
Remote Agent: To Boldly Go Where No AI System Has

Gone Before�

Nicola Muscettolay

P. Pandurang Nayakz

Barney Pellz

Brian C. Williams

NASA Ames Research Center, MS 269-2,

Mo�ett Field, CA 94035.

Email: fmus,nayak,pell,williamsg@ptolemy.arc.nasa.gov

Abstract

Renewed motives for space exploration have inspired NASA to work toward the

goal of establishing a virtual presence in space, through heterogeneous eets of robotic

explorers. Information technology, and Arti�cial Intelligence in particular, will play a

central role in this endeavor by endowing these explorers with a form of computational

intelligence that we call remote agents. In this paper we describe the Remote Agent,

a speci�c autonomous agent architecture based on the principles of model-based pro-

gramming, on-board deduction and search, and goal-directed closed-loop commanding,

that takes a signi�cant step toward enabling this future. This architecture addresses the

unique characteristics of the spacecraft domain that require highly reliable autonomous

operations over long periods of time with tight deadlines, resource constraints, and

concurrent activity among tightly coupled subsystems. The Remote Agent integrates

constraint-based temporal planning and scheduling, robust multi-threaded execution,

and model-based mode identi�cation and recon�guration. The demonstration of the

integrated system as an on-board controller for Deep Space One, NASA's �rst New Mil-

lennium mission, is scheduled for a period of a week in late 1998. The development of

the Remote Agent also provided the opportunity to reassess some of AI's conventional

wisdom about the challenges of implementing embedded systems, tractable reason-

ing, and knowledge representation. We discuss these issues, and our often contrary

experiences, throughout the paper.

Keywords: autonomous agents, architectures, constraint-based planning, scheduling,
execution, reactive systems, diagnosis, recovery, model-based reasoning

�Authors in alphabetical order.
yRecom Technologies
zRIACS

1



1 Introduction

The melding of space exploration and robotic intelligence has had an amazing hold on the
public imagination, particularly in its vision of the future. For example, the science �ction
classic \2001: A Space Odyssey" o�ered a future in which humankind was �rmly estab-
lished beyond Earth, within amply populated moon-bases and space-stations. At the same
time, intelligence was �rmly established beyond humankind through the impressive HAL9000
computer, created in Urbana, Illinois on January 12, 1997. In fact, January 12th, 1997 has
passed without a moon base or HAL9000 computer in sight. The International Space Station
will begin its launch into space this year, reaching completion by 2002. However, this space
station is far more modest in scope.

While this reality is far from our ambitious dreams for humans in space, space exploration
is surprising us with a di�erent future that is particularly exciting for robotic exploration,
and for the information technology community that will play a central role in enabling this
future:

Our vision in NASA is to open the Space Frontier. When people think of space,
they think of rocket plumes and the space shuttle. But the future of space is
in information technology. We must establish a virtual presence, in space, on
planets, in aircraft, and spacecraft.

| Daniel S. Goldin, NASA Administrator, Sacramento, California, May 29, 1996

Providing a virtual human presence in the universe through the actual presence of a
plethora of robotic probes requires a strong motive, mechanical means, and computational
intelligence. We briey consider the scienti�c questions that motivate space exploration
and the mechanical means for exploring these questions, and then focus the remainder of
this paper on our progress towards endowing these mechanical explorers with a form of
computational intelligence that we call remote agents.

The development of a remote agent under tight time constraints has forced us to re-
examine, and in a few places call to question, some of AI's conventional wisdom about the
challenges of implementing embedded systems, tractable reasoning and representation. This
topic is addressed in a variety of places throughout this paper.

1.1 Establishing a Virtual Presence in Space

Renewed motives for space exploration have recently been o�ered. A prime example is
a series of scienti�c discoveries that suggest new possibilities for life in space. The best
known example is evidence, found during the summer of 1996, suggesting that primitive
life might have existed on Mars more than 3.6 billion years ago. More speci�cally, the
recent discovery of extremely small bacteria on Earth, called nanobacteria, led scientists
to examine the Martian meteorite AlH84001 at �ne resolution, where they found evidence
suggestive of \native microfossils, mineralogical features characteristic of life, and evidence
of complex organic chemistry" [47]. Extending a virtual presence to con�rm or overturn
these �ndings requires a new means of exploration that has higher performance and is more
cost e�ective than traditional missions. Traditional planetary missions, such as the Galileo

2



Figure 1: Planned and concept missions to extend human virtual presence in the universe.
(1) Mars Sample Return missions (courtesy of NASA Johnson Space Center); (2) cryobot
and hydrobot for Europa oceanographic exploration (courtesy of JPL); (3) DS3 formation
ying optical interferometer (courtesy of JPL); (4) Mars solar airplane (courtesy of NASA
Ames Research Center).

Jupiter mission or the Cassini Saturn mission, have price tags in excess of a billion dollars,
and ground crews ranging from 100 to 300 personnel during the entire life of the mission.
The Mars Path�nder (MPF) mission introduced a paradigm shift within NASA towards
lightweight, highly focused missions, at a tenth of the cost, and operated by small ground
teams [14]. The viability of this concept was vividly demonstrated last summer when MPF
landed on Mars and enabled the Sojourner micro-rover [48] to become the �rst mobile robot
to land on the surface of another planet.

Path�nder and Sojourner demonstrate an important mechanical means to achieving a
virtual presence, but currently lack the on-board intelligence necessary to achieve the goals
of more challenging missions. For example, operating Sojourner for its two month life span
was extremely taxing for its small ground crew. Future Mars rovers are expected to operate
for over a year, emphasizing the need for the development of remote agents that are able to
continuously and robustly interact with an uncertain environment.

Rovers are not the only means of exploring Mars. Another innovative concept is a solar
airplane, under study at NASA Lewis and NASA Ames. Given the thin CO2 atmosphere on
Mars, a plane ying a few feet above the Martian surface is like a terrestrial plane ying more
than 90,000 feet above sea level. This height is beyond the reach of all but a few existing

3



planes. Developing a Martian plane that can autonomously survey Mars over long durations,
while surviving the idiosyncrasies of the Martian climate, requires the development of remote
agents that are able to accurately model and quickly adapt to their environment.

