure mode,
eventually leading to an incorrect fault diagnosis.

Our approach eliminates the observation probability
assumptions, while maintaining the overall computa-
tional efficiency required for real-time mode estimation,
through the following two-step process: We begin with
offline generation of a compact set of probability rules
(OPRs) that map system state to observation probabili-
ties. Then, during each online estimation cycle, the ap-
propriate OPRs are triggered and used to compute the
HMM belief state update equations.

We incorporate the correct observation probabilities
within Best-First Belief State Estimation (BFBSE) [4] to
provide a new mode estimation technique, called Best-
First Belief State Update (BFBSU) that uses the full two-
stage HMM belief state update equations as its utility
function, further increasing estimator accuracy. Although
this technique requires additional computation, the obser-
vation probabilities can be used to tighten the bound on
the A∗ heuristic and provide enhanced guidance through
the search space. Empirical results show that, under cer-
tain conditions, BFBSU will outperform BFBSE in time
and memory.

1.1. PCCA Overview

Probabilistic Concurrent Constraint Automata (PCCA)
[1] represent a set of concurrently operating components
that are interconnected and interact with their surround-
ing environment. Each automaton has a set of possi-
ble discrete modes with conditional probabilistic transi-
tions, which capture both nominal and faulty behavior.
These modes are only partially observable, due to a lim-
ited number of sensors, but are inherently constrained by
the system properties that define each mode. Formally, a
probabilistic constraint automaton for component “a” is
defined by the tuple Aa = 〈Πa,Ma,Ta,PTa

〉:
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1. Πa = Πm
a ∪ Πr

a is a finite set of discrete variables for

component “a”, where each variable πa ∈ Πa ranges over

a finite domain D(πa). Πm
a is a singleton set containing

mode variable {xa} = Πm
a whose domain D(xa) is the

finite set of discrete modes in Aa. Attribute variables Πr
a

include inputs, outputs, and any other variables used to

define the behavior of the component. Σa is the complete

set of all possible full assignments over Πa and the state

space of the component Σxa
a = Σa⇓xa is the projection

of Σa onto mode variable xa.

2. Ma : Σxa
a → C(Πr

a) maps each mode assignment

(xa = va) ∈ Σxa
a to a finite domain constraint ca(xa =

va) ∈ C(Πr
a), where C(Πr

a) is the set of finite domain

constraints over Πr
a. These constraints are known as

modal constraints and are typically encoded in the propo-

sitional form λ , True | False | (u = y) | ¬λ1 |
λ1∧λ2 | λ1∨λ2, where y ∈ D(u). If the current mode is

(xt
a = va) at time-step t, then the assignments to each at-

tribute variable rt
a ∈ Πr

a at time-step t must be consistent

with ca(xa = va). These constraints capture the physical

behavior of the mode.

3. Ta : Σxa
a ×C(Πr

a)→ Σxa
a is a set of transition functions.

The set of finite domain constraints C(Πr
a) are also known

as the transition guards, encoded in the propositional form

λ. Given a current mode assignment (xa = va) ∈ Σxa
a

and guard ga ∈ C(Πr
a) entailed at time-step t, each tran-

sition function τa(xa = va, ga) ∈ Ta(xa = va, ga)
specifies a target mode assignment (xa = v′

a) ∈ Σxa
a

that the automaton could transition into at time-step t+1.

Ta = Tn
a ∪Tf

a captures both nominal and faulty behavior.

4. PTa : Ta(xa = va, ga) → ℜ[0, 1] is a transition prob-

ability distribution. For each mode variable assignment

in Σxa
a and guard gt

a, there is a probability distribution

across all transitions into target modes defined by the set

of transition functions Ta(xa = va, ga).

The entire system plant P is modeled by a composition
of concurrently operating constraint automata. Each au-
tomaton is interconnected to both its environment and
other automata through constraints on shared variables.
Formally, the PCCA plant model is defined by the tuple
P = 〈A,Π,Q〉:

1. A = {A1,A2, . . . ,An} is the finite set of constraint au-

tomata that represent the n components of the plant.

2. Π =
S

a=1..n Πa is the set of all plant variables. The vari-

ables Π are partitioned into a finite set of mode variables

Πm =
S

a=1..n Πm
a , control variables Πc ⊆

S
a=1..n Πr

a,

observation variables Πo ⊆
S

a=1..n Πr
a, and dependent

variables Πd ⊆
S

a=1..n Πr
a. Σm, Σc, Σo, and Σd are the

sets of full assignments over Πm, Πc, Πo, and Πd.

3. Q ⊂ C(Π) is a set of finite domain constraints that capture

the interconnections between plant components.

1.2. Belief State Update Overview

A belief state is a probability distribution over the states
of a system, which represents the likelihood of the sys-

tem being in any single state, given a history of past com-
mands and observations. For PCCA, a state si is defined
as a full assignment to mode variables si ∈ Σm and a be-
lief state B = 〈S, p〉 is a finite set of estimates that cover
all consistent states S ⊆ Σm. Each estimate consists of a
state si ∈ S and its posterior probability p(si) ∈ p.

The Markov property allows an estimator to iteratively
compute the next complete belief state Bt+1 at time-step
t + 1 by only considering the current belief state Bt and
commands µt at time-step t, along with the resulting ob-
servations ot+1. The belief state is then computed using
the standard HMM belief state update equations (Eqs. 1
and 2) [2].

P(st+1
j |o<0,t>, µ<0,t>) =

Σst
i
∈St

�
P(st+1

j |st
i, µ

t)P(st
i|o

<0,t>, µ<0,t−1>)
�

(1)

P(st+1
j |o<0,t+1>, µ<0,t>) =

P(st+1
j |o<0,t>, µ<0,t>) ·P(ot+1|st+1

j )

Σ
st+1

i
∈St+1P(st+1

i |o<0,t>, µ<0,t>)P(ot+1|st+1
i )

(2)

Eq. 1 represents the a priori probability of being in the

next state st+1
j at time-step t + 1, given all the obser-

vations o<0,t> and commands µ<0,t> between time-step
0 and t. P(st

i|o
<0,t>, µ<0,t−1>) ∈ pt is the probabil-

ity that the system was in state si at time-step t and

P(st+1
j |st

i, µ
t) is the state transition probability. Eq. 1

propagates the system dynamics into the future before
considering new observations. Once all the a priori
estimates are generated, Eq. 2 then updates these esti-
mates by adjusting the probabilities based on new ob-
servations ot+1 using the Total Probability Theorem and
Bayes’ Rule to calculate the a posteriori probabilities
pt+1 across all states in St+1.

The conditional observation probability P(ot+1|st+1
j ) is

the probability of sensing observations o ∈ Σo, given
that the system is in state sj ∈ Σm at time-step t+1. For
PCCA, the observation probability distribution is defined
using a consistency approach similar to that of GDE [3],
such that for every state sj ∈ Σm, there is a probability
distribution across all combinations of observations (Eq.
3). If every observation ol ∈ ot+1 is entailed or refuted
by the conjunction of the modal constraints M and state
st+1

j , the observation probability P(ot+1|st+1
j ) is 1 or 0,

respectively. When the observations are neither entailed
nor refuted, there is a uniform probability distribution of
1/m across all the m possible consistent values of ot+1,
creating a probabilistic bias towards states that predict
(entail) observations. This uniform distribution assump-
tion is a degenerate case of Maximum-Entropy [5] when
there is no previous knowledge about how the sensors be-
have.

P(ot+1|st+1
j ) =

8><>:1 if st+1
j ∧M |= ot+1,

0 if st+1
j ∧M |= ¬ot+1,

1/m otherwise,

(3)

where m = number of consistent assignments to ot+1 for st+1
j

and M.
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This observation probability, however, is difficult to cal-
culate due to the large state space of sensory observa-
tions and component modes. As a result, GDE and
Sherlock assumed that each observation was independent
of each other, simplifying the observation probability to

P(ot+1|st+1
j ) = Πoi∈ot+1P(oi|s

t+1
j ). In addition, if the

single observation assignment oi was not entailed or re-
futed, GDE and Sherlock approximated the 1/m distri-
bution by fixing the value of m to |D(oi)|, regardless of
the specific mode assignments.

Livingstone [6, 7] simplified the observation probability
distribution further by assuming the observation proba-
bility as 1 or 0, depending on if the observation is simply
consistent or inconsistent with the next mode assignment.
For a failure mode with one or more consistent observa-
tions, the total observation probability density is incor-
rectly ≥ 1 and results in a probabilistic bias toward the
failure mode, eventually leading to an incorrect fault di-
agnosis.