A second example is the discovery of the �rst planet around another star, which raises
the intriguing question of whether or not Earth-like planets exist elsewhere. To search for
Earth-like planets, NASA is developing a series of interferometric telescopes [16], such as
the New Millennium Deep Space Three (DS3) mission. These interferometers identify and
categorize planets by measuring a wobble in a star, induced by its orbiting planets. They
are so accurate that, if pointed from California to Washington DC, they could measure the
thickness of a single piece of paper. DS3 achieves this requirement by placing three optical
units on three separate spacecraft, ying in tight formation up to a kilometer apart. This
extends the computational challenge to the development of multiple, tightly coordinated
remote agents.

A �nal example is the question of whether or not some form of life might exist beneath
Europa's frozen surface. In February of 1998, the Galileo mission identi�ed features on
Europa, such as a relatively smooth surface and chunky ice rafts, that lend support to
the idea that Europa may have subsurface oceans, hidden under a thin icy layer. One of
NASA's most intriguing concepts for exploring this subsurface ocean is an ice penetrator
and a submarine, called a cryobot and hydrobot, that could autonomously navigate beneath
Europa's surface. This hydrobot would need to operate autonomously within an environment
that is utterly unknown.

Taken together, these examples of small explorers, including micro-rovers, airplanes, for-
mation ying interferometers, cryobots, and hydrobots, provide an extraordinary opportu-
nity for developing remote agents that assist in establishing a virtual presence in space, on
land, in the air and under the sea.

1.2 Requirements for Building Remote Agents

The level of on-board autonomy necessary to enable the above missions is unprecedented.
Added to this challenge is the fact that NASA will need to achieve this capability at a fraction
of the cost and design time of previous missions. In contrast to the billion dollar Cassini
mission, NASA's target is for missions that cost under 100 million dollars, developed in 2-3
years, and operated by a small ground team. This ambitious goal is to be achieved at an
Apollo-era pace, through the New Millennium Program's low cost, technology demonstration
missions. The �rst New Millennium probe, Deep Space One (DS1), has a development time
of only two and a half years and is scheduled for a mid-1998 launch.

The unique challenge of developing remote agents for controlling these space explorers is
driven by four major properties of the spacecraft domain. First, a spacecraft must carry out
autonomous operations for long periods of time with no human intervention. This require-
ment stems from a variety of sources including the cost and limitations of the deep space
communication network, spacecraft occultation when it is on the \dark side" of a planet, and
communication delays. For example, the Cassini spacecraft must perform its critical Saturn
orbit insertion maneuver without any human assistance due to its occultation by Saturn.

Second, autonomous operations must guarantee success, given tight deadlines and re-

4



source constraints. Tight deadlines that give no second chances stem from orbital dynamics
and rare celestial events, and include examples such as executing an orbit insertion maneu-
ver within a �xed time window, taking asteroid images during a narrow window around the
time of closest approach, and imaging a comet's �ery descent into Jupiter. Tight spacecraft
resources, whether renewable like power or non-renewable like propellant, must be carefully
managed and budgeted throughout the mission.

Third, since spacecraft are expensive and are often designed for unique missions, space-
craft operations require high reliability . Even with the use of highly reliable hardware, the
harsh environment of space can still cause unexpected hardware failures. Flight software
must compensate for such failures by repairing or recon�guring the hardware, or switching
to possibly degraded operation modes. Providing such a capability is complicated by the
need for rapid failure responses to meet hard deadlines and conserve precious resources,
and due to limited observability of spacecraft state. The latter stems from limited on-board
sensing, since additional sensors add weight, and hence increase mission cost. Furthermore,
sensors are no more reliable, and often less so, than the associated hardware, thus making
it di�cult to deduce true spacecraft state.

Fourth, spacecraft operation involves concurrent activity among a set of tightly coupled

subsystems. A typical spacecraft is a complex networked, multi-processor system, with one
or more ight computers communicating over a bus with sophisticated sensors (e.g., star
trackers, gyros, sun sensors), actuator subsystems (e.g., thrusters, reaction wheels, main
engines), and science instruments. These hybrid hardware/software subsystems operate
as concurrent processes that must be coordinated to enable synergistic interactions and
to control negative ones. For example, while a camera is taking a picture, the attitude
controller must hold the spacecraft at a speci�ed attitude, and the main engine must be
o� since otherwise it would produce too much vibration. Hence, all reasoning about the
spacecraft must reect this concurrent nature.

1.3 A Remote Agent architecture

Following the announcement of the New Millennium program in early 1995, spacecraft engi-
neers from JPL challenged a group of AI researchers at NASA Ames and JPL to demonstrate,
within the short span of �ve months, a fully capable remote agent architecture for space-
craft control. To evaluate the architecture the JPL engineers de�ned the New Millennium
Autonomy Architecture Prototype (NewMAAP), a simulation study based on the Cassini
mission, that retains its most challenging aspects. The NewMAAP spacecraft is a scaled
down version of Cassini, NASA's most complex spacecraft to date. The NewMAAP scenario
is based on the most complex mission phase of Cassini|successful insertion into Saturn's
orbit even in the event of any single point of failure. The Remote Agent architecture de-
veloped for the NewMAAP scenario integrated constraint-based planning and scheduling,
robust multi-threaded execution, and model-based mode identi�cation and recon�guration.
An overview of the architecture is provided in Section 2. Additional details, including a
description of the NewMAAP scenario, may be found in [57]. The success of the NewMAAP
demonstration resulted in the Remote Agent being selected as a technology experiment on
DS1. This experiment is currently scheduled for late 1998. Details of the experiment are

5



found in [5].
The development of the Remote Agent architecture also provided an important oppor-

tunity to reassess some of AI's conventional wisdom, which includes:

� \Generative planning does not scale up for practical problems."

� \[For reactive systems] proving theorems is out of the question" [1]

� \[Justi�cation-based and Logical Truth Maintenance Systems] have proven to be woe-
fully inadequate. . . they are ine�cient in both time and space" [18]

� \[Qualitative] equations are far too general for practical use." [63]

We examine these statements in more detail later in the paper. But �rst we highlight the
three important guiding principles underlying the design of the Remote Agent architecture.

1.4 Principles guiding the design of the Remote Agent

Many agent architectures have been developed within the AI community, particularly within
the �eld of indoor and outdoor mobile robots. The Remote Agent architecture has three
distinctive features. First, it is largely programmable through a set of compositional, declar-
ative models. We refer to this as model-based programming . Second, it performs signi�cant
amounts of on-board deduction and search at time resolutions varying from hours to hun-
dreds of milliseconds. Third, the Remote Agent is designed to provide high-level closed-loop
commanding .