1.3. PCCA Estimation as an Optimal Constraint
Satisfaction Problem

PCCA estimation can be viewed as a problem of con-
straint optimization, where each reachable target state

st+1
j in the belief state Bt+1 must be consistent with

modal constraints M, component interconnections Q, and
observations ot+1. This constraint optimization formula-
tion was previously used in Titan [1] and can similarly
be used to formulate the methods underlying GDE [3],
Sherlock [8], and Livingstone [6, 7]. We leverage a sim-
ilar Optimal Constraint Satisfaction Problem (OCSP) [9]
formulation.

Definition 1 An OCSP 〈y, f, C〉 is a problem of the form
“arg max f(x) subject to C(y),” where x ⊆ y is a vector
of decision variables, C(y) is a set of state constraints,
and f(x) is a multi-attribute utility function.

Solving an OCSP consists of generating a prefix to the se-
quence of feasible solutions, ordered by decreasing value
of f . A feasible solution assigns to each variable in
x a value from its domain, such that C(y) is satisfied.
For PCCA estimation, the decision variables x are the
set of mode variables Πm, and the constraints C(y) re-
strict mode variable assignments (xa = v′a) to those that
are consistent with observations ot+1, modal constraints
Ma(xa = v′a), and component interconnections Q. Algo-
rithm 1.1 provides pseudo code for computing the exact
belief state update when framing PCCA estimation as an
OCSP.

Algorithm 1.1 first initializes the OCSP in Step 1 with the
current belief state Bt, commands µt, and resulting sen-
sor observations ot+1. All the consistent states in the next
belief state Bt+1 are then computed and stored in St+1

in Step 2. The posterior probabilities pt+1 are then com-
puted in Step 3 by taking the utility function of Step 1

Algorithm 1.1 BELIEFSTATEUPDATE(P , Bt, µt, ot+1)

1: Setup the OCSP 〈y, f, C〉:

• The vector x includes a decision variable xa for each component of

the plant, whose domain D(xa) is the set of modes that are reachable

from any current state st
i ∈ St . For all st

i ∈ St, the target mode

for each transition (xa = v′
a) = τa(xa = va, ga) whose source

(xa = va) ∈ st
i and guard ga are satisfied by Ct

M ∧ st
i ∧ µt

is considered reachable, such that v′
a ∈ D(xa). Ct

M = Q ∧

(∧(xa=va)∈st
i
Ma(xa = va)).

• The utility function f(x) is the posterior probability of next state

x. More precisely, f(x) =
�
Σ

st
i
∈StP(x | st

i, µt) · pt(si)
�
·

P(ot+1 | x), where P(x | st
i, µt) =Π(xa=v′

a)∈xP(xa =

v′
a | xa = va, st

i, µt), pt(si) is the posterior probability for

state st
i , and P(ot+1 | x) is the observation probability for x.

• C(y) encodes the constraint that x ∧CMx ∧ ot+1 must be consis-

tent. CMx = Q ∧ (∧(xa=v′
a)∈xMa(xa = v′

a)).

2: Compute all the solutions St+1 to OCSP〈y, f, C〉.
3: Extract the normalized posterior state estimate probabili-

ties, such that pt+1(sj) = f(sj)/Σsi∈St+1f(si) for each

solution sj ∈ St+1.

4: return the consistent state estimates contained by Bt+1 =
〈St+1, pt+1〉.

and normalizing across all states st+1
j ∈ St+1, as per

the HMM update equation (Eq. 2). This procedure is re-
peated for each estimation cycle.

2. OBSERVATION PROBABILITY
RULES

We first define the observation probability rule (OPR), in
general, and then describe how we can leverage from the
OCSP formulation and PCCA structure in order to cre-
ate a compact representation of all the rules necessary to
compute the precise observation probability distribution
that was defined in Eq. 3. Compactness is essential for
BFBSU in order to be scalable to full-sized systems.

Definition 2 An Observation Probability Rule is a direct
mapping from a partial state assignment x̄ ∈ Σx to the
observation probability associated with the partial as-
signment ō ∈ Σo given assignment x̄, such that x̄ ⇒
P(ō | x̄). The set of partial assignments Σx = Σm⇓x is
the projection of Σm onto x ⊆ Πm and Σo = Σo⇓o is
the projection of Σo onto o ⊆ Πo.