1.4.1 Model-based Programming

The most e�ective way to reduce software development cost is to make the software \plug and
play," and to amortize the cost of the software across successive applications. This is di�cult
to achieve for the breadth of tasks that constitute an autonomous system architecture, since
each task requires the programmer to reason through system-wide interactions to implement
the appropriate function. For example, diagnosing a failed thruster requires reasoning about
the interactions between the thrusters, the attitude controller, the star tracker, the bus
controller, and the thruster valve electronics. Hence this software lacks modularity, and has
a use that is very restricted to the particulars of the hardware. The one of a kind nature of
NASA's explorers means that the cost of reasoning through system-wide interactions cannot
be amortized, and must be paid over again for each new explorer. In addition, the complexity
of these interactions can lead to cognitive overload by the programmers, causing suboptimal
decisions and even outright errors.

Our solution to this problem is called model-based programming , introduced in [70].
Model-based programming is based on the observation that programmers and operators
generate the breadth of desired functionality from common-sense hardware models in light
of mission-level goals. In addition, the same model is used to perform most of these tasks.
Hence, although the ight software itself is not highly reusable, the modeling knowledge used
to generate this software is highly reusable.

6



To support plug and play, the Remote Agent is programmed, wherever possible, by
specifying and plugging together declarative component models of hardware and software
behaviors. The Remote Agent then has the responsibility of automating all reasoning about
system wide interactions from these models. For example, the model-based mode identi�ca-
tion and recon�guration component of the Remote Agent uses a compositional, declarative,
concurrent transition system model with a combination of probabilistic and deterministic
transitions (see Section 5). Similarly, the planning and scheduling component is constraint-
based, operating on a declarative domain model to generate a plan from �rst principles (see
Section 3). Even the executive component, which is primarily programmed using a sophisti-
cated scripting language, uses declarative models of device properties and interconnections
wherever possible; generic procedures written in the scripting language operate directly on
these declarative models.

1.4.2 On-board deduction and search

Given the task of automating all reasoning about system interactions, a natural question
is whether or not the Remote Agent should do this on-board in real-time or o�-board at
compile time. The need for fast reactions suggests that all responses should be pre-computed.
However, since our space explorers often operate in harsh environments over long periods of
time, a large number of failures can frequently appear during mission critical phases. Hence
pre-enumerating responses to all possible situations quickly becomes intractable. When
writing ight software for traditional spacecraft, tractability is usually restored with the
use of simplifying assumptions, such as using local suboptimal control laws, assuming single
faults, ignoring sensor information, or ignoring subsystem interactions. Unfortunately, this
can result in systems that are either brittle or grossly ine�cient, which is one reason why so
many human operators are needed within the control loop.

The di�culty of pre-computing all responses and the requirement of highly survivable
systems means that the Remote Agent must use its models to synthesize timely responses
to anomalous and unexpected situations in real-time. This applies equally well to the high-
level planning and scheduling component and to the low-level fault protection system, both
of which must respond to time-critical and novel situations by performing deduction and
search in real-time (though, of course, the time-scale for planning is signi�cantly larger than
for fault protection).

This goal goes directly counter to the conventional AI wisdom that robotic executives
should avoid deduction within the reactive loop at all costs. This wisdom emerged in the
late 80's after mathematical analysis showed that many, surprisingly simple, deductive tasks
were NP-hard. For example, after proving that his formulation of STRIPS-style planning
was NP-hard, David Chapman concluded [11]:

\Hoping for the best amounts to arguing that, for the particular cases that
come up in practice, extensions to current planning techniques will happen to be
e�cient. My intuition is that this is not the case."

On the ip side, what o�ers hope is the empirical work developed in the early 90's on
hard satis�ability problems. This work found that most satis�ability problems can quickly

7



be shown to be satis�able or unsatis�able [12, 64]. The surprisingly elusive hard problems
lie at a phase transition from solvable to unsolvable problems. The elusiveness of hard
problems, at least in the space of randomly generated problems, suggests that many real
world problems may be tractable. This raises the possibility that a carefully designed and
constrained deductive kernel could perform signi�cant deduction in real-time. For example,
the diagnosis and recovery component of the Remote Agent adopts a RISC-like approach
in which a wide range of deductive problems are reduced to queries on a highly tuned,
propositional, best-�rst search kernel [71, 56]. The planning component exploits a set of
assumptions about domain structuring to generate plans with acceptable e�ciency using a
simple search strategy and a simple language for writing heuristic control rules.

1.4.3 Goal-directed, closed loop commanding

A mission like Cassini requires a ground crew of 100 to 300 personnel at di�erent mission
stages. The driver for such a large team is not so much Cassini's nominal mission, but
the e�ort required to robustly respond to extraordinary situations. Likewise, the need for
extreme robustness without extensive ground interaction is Remote Agent's most de�ning
requirement.

Traditional spacecraft are commanded through a time-stamped sequence of extremely
low-level commands, such as \open valve-17 at 20:34 exactly." This low level of direct
commanding with rigid time stamps leaves the spacecraft little exibility when a failure
occurs, so that it is unable to shift around the time of commanding or to change around
what hardware is used to achieve commands.

A fundamental concept supporting robustness in classical control systems is feedback
control. Feedback control avoids the brittleness of direct commanding by taking a set point
trajectory as input and, using a feedback mechanism that senses the system's actual trajec-
tory, commanding the system until the error between the actual and intended trajectories is
eliminated. The set-point trajectory is a simple speci�cation of an intended behavior, which
gives the feedback controller freedom to determine the commands necessary to achieve this
behavior

The Remote Agent embodies the same concept at a much more abstract level. It is
commanded by a goal trajectory (the mission pro�le) that speci�es high-level goals during
di�erent mission segments, such as performing an engine calibration activity within a 24 hour
window before approaching the target. This gives the Remote Agent considerable exibility
as to how these goals are achieved. To achieve robustness, the Remote Agent uses its sensor
information to continuously close the feedback loop at the goal level, quickly detecting and
compensating for anomalies that cause the system to deviate from the goal trajectory.