Each OPR states that for a partial assignment to mode
variables x̄, there is a specific observation probability
P(ō | x̄), regardless of the actual partial observation as-
signment ō. There are two assumptions that make this
claim legitimate: Given the PCCA observation probabil-
ity distribution defined in Eq. 3, there is a uniform proba-
bility distribution across all observations that are consis-

tent with st+1
j ∧M. In other words, the observation prob-

ability is the same regardless of the particular observation
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assignment. In the case where the observation is inconsis-

tent with st+1
j ∧M, the probability is zero and the uniform

generalization does not hold. Fortunately, since we have
framed estimation as an OCSP, OPSAT 1, an instance of
OCSP solver, will automatically determine the candidate
to be inconsistent and discard it. Due to the uniform prob-
ability distribution across all consistent observations and
OPSAT discarding inconsistent assignments, the precise
observation probability can be specified using OPRs.

One approach to using OPRs is to have a single rule for
each combination of full assignments to mode variables
x̄ ∈ Σm. In this brute force approach, the number of
OPRs is exponential in the number of components and is
obviously intractable for large systems. More precisely,
the maximum number of OPRs is Πxa∈Πm |D(xa)|. This
problem is exacerbated by the NP-hard task of deter-
mining how many consistent observations there are for
a given state when calculating the probability associated
with each rule.

Fortunately, the number of OPRs can be greatly reduced
by leveraging our OCSP formulation as well as the sparse
interconnections between different modes and observa-
tions. The simple reduction comes from recognising that
the candidate solutions to the OCSP used in BFBSE have
an intrinsic observation probability of 0 or 1, depending
on if the candidate is inconsistent or consistent, respec-
tively. For example, if a candidate is found to be incon-
sistent, it is removed from the list of possible solutions.
This is equivalent to assigning an observation probabil-
ity of zero. Likewise, if the candidate is consistent, its
utility value remains unchanged as if applying an obser-
vation probability of one. Since the 0 and 1 probabil-
ity values are already provided in OCSP solutions, any
OPRs that map to a probability of 0 or 1 are superfluous
and can be deleted. A more substantial reduction in the
number of OPRs comes from a divide-and-conquer ap-
proach that decomposes the OPR state space, by identify-
ing which observation variables are dependent on which
components. This is done by calculating a dependency
hypergraph between observation variables and mode vari-
ables. Since the majority of sensory observations are only
dependent on a small subset of all possible components,
the number of OPRs is greatly reduced. For example, if
all the observation variables were only dependent on xa,
the precise number of OPRs is reduced to |D(xa)|.

3. OFFLINE GENERATION OF OBSERVATION
PROBABILITY RULES

Now that we have defined an OPR and provided some
intuition on how the set of OPRs can be compactly repre-
sented, this section describes how the OPRs are generated
offline. This process includes enumerating all relevant
rules within a conditional probability table and comput-

1An OCSP solver based on Conflict-directed A∗ [9], which effi-

ciently finds solutions to an OCSP in best-first order, by interleaving

candidate generation and test.

ing their precise observation probability, by counting the
number of consistent observation assignments.

The observation probability rules are quickly identified
from a set of dissents (diagnosis rules) that are generated
during offline model compilation [11, 12]. A dissent is
a mapping from a partial assignment to observation vari-
ables to a conflict. Given a set of observations, the pri-
mary purpose of dissents is to quickly identify all con-
flicts through rule triggering, before performing Conflict-
directed A∗ search, instead of “discovering” conflicts on-
line using an exponential satisfiability engine.

Definition 3 A dissent is a mapping from a minimal par-
tial assignment to observation variables ō to a conflict
x̄, such that ō ⇒ ¬(x̄). A conflict x̄ is a minimal par-
tial assignment to mode variables that is inconsistent with
ō ∧ M(x̄) ∧ Q.

Intuitively, the dissent declares that if observations ō have
been received, x̄ is inconsistent and cannot be true. Dis-
sents are useful for the purpose of generating OPRs, since
they implicitly specify which combinations of observa-
tions are inconsistent with which mode variable assign-
ments. We determine the compact set of OPRs as well
as the observation probability associated with each rule
using the following four step process: (1) We begin by
constructing a hypergraph based on the dependencies be-
tween observation variables and mode variables, using
all the dissents in the compiled model. We then sepa-
rate the hypergraph into maximally connected subgraphs.
(2) Conditional probability tables (CPTs) are created for
each subset of mode variables x contained by the sub-
graphs, where each element of the CPT is an OPR. (3) We
then compute the maximum number of consistent obser-
vation assignments for each OPR by simply calculating
the state space of o, and subtract the maximum number
of consistent observations by the number of inconsistent
observations, using the dissents. The uniform 1/m con-
ditional observation probability P(ō | x̄) is the inverse
of the remaining number of consistent observations m.
Finally, (4) we remove all the OPRs in the conditional
probability table that have a probability of 0 or 1. The
top-level pseudo code is provided in Algorithm 3.1.