Traditionally this feedback loop is closed by astronauts and the ground crew. A popular
example that highlights the diverse actions humans can take to close this loop in extraor-
dinary situations is the Apollo 13 crisis. The crisis began when a quintuple fault occurred,
consisting of three electrical shorts, and a tank-line and a pressure jacket bursting. A �rst
challenge for the ground crew was to accurately assess the health state of the spacecraft
from its limited sensor information. No repair to the spacecraft would get the mission back
on track to the moon, hence the second challenge involved quickly designing a new mission

8



Real-Time
Control

Flight
H/W

Monitors

Planning Experts

Remote Agent
Ground
System

Mode ID
and

Reconfig

Mission
Manager

Smart
Executive

Planner/
Scheduler

Figure 2: Remote Agent architecture embedded within ight software.

sequence that would allow the Apollo capsule to return to Earth in its hobbled state. Recall
that astronaut Mattingly worked extensively in a ground simulator, in search of a novel
command sequence that would work within the severe power limitations of the imperiled
spacecraft. Ultimately Mattingly achieved this only through a novel, but unintended recon-
�guration of the spacecraft hardware that drew current from the lunar module's battery.
Finally, Astronauts Swaggert and Lovell had the challenge of quickly assembling together
procedures that would guide the capsule through Mattingly's new mission sequence. This
example highlights four basic roles performed by humans, that must also be embodied, albeit
in a simpler form, within the Remote Agent. The �rst two roles, diagnosis of multiple failures
and novel recon�guration of hardware is performed by Remote Agent's model-based mode
identi�cation and recon�guration component. Generation of new mission sequences under
tight resource constraints is performed by the Remote Agent's planner/scheduler. Flexi-
ble assembly and execution of ight procedures to implement new and changing mission
sequences is implemented by the Remote Agent's executive component.

In the next section we discuss how each of these components interact within the Remote
Agent architecture. We then focus on technical lessons related to the three components of
the Remote Agent, and then discuss key technology insertion lessons.

2 Remote Agent architecture

This section provides an overview of the Remote Agent (RA) architecture. The architec-
ture was designed to address the domain requirements discussed in Section 1.2. The need
for autonomous operations with tight resource constraints and hard deadlines dictated the
need for a temporal planner/scheduler (PS), with an associated mission manager (MM), that

9



manages resources and develops plans that achieve goals in a timely manner. The need for
high reliability dictated the use of a reactive executive (EXEC) that provides robust plan
execution and coordinates execution time activity, and a model-based mode identi�cation
and recon�guration system (MIR) that enables rapid failure responses in spite of limited
observability of spacecraft state. The need to handle concurrent activity impacted the repre-
sentation formalisms used: PS models the domain with concurrently evolving state variables,
EXEC uses multiple threads to manage concurrency, and MIR models the spacecraft as a
concurrent transition system.

The RA architecture, and its relationship to the ight software within which it is em-
bedded, is shown in Figure 2. When viewed as a black-box, RA sends out commands to the
real-time control system (RT). RT provides the primitive skills of the autonomous system,
which take the form of discrete and continuous real-time estimation and control tasks, e.g.,
attitude determination and attitude control. RT responds to commands by changing the
modes of control loops or states of devices. Information about the status of RT control loops
and hardware sensors is passed back to RA either directly or through a set of monitors.

Planner/Scheduler (PS) and Mission Manager (MM): PS is a constraint-based
integrated temporal planner and resource scheduler [52] that is activated by MM when a
new plan is desired by the EXEC. When requested by the EXEC, MM formulates short-
term planning problems for PS based on a long-range mission pro�le. The mission pro�le is
provided at launch and can be updated from the ground when necessary. It contains a list
of all nominal goals to be achieved during the mission. For example, the DS1 mission pro�le
contains goals such as optical navigation goals, which specify the duration and frequency of
time windows within which the spacecraft must take asteroid images to be used for orbit
determination by the on-board navigator. MM determines the goals that need to be achieved
in the next horizon, e.g., a week or two long, and combines them with the initial (or projected)
spacecraft state provided by EXEC. This decomposition into long-range mission planning
and short-term detailed planning enables the RA to undertake an extended diverse mission
with minimal human intervention.

PS takes the plan request formulated by MM and uses a heuristic guided backtrack search
to produce a exible, concurrent temporal plan. The plan constrains the activity of each
spacecraft subsystem over the duration of the plan, but leaves exibility for details to be
resolved during execution. The plan contains activities and information required to monitor
the progress of the plan as it is executed. The plan also contains an explicit activity to initiate
the next round of planning. For example, a typical DS1 plan to achieve the above optical
navigation goal requires the camera to be turned on and the spacecraft to be pointing at
the asteroid before the image is taken. The plan leaves temporal exibility on exactly when
these events take place, and does not constrain the particular mode used by the attitude
controller in e�ecting the turn.

Other on-board software systems, called planning experts, participate in the planning
process by requesting new goals or answering questions for PS. For example, the navigation
planning expert requests main engine thrust goals based on its determination of spacecraft
orbit, and the attitude planning expert answers questions about estimated duration of spec-
i�ed turns and resulting resource consumption.

10



Smart Executive (EXEC): EXEC is a reactive plan execution system with respon-
sibilities for coordinating execution-time activity. EXEC executes plans by decomposing
high-level activities in the plan into commands to the real-time system, while respecting
temporal constraints in the plan. EXEC uses a rich procedural language, ESL [35], to de�ne
alternate methods for decomposing activities. For example, a high-level activity in DS1 such
as thrusting the main engine is decomposed into coordinated commands to the main engine
to start thrusting and to the attitude controller to switch into thrust vector control mode,
and is executed only after the previous optical navigation window has ended.

EXEC achieves robustness in plan execution by exploiting the plan's exibility, e.g., by
being able to choose execution time within speci�ed windows or by being able to select dif-
ferent task decompositions for a high-level activity. EXEC also achieves robustness through
closed-loop commanding, whereby it receives feedback on the results of commands either
directly from the command recipient or by inferences drawn by the mode identi�cation com-
ponent of MIR. For example, when EXEC turns on the camera to prepare for imaging,
MIR uses information from switch and current sensors to con�rm that the camera did turn
on. When some method to achieve a task fails, EXEC attempts to accomplish the task
using an alternate method in that task's de�nition or by invoking the mode recon�guration
component of MIR.

When instructed to request a new plan by the currently executing plan, EXEC provides
MM with the projected spacecraft state at the end of the current plan, and requests a new
plan. If the EXEC is unable to execute or repair the current plan, it aborts the plan, cleans
up all executing activities, and puts the controlled system into a stable safe state (called a
standby mode). EXEC then provides MM the current state and requests a new plan while
maintaining this standby mode until the plan is received.