CREATE-OPR-DEPENDENCY-HYPERGRAPH com-
putes a dependency hypergraph by placing virtual edges
between each observation and mode variable o ∪ x in
each dissent. This connects together all observation and
mode variables that are dependent on one another.

Based on this dependency hypergraph,
we can create a set of CPTs using
EXTRACT-CPTS-FROM-DEPENDENCY-

HYPERGRAPH. In general, this task consists of taking
the cross product of all assignments to mode variables in
each maximally connected subgraph. The OPRs in each
CPT are used to compute the observation probability for
the subset of observation variables that were connected
in the subgraph. Since the OPR antecedents in each
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Algorithm 3.1 GENERATE-OPRS(dissents)

1: dh← CREATE-OPR-DEPENDENCY-

HYPERGRAPH(dissents)

2: cpts← EXTRACT-CPTS-FROM-DEPENDENCY-

HYPERGRAPH(dh)

3: for all opr ∈ cpts do

4: max-num-consistent←
COMPUTE-MAX-CONSISTENT(opr)

5: num-consistent← max-num-consistent−
NUM-INCONSISTENT(opr, dissents)

6: opr probability← 1/num-consistent
7: if opr probability = 0 or opr probability = 1 then

8: remove opr from cpts
9: return oprs

CPT are mutually exclusive, only one OPR from each
CPT can be triggered at once. In the worst case, all
of the observation variables would be dependent on
all of the mode variables, resulting in one CPT of size
Πxa∈Πm |D(xa)|.

Recall that the maximum number of consistent observa-
tion assignments for each OPR is Σo, where o is the set
of all observation variables for the CPT that contains the
OPR. More precisely, COMPUTE-MAX-CONSISTENT
will return Πoi∈o|D(oi)|.

We compute NUM-INCONSISTENT, by counting the in-
consistent observation assignments provided by the dis-
sents. The easiest approach to counting the number of in-
consistent observations for each OPR is to start with a list
that enumerates all observation assignments L = ΣoO ,
where oO is the set of all observation variables that the
OPR is computing the probability for, and assume that
they are all consistent. For each relevant dissent we mark
each element in L as being inconsistent, if oD ⊆ oO. A
relevant dissent contains the same mode variables xO , as
the antecedent of the OPR, such that xD ⊆ xO , where
xD denotes the conflict variables in the dissent. We then
simply count all the elements in L marked inconsistent
and subtract it from the maximum number of consistent
observations.

Since the observation probabilities in each CPT is in-
dependent of the observations in other CPTs and each
OPR in a CPT is mutually exclusive, the total observation
probability is the product of the triggered rules. These
rules are triggered online when the OPR implicant is en-
tailed.

There are other solutions to computing the number of
consistent observations that are more elegant and require
less offline computation. One such method is to use the
observation assignments, for each relevant dissent, as a
constituent kernel, and solve for the kernels by comput-
ing the minimal set covering. This process is similar to
candidate generation introduced in GDE [3]. From the
kernels, it is easy to compute all the extensions as all pos-
sible inconsistent observations. A second approach is to
take the same inconsistent observation assignments from
the relevant dissents and place them into a Binary Deci-

Algorithm 4.1 BFBSU(P , B̃t, µt, ot+1)

1: Setup the OCSP 〈y, f, C〉:

• The vector x includes a decision variable xa for each component of

the plant, whose domain D(xa) is the set of modes that are reachable

from any current state st
i ∈ S̃t . For all st

i ∈ S̃t, the target mode

for each transition (xa = v′

a) = τa(xa = va, ga) whose source

(xa = va) ∈ st
i and guard ga are satisfied by Ct

M ∧ st
i ∧ µt

is considered reachable, such that v′
a ∈ D(xa). Ct

M = Q ∧

(∧(xa=va)∈st
i
Ma(xa = va)).

• The utility function f(x) is the posterior probability of next state

x. More precisely, f(x) =
�
Σ

st
i
∈StP(x | st

i, µt) · pt(si)
�
·

P(ot+1 | x), where P(x | st
i, µt) =Π(xa=v′

a)∈xP(xa =

v′
a | xa = va, st

i, µt), pt(si) is the posterior probability for

state st
i , and P(ot+1 | x) is the observation probability for x.