Mode Identi�cation and Recon�guration (MIR): The MIR component of the RA is
provided by Livingstone [71], a discrete model-based controller. Livingstone is distinguished
by its use of a single declarative spacecraft model to provide all its functionality, and its use
of deduction and search within the reactive control loop. Livingstone's sensing component,
called mode identi�cation (MI), tracks the most likely spacecraft states by identifying states
whose models are consistent with the sensed monitor values and the commands sent to
the real-time system. MI reports all inferred state changes to EXEC, and thus provides a
level of abstraction to the EXEC, enabling it to reason purely in terms of spacecraft state.
For example, particular combinations of attitude errors allow MI to infer that a particular
thruster has failed. EXEC is only informed about the failed state of the thruster, and not
about the observed low-level sensor values.

Livingstone's commanding component, called mode recon�guration (MR), uses the space-
craft model to �nd a least cost command sequence that establishes or restores desired func-
tionality by recon�guring hardware or repairing failed components. Unlike PS, MR has
a reactive focus, thus enabling it to rapidly suggest command sequences. Within the RA
architecture, MR is invoked by the EXEC with a recovery request that speci�es a set of
constraints to be established and maintained. In response, MR produces a recovery plan
that, when executed by EXEC, moves the spacecraft from the current state (as inferred by
MI) to a new state in which all the constraints are satis�ed. For example, if MI determines

11



that the camera did not turn on when commanded, EXEC will request MR to repair the
camera. MR will respond by instructing EXEC to retry the command.

3 Planning and scheduling

The Planner/Scheduler (PS) of the Remote Agent provides the high-level, deliberative plan-
ning component of the architecture. The extended duration of a space mission, coupled with
the unpredictability of actions like thrusting, poses a challenge for planning, since it is im-
possible to plan the entire mission at the lowest level of detail. The approach in RA is to
perform periodic planning [60], in which each round of planning has a restricted scheduling

horizon. However, this raises a potential coherence problem, as activities within one horizon
might compromise activities later in the mission (for example, aggressive maneuvers early in
the mission may exhaust propellant needed for much later mission goals). RA addresses this
problem through the Mission Manager (MM) component. When MM extracts goals for an
upcoming round of planning, it also extracts constraints associated with the next waypoint
in the mission pro�le. For example, a waypoint constraint speci�es the amount of propellant
that must be available for future use. By adding waypoint constraints to the current plan
request, MM restricts PS to generate only plans that are coherent with the overall mission
plan [61]. Hence, PS receives from MM and EXEC the initial spacecraft conditions, the goals
for the next scheduling horizon, and the waypoint constraints. It produces a plan, which can
be viewed as a high-level program that EXEC must follows in order to achieve the required
goals.

Figure 3 shows the structure of PS (see [52, 51] for more details). A general-purpose
planning engine provides a problem solving mechanism that can be reused in di�erent ap-
plication domains. A special-purpose domain knowledge base characterizes the application.
The planning engine consists of the plan database and the search engine. The plan database
is provided by the Heuristic Scheduling Testbed System (HSTS) framework. The search
engine calls the plan database to record the consequences of each problem solving step and
to require consistency maintenance and propagation services.

The search engine, Iterative Re�nement Search (IRS), is a chronological backtracker that
encodes a set of methods usable to extend a partial plan. Programming the planning engine
for a speci�c application requires both a description of the domain, the domain model, and
methods for IRS to choose among branching alternatives during the search process, the
domain heuristics.

One crucial aspect of the success of PS is the ability to provide a good model of the
domain constraints. To do so, PS uses the Domain Description Language (DDL), part of
the HSTS framework. The models expressed in DDL use two strong domain organizational
principles that are the foundation of HSTS. First, it structures the description of the system
as a �nite set of state variables. A plan describes the evolution of a system as a set of parallel
histories (timelines) over linear and continuous time, one per state variable. Second, it uses
a uni�ed representational primitive, the token, to describe both actions and state literals. As
in [26], a token extends over a metric time interval. The description of a system consists of
constraints between tokens that must be satis�ed in a plan for it to represent legal behaviors
of the controlled system. We further discuss these structural principles in section 3.2.

12



Planning
Experts

Search
Engine

Heuristics

Domain
Model

Plan Database
Goals

Initial state

Plan

Planning Engine

Knowledge base

Figure 3: PS architecture diagram.

PS generates complex plans with performance acceptable for an on-board spacecraft
application, even when using a very simple search strategy and a very simple heuristic
language to program the search engine. This is because of the use of constraint posting and
propagation as the primary problem solving method together with the restrictions on the
topology of the constraint networks imposed by the structural principles of HSTS.

PS is a concrete example of the fact that, by solely relying on concepts and techniques
from AI planning and scheduling research, it is possible to solve complex problems of practical
signi�cance. These techniques include subgoaling, temporal reasoning, constraint propaga-
tion, and heuristic search. Furthermore, we believe that at the current time AI planning and
scheduling techniques provide the most viable software engineering approach to the develop-
ment of high-level commanding software for highly autonomous systems. This bears great
promise for the future of the technology.

We now discuss some of these points in more detail.

3.1 Non-classical aspects of the DS1 domain

A complex, mission-critical application like DS1 is a serious stress-test for classical AI plan-
ning and scheduling technology. The classical AI planning problem is to achieve a set of
goal conditions given an initial state and a description of the controlled system as a set
of planning operators. Most classical AI planners use representations of the world derived
from STRIPS [32], which sees the world as an alternation of inde�nitely persistent states
and instantaneous actions. Classical schedulers, on the other hand, see the world as a set
of resources and a set of structured task networks, with each task having a duration that is
known a priori. Solving a problem involves allocating a start time and a resource to each
task while guaranteeing that all deadlines and resource limits are satis�ed.

The DS1 domain not only forces a view of the world that merges planning and scheduling
[51] but also introduces the need for signi�cant extensions to the classical perspective. Here

13



is a quick review of the types of constraints on system dynamics and the types of goals that
PS must handle.

3.1.1 System dynamics

To describe the dynamics of the spacecraft hardware and real-time software, we �nd the
need to express state/action constraints (e.g., preconditions such as \To take a picture, the
camera must be on"), continuous time, and the management of �nite resources (such as on-
board electric power). Classical planning or classical scheduling cover all of these aspects.
However, there are other modeling constraints that are equally important but outside the
classical perspective.

� persistent parallel threads: separate system components evolve in a loosely coupled
manner. This can be represented as parallel execution threads that may need coor-
dination on their relative operational modes. Typical examples of such threads are
various control loops (e.g., Attitude Control and Ion Propulsion System Control) that
can never terminate but only switch between di�erent operational modes.

� functional dependencies: several parameters of the model are best represented as func-
tions of other parameters. For example, the duration of a spacecraft turn depends on
the pointing direction from where the turn starts and the one where the turn ends.
The exact duration of a turn is not known a priori but can only be computed after
PS decides the sequence of source and destination pointings within which the turn is
inserted.

� continuous parameters: in addition to time, the planner must keep track of the status
of other continuous parameters. These include the level of renewable resources like
battery charge or data volume and of non-renewable resources like propellant. For
example, in DS1 the Ion Propulsion System (IPS) engine accumulates thrust over
long periods of time (on the order of months). During thrust accumulation, several
other activities must be executed that require the engine to be shut down while the
activity is going on. Between interruptions, however, the plan must keep track of the
previously accumulated amount of thrust so as not to over-shoot or under-shoot the
total requested thrust.

� planning experts: it is unrealistic to expect that all aspects of the domain will be
encoded in PS. In several cases sophisticated software modules are already available
that e�ectively model subsystem behaviors and mission requirements. PS must be able
to exchange information with these planning experts. For example, in DS1 PS makes
use of a Navigation expert which manages the spacecraft trajectory. The Navigation
expert is in charge of feeding PS with beacon asteroid observation goals to determine
the trajectory error and with thrusting maneuver goals to correct the trajectory.

3.1.2 Goals

The DS1 problem can only be expressed by making use of a disparate set of classical and non-
classical goal types. Problem requirements include conditions on �nal states (e.g., \at the

14



end of the scheduling horizon the camera must be o�"), which are classical planning goals,
and requests for scheduled tasks within given temporal constraints (e.g., \communicate with
Earth only according to a pre-de�ned Deep Space Network availability schedule"), which are
classical scheduling goals. Non-classical categories of goals include:

� periodic goals: for example, optical navigation activities are naturally expressed as
a periodic function (\take asteroid pictures for navigation for 2 hours every 2 days
plus/minus 6 hours").

� accumulation goals: these arise in the handling of continuous level resources. For
example, in DS1 a goal expresses the requested thrust accumulation as a duty cycle,
i.e., the percentage of the scheduling horizon during which the IPS engine is thrusting.
PS will choose the speci�c time intervals during which IPS will be actually thrusting.
It will do so by trading o� IPS requirements with those of other goals.

� default goals: these specify conditions that the system must satisfy when not trying
to achieve any other goal. For example, in order to facilitate possible emergency
communications the spacecraft should keep the High Gain Antenna pointed to Earth
whenever there is no other goal requiring it to point in a di�erent direction.

3.2 Domain Structure Principles

We mentioned that PS has two strong structural principles regarding how to represent do-
main models. We call them the state variable principle and the token principle. We now
discuss both of these in more detail.

� State variable principle: the evolution of any system over time is entirely described by
the values of a �nite set of state variables.

State variables are a generalization of resources as used in classical scheduling. In schedul-
ing an evolution of the system is a description of task allocation to resources. Similarly, in PS
any literal used inside a plan must be associated with a state variable. The literal represents
the value assumed by the state variable at a given time, and a state variable can assume one
and only one value at any point in time. Building a plan involves determining a complete
evolution of all system state variables over a scheduling horizon of �nite duration.

At �rst glance, structuring a model with a �nite set of state variables could appear
quite restrictive. However, on further analysis one can see that using this perspective is
quite natural even in domains typically addressed in classical planning. For example, in the
\monkey and bananas" world all actions and state literals can be assigned as the values of
one or more of the following state variables: the location of the monkey, the location of the
block, the location of the bananas and the elevation of the monkey (whether the monkey is
on the oor, climbing on the block or on top of the block). Moreover using state variables
can be advantageous during problem solving. Recent results in planning research seem to
suggest that planners that use representational devices similar to state variables can seriously
outperform planners that do not (e.g., state variable constraints in Satplan [42] and mutex
relations in Graphplan [6]).

15



� Token principle: no distinction needs to be made between representational primitives
for actions and states. A single representational primitive, the token, is su�cient to
describe the evolution of system state variables over time.

This structural principle challenges a fundamental tenet of classical planning: the di-
chotomy between actions and states. To illustrate why this dichotomy is problematic, we
consider an example drawn from the spacecraft operations domain. The attitude of a space-
craft, i.e., its orientation in three-dimensional space, is supervised by a closed-loop Attitude
Control System (ACS). When asked to achieve or maintain a certain attitude, ACS deter-
mines the discrepancy between the current and the desired attitude. It then appropriately
commands the �ring of the spacecraft thrusters as a function of the discrepancy and the
maximum acceptable attitude error. This cycle is continuously repeated until the attitude
error is acceptable. When controlled by ACS, the spacecraft can be in one of two possible
modes:

1. Turning (?x, ?y), i.e., changing attitude from an initial pointing ?x to a �nal point-
ing ?y;

2. Constant Pointing (?z), i.e., maintaining attitude around a �xed orientation ?z.

When using a classical planning representation to model attitude, we would need to map
these two modes into two di�erent kinds of literals: state literals, representing persistent con-
ditions, or action literals, representing change. The problem is that in spite of appearances it
is by no means easy to choose the mapping between system modes and states/actions. Most
people would probably �nd it natural to map Constant Pointing (?z) to a state literal
and Turning (?x, ?y) to an action literal. This is certainly reasonable if one focuses on
the value over time of the actual orientation of the spacecraft.

However, we may want to take a di�erent perspective and consider the level of \activ-
ity" of the thrusters during attitude control. Thrusters are usually more active when the
acceptable error in attitude is smaller. In fact, thrusters are �red more frequently while
maintaining a Constant Pointing (?z) state with a very low error tolerance than while
executing a Turning (?x, ?y), where it may be su�cient to �re the thrusters at the be-
ginning of the turn to start it and at the end of the turn to stop it. In this case, one would
conclude that in fact both Turning (?x, ?y) and Constant Pointing (?z) would be best
represented as actions.