• C(y) encodes the constraint that x ∧CMx ∧ ot+1 must be consis-

tent. CMx = Q ∧ (∧(xa=v′
a)∈xMa(xa = v′

a)).

2: Compute the k most likely solutions S̃t+1 =
{x1, . . . ,xk} to OCSP〈y, f, C〉 in best-first order

using OPSAT.

3: Extract the normalized posterior state estimate probabili-

ties, such that pt+1(sj) = f(sj)/Σsi∈S̃t+1f(si) for all k

solutions sj ∈ S̃t+1.

4: return the k most likely state estimates contained by

B̃t+1 = 〈S̃t+1, pt+1〉.

sion Diagram (BDD) [13]. Using the BDD formulation, it
is easy to compute the total number of inconsistent obser-
vations by calling Satisfy-count within the BDD package.
This operation has a time complexity of O(|G|), where
|G| is the number of vertices in the BDD. The number of
vertices is worst case exponential.

4. ONLINE BFBSU USING OBSERVATION
PROBABILITY RULES

Although computing the observation probability distribu-
tion is exponential in the size of the largest hypergraph
component, we retain real-time performance by shifting
this computation offline. This reduces the exponential
satisfiability computation to the linear process of online
rule triggering [12]. Accuracy of online mode estimation
is increased by extending BFBSE [4] to efficiently com-
pute the estimate probabilities directly from the complete
HMM belief state update equations during its conflict-
directed search. Pseudo code for this novel mode esti-
mation technique, called Best-First Belief State Update
(BFBSU), is provided in Algorithm 4.1.

It is important to note that the BFBSU OCSP formulation
is nearly identical to the exact PCCA estimation formu-
lation in Alg. 1.1, except that we only track the k most

likely estimates in an approximate belief state B̃. BF-
BSU is an improvement over BFBSE because, in addition
to using the HMM propagation equation (Eq. 1), BFBSU
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also folds in the HMM update equation (Eq. 2) directly
into its utility function.

A tractable approach to generating a compact set of ob-
servation probability rules provide fast online heuris-
tic computation. The heuristic function for the BFBSU
Conflict-directed A∗ search is provided in Eq. 4. Eq. 5 is
the combined form of the HMM belief state update equa-
tions without the normalization factor in the update step.
The BFBSU heuristic function (Eq. 4) is the same HMM
belief state update equation, but factored into a uniform-
cost heuristic and a greedy heuristic in the same way BF-
BSE was factored.

The innovation in BFBSU is the addition of the observa-
tion probability as part of the OCSP utility function, as
well as the heuristic function that will help guide the A∗

search towards the most likely estimate. As A∗ explores
deeper into the search tree, more mode assignments will
be made and will trigger an increasing number of OPRs.
These observation probabilities will tighten the heuristic
value for the mode assignment as the search gets closer
to finding a full candidate assignment.

f(n) =

Σst
i
∈S̃t

0BBBBBBBBBBB�
Π

(xt+1
g =v′

g)∈n�
P(xt+1

g = v′

g | x
t
g = vg , st

i, µ
t)
�

Π
(xt+1

h
=v′

h
)/∈n

max
v′

h
∈D(xh)�

P(xt+1
h = v′

h | x
t
h = vh, st

i, µ
t)
�

P(st
i | o

<0,t>, µ<0,t−1>)

1CCCCCCCCCCCA ·
P(ot+1 | n)

(4)
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j )

(5)

A tight bound on the heuristic function is important be-
cause it prevents the search from enumerating highly sub-
optimal assignments. P(ot+1 | n) represents an opti-
mistic estimate of the observation probability for the par-
tial assignment to mode variables n. Since the observa-
tion probability is 1 until an OPR specifies otherwise,
P(ot+1 | n) ≥ P(ot+1 | c∗), where c∗ is the optimal
extension to n. Hence, the new heuristic function is ad-
missible.

5. RESULTS

BFBSU differs from BFBSE by the additional observa-
tion probability lookup that is required to compute the
HMM update. To more clearly understand the complex-
ity analysis, recall that the best case time and space for
A∗ is roughly n · b and the worst case time and space
is bn, where b is the branching factor and n is the depth
of the tree. For our OCSP formulation, b is the average
number of reachable modes per component |D(xa)|, n is
the number of components in the model |Πm|, and k is
the number of belief states being tracked. BFBSE and
BFBSU have the same best and worst space complexity,
n · b and bn, respectively, and the same best case time
complexity2, n · b · (n · k + C).

For the worst case, however, the time complexity for BF-
BSE is bn · (n · k + C) and for BFBSU is bn · (n · k +
C + R · bn). In the worst case, BFBSU could potentially
contain an exponential sized conditional probability ta-
ble, but since most engineered systems do not have sen-
sors that measure the entire system state, this term will
remain close to linear in the number of components for
real systems.3 In the following section, we will see that,
for practical problems, b is small and C dominates over
the utility function term unless the model is very large.
For subsystem or modest size system models, BFBSE
and BFBSU are more accurate, uses less memory, and
requires less computation time than BFTE.

5.1. Experimental Results

The following empirical comparison between BFBSE
and BFBSU was conducted using three different space-
craft models that are all roughly the size of a small sub-
system. These models include Earth Observing One (EO-
1) [14], Mars Entry Decent and Landing (EDL) sys-
tem [10], and Space Technology 7 (ST7-A) [15]. All the
algorithms were implemented in C++ and results were
gathered using a 1.7GHz Intel Pentium M processor with
512MB of RAM.

Earth Observing One
The EO-1 model has a total of 60 variables, including 12
mode variables with an average domain size of 5.75.

Mars Entry Decent and Landing
The Mars EDL model has a total of 42 variables, includ-
ing 10 mode variables with an average domain size of
4.4.

Space Technology 7
The ST7-A model has a a total of 30 variables, including
8 mode variables with an average domain size of 3.5.

2Notice that this time complexity considers the time it takes to create

each node in addition to the number of nodes visited. This quantity

(enclosed by parentheses) consists of the time to evaluate the utility

function plus a constant C for other data manipulating operations.
3For BFBSU, R is a constant for the time it takes to do a single

lookup in the conditional observation probability table with a worst case

of bn elements in the table.
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Table 1. Number of Observation Probability Rules for
each Model

maximum # OPRs

model # of OPRs required online

EO-1 1.77 · 108 64

MarsEDL 1.46 · 106 307

ST7-A 1.44 · 104 8
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Figure 1. Single nominal state estimate probability over
time for the ST7-A model.

Table 1 lists the number of OPRs for each of these mod-
els. Note that the actual number of OPRs required is mul-
tiple orders of magnitude less than the worst case.

5.2. Accuracy

Figs. 1 and 2 respectively focuses on a specific nomi-
nal state and a failure state estimates within the belief
state over time and compares the estimate probabilities
between the two estimation techniques when k = 10.
These two plots only use the ST7-A model since it is
small enough to generate the exact solutions (indicated
with circle marks) with only 512 enabled states. BFBSE
tracks the model dynamics but fails to update with the
observation probabilities, leading to a priori trends. BF-
BSU tracks both nominal and failure modes closely since
it uses the HMM belief state update equations directly as
its utility function.

5.3. Performance

The space and time performance results are shown in
Figs. 3 and 4, respective, for ST7-A. For a varying size
initial belief state, space was measured by the maximum
number of nodes placed in the A∗ priority queue, while
estimation time was measured in milliseconds. Each es-
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Figure 2. Single failure state estimate probability over
time for the ST7-A model.

timation technique has two sets of data points: the solid
lines represent the space and time required to generate the
single best estimate from the k states in the initial belief
state (extracting best case behavior) and the dotted lines
are the space and time required to generate the k most
likely estimates (simulating average case performance for
the estimator in a real application).

The space and time performance results show good align-
ment with the complexity analysis. The single-estimate
memory results for BFBSE and BFBSU (Fig. 3) reveal
constant queue size, as predicted in the best case com-
plexity analysis. Comparing the k estimate trends show
that the growth of the queue size is identical in the best
case and similar in the average case. For certain models,
such as the EO-1, BFBSU has a smaller maximum queue
size because its heuristic guided BFBSU to a different
portion of the search space. The time results (Fig. 4) are
also closely aligned to the complexity analysis. When
enumerating only the single most likely state, both BF-
BSE and BFBSU are nearly constant. This is because the
arithmetic heuristic computation for each node is domi-
nated by the constant term C for these moderately sized
models. The k estimate trends show linear time increase
in k for both BFBSE and BFBSU.
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