The opposite perspective is also possible. If we focus on what EXEC does when exe-
cuting literals present in the plan, we can see that EXEC does nothing more than com-
municating to ACS the appropriate control law and set point that will cause the required
spacecraft attitude behavior. From this point of view, it would be reasonable to see both
Constant Pointing(?z) and Turning (?x, ?y) as two di�erent parameter settings for the
ACS control system, conceptually best represented with state literals.

In this example the distinction between actions and states is not clear. Given the above
observations, PS takes a radical view and gives the same status to all literals. More precisely,
a plan literal always describes some process (either dynamic or stationary) that occurs over
a period of time of non-negative duration. To purposefully remove any reference to the

16



state/action dichotomy, we use the neutral term token to refer to such temporally scoped
assertions.

A domain model contains constraint patterns that have to be in every consistent plan.
For example, Figure 4 gives the DDL construct representing the token conditions needed in
a plan for the DS1 Microelectronics Integrated Camera And Spectrometer (MICAS) to take
an image. This action is represented in the plan by the token

MICAS.actions_sv = Take_Image (?id, ?orientation, ?exp_time, ?settings)

meaning that the state variable actions sv of the system component MICAS assumes
a ground value matching the Take Image predicate for the duration of the token. The
constraint descriptor includes the speci�cation of functional dependency between parameters
of the token. In the example, the function Compute Image Duration computes the value of
the token duration (special variable ?duration) as a function of the value of the token
arguments ?exp time and ?setting. Finally, the descriptor includes temporal relations
that have to be satis�ed with other tokens in order for a plan to be consistent with the
domain model. In the example these constraints follow the :temporal relations keyword.
They state that the MICAS.actions sv state variable must be Idle immediately before and
after the Take Image token; that Take Image consumes 140 watts of power; that during
Take Image the spacecraft must be Constant Pointing in the requested ?orientation;
and that during Take Image MICAS must be both in good health (MICAS Available token)
and Ready for use.

The above constraint template is closely related to temporally scoped operators used
in temporal planning approaches [3]. However, as a consequence of the token principle,
our framework allows the expression of similar constraint patterns for \state" tokens like
MICAS.actions sv = Idle. In reality it is equally important to be able to express con-
straints both on \actions" and on \states". For example, a functional duration constraint
may need to apply both to Turning (?x, ?y), where duration depends on the angle between
?x and ?y), and to Constant Pointing (?z), where the maximum duration may depend
on how the relative orientation of the Sun with respect to ?z a�ects the satisfaction of solar
exposure constraints for sensitive subsystems.

3.3 Plans as Constraint Networks

PS plans are e�ectively programs that EXEC interprets at run time to generate a single,
acceptable, and consistent behavior for the spacecraft. However, to ensure execution robust-
ness plans should as much as possible avoid being single, completely speci�ed behaviors.
They should instead compactly describe a behavior envelope, i.e., a set of possible behav-
iors. EXEC can incrementally select the most appropriate behavior in the envelope while
responding to information that becomes available only at execution time.

PS satis�es this requirement by representing plans as constraint networks. For example,
start and end times of tokens are integer-valued variables interconnected into a simple tem-
poral constraint network [27]. Codesignations relate parameters that must assume the same
value for any plan execution. Other functional dependencies can also be represented. For
example, tokens that describe thrust accumulation with the IPS engine contain constraints

17



MICAS.actions_sv = Take_Image (?id, ?orientation, ?exp_time, ?settings)

{

:parameter_functions

?duration <- Compute_Image_Duration (?exp_time, ?settings);

:temporal_relations

met_by

MICAS.actions_sv = Idle;

meets

MICAS.actions_sv = Idle;

equal

Power.availability_sv =

DELTA Used <- Used + 140.0;

contained_by

Spacecraft.attitude_sv =

Constant_Pointing (?orientation);

contained_by

MICAS.health_sv = MICAS_Available;

contained_by

MICAS.mode_sv = Ready;

}

Figure 4: Taking a picture with the on-board MICAS camera.

that relate the initial accumulation (due to previous thrust accumulation tokens), the �-
nal accumulation and the duration of the token. During plan construction, when PS tries
to enforce compatibility constraints, it posts portions of a constraint network in the plan
database. The plan database then enforces consistency checking by propagating the new
constraints to the rest of the network. When the constraint network is consistent, constraint
propagation deduces acceptable ranges of values for each variable.

Plans are intrinsically exible. During plan execution, EXEC interprets the plan's con-
straint network in order to select speci�c values for the plan variables. For example, if the
plan speci�es an acceptable range for the start time of a token, EXEC will have the freedom
to start token execution at any one of the range values. This decision will a�ect the value
range for the start or end of other, as yet unexecuted tokens. To adjust value ranges, EXEC
must be able to propagate constraints at run time. EXEC's constraint propagation has very
di�erent requirements from that of PS (see Section 4.2.1).

3.4 Practical generative planning

Figure 5 outlines the PS search process. If the partial plan in the plan database has \aws",
PS selects one and extends the plan constraint network to �x it. Then the plan database
performs an arc-consistency propagation to detect inconsistencies and restrict variable value

18



Instantiate
temporal
subgoal

Schedule
token on

state variable

Heuristics

Backtrack

Yes

No

No

Unscheduled
goal token

Underconstrained
parameter

Uninstantiated
temporal subgoal

Plan

Plan is consistent

Plan has flaws

Figure 5: PS problem solving cycle.

ranges. If propagation detects an inconsistency, then PS chronologically backtracks. When
the plan database contains no more aws, a plan is returned.

The aw detection and repair process is analogous to other classical planning algorithms
[67]. PS recognizes several kind of aws. Figure 5 lists three of them. The uninstantiated

temporal subgoal aw refers to a single temporal relation in a token compatibility and is
resolved analogously to open precondition aws in classical planning. Unscheduled goal token

aws refer to goal tokens for which a legal position on a state variable has not yet been
found. PS resolves this aw either by �nding such a legal position or, if such a position
cannot be found, by rejecting the goal. The underconstrained variable value aw is handled by
restricting the value range for a variable to a subrange (possibly a single value) of the original
range. The handling of this aw is analogous to value selection in constraint satisfaction
search.

The prioritization of open aws and the selection of alternatives during aw handling
relies on very simple heuristics. For example, uninstantiated temporal compatibilities are
assigned a numeric priority according to the value range of the variables involved in the aw
at the moment the aw �rst appears in the plan.

Although the search strategy and heuristic language are rather simple, PS can solve
problems of size and complexity adequate for practical application domains. For example, the

19



DS1 Remote Agent experiment domain consists of 18 state variables, 42 token predicates and
46 compatibility speci�cations. The largest plan in the nominal Remote Agent experiment
scenario has 154 tokens and 180 temporal constraints between tokens. This translates into an
underlying constraint network with 288 variables and 232 constraints. Of these, 81 variables
and 114 temporal-bound constraints constitute a simple temporal subnetwork that relates
start and end times of tokens. The constraints in the rest of the network have an average arity
(i.e., number of variables related by one constraint) of 3.5. The number of nodes expanded
during plan generation is 649 with a search e�ciency of about 64%. (Search e�ciency is
measured by the ratio of the number of nodes on the path to the solution and the total
number of expanded nodes. Thus a search e�ciency of 100% indicates no backtracking.)

From the previous description we can conclude that PS is a purely generative planner that
operates at a single abstraction level. Most importantly, PS does not use pre-compiled plan
fragments but assembles the overall plan from atomic components. This di�erentiates PS
from most practical applications of planning technology to date [15, 69, 13]. These systems
rely on Hierarchical Task Network (HTN) planning, in which most of the power comes from
hand-generated task networks that are patched together into an overall plan. The notable
absence of generative planning in successful applications has led to the commonly shared
view that only HTN planning has true utility with respect to the automatic solution of
planning problems of commercial signi�cance.

Although pre-compiling token networks into HTN can be a powerful problem solving
technique, our choice of pure generative planning is not accidental. First, not all domains
are equally amenable to the HTN approach. For example, in DS1 the task decomposition
hierarchy is shallow and useful pre-compiled task networks assemble only a small number
of tokens. In these conditions the pre-compiled task networks do not signi�cantly di�er
from the domain compatibilities and therefore HTN has no clear advantage with respect
to generative planning. Second, replanning, especially with degraded capabilities, relies on
representation of domain-level constraints between activities and goals, which are often not
included in HTN representations [31]. Third, and most importantly, the HTN formalism
does not provide a strong separation between the encoding of the domain model and that
of the problem solving heuristics. While the former is valid independent of the goals of a
speci�c planning problem, the function of the latter is to ensure acceptable performance and
quality for the solution of speci�c planning problems. Our approach instead clearly separates
between domain model and heuristics. As we shall see in section 6.2, the separation between
domain models and problem solving heuristics is crucial to facilitate validation and has a
big impact on the acceptability of AI technologies for mission-critical applications.

3.5 Summary

PS is a constraint-based, temporal planner that provides the high-level commanding capa-
bility for the Remote Agent architecture. From our experience we take the following lessons:

� Classical planning and classical scheduling must be combined and augmented for au-
tonomous commanding of complex systems.

20



� The classical action/state dichotomy is problematic and should be substituted by the
uni�ed concept of a token.

� A constraint-based plan representation organized across state variables is a powerful
problem-solving framework for planning.

� Heuristic generative planning can solve problems of practical signi�cance.

� The separation between domain models and problem solving heuristics is important
for validating planners in real-world domains.

4 Executive

EXEC is a robust event-driven and goal-oriented multi-threaded execution system. It pro-
vides a language and a framework in which software designers can express how planning,
control, diagnosis, and recon�guration capabilities are to be integrated into an autonomous
system. It can request and execute plans involving concurrent activities that may be inter-
dependent, where the success, timing, and outcomes of these activities may be uncertain.
It provides a language for expressing goal-decompositions and resource interactions. When
interpreting this language at run time, the executive automates the decomposition of goals
into smaller activities that can be executed concurrently. This automates aspects of the
labor-intensive sequencing function in spacecraft operations and raises the level of abstrac-
tion at which the ground system or on-board planner must reason. EXEC's design also
supports a close integration between activity decomposition and fault responses. This leads
to more robust execution, avoids loss of mission objectives, improves mission reliability and
resource utilization, and simpli�es the design of the entire software system.

EXEC is built on Execution Support Language (ESL) [35], which provides sophisti-
cated control constructs such as loops, parallel activity, synchronization, error handling, and
property locks [36]. These language features are used in EXEC to implement robust sched-
ule execution, hierarchical task decomposition, context-dependent method selection, routine
con�guration management, and event-driven responses [58].

In the RA architecture, EXEC plays the main coordination role as the intermediary
between the other ight software modules, both internal and external to RA. Here we con-
centrate on two main aspects of EXEC's behavior:

� Periodic Planning over Extended Missions: EXEC must periodically ask PS
for new tasks and must coordinate PS operation with the other tasks being executed.
Also, operations are not interrupted if capabilities are lost. EXEC will ask for a new
plan by communicating to PS the available capabilities.

� Robust Plan Execution: EXEC must successfully execute plans in the presence of
uncertainty and failures. The exibility allowed by the plan is exploited by using a hy-
brid procedural/deductive execution strategy that performs context-dependent method
selection guided by state inference based on model-based diagnosis. Local recovery from
faults involves planning guided by constraints from the current plan execution context.

21



Standby
Mode

Running
a plan

Get plan
from Planner

Standby
plan request

Plan
ready

Next horizon
plan request

Plan
failure

Plan
failure

Planning
 assumptions

violated

Figure 6: Periodic Planning and Replanning Cycle.

4.1 Periodic Planning over Extended Missions

Figure 6 shows both major branches of the periodic planning and replanning cycle in RA:
nominal execution and plan failure execution. Nominal execution occurs if all plan tokens
execute without MIR or EXEC detecting any execution failure. In this case plan execution
proceeds to the end of the current scheduling horizon. At the pre-de�ned point in the plan,
EXEC invokes PS, continues executing while waiting for the new plan and then smoothly
installs the new plan into the current execution context.

Plan execution failure occurs if MIR or EXEC encounter an unrecoverable failure. In this
event, EXEC aborts all current activity and enters standby mode, which serves (by design)
as a well-de�ned invocation point for planning. EXEC then requests a new plan from this
state (possibly updating the planner about degraded capabilities) and starts executing the
plan as soon as it receives it back from PS.

A smooth execution of the periodic planning cycle requires EXEC to coordinate the gen-
eration of a new plan with other activities and to communicate information about available
system capabilities to PS via MM.

4.1.1 Planning to plan

In the spacecraft domain, planning itself has informational preconditions (since planning re-
lies on input planning experts, which often need to complete some activity before they have
suitable input), state preconditions (it is hard to plan when too many things are changing
quickly or unpredictably), and consumes scarce computational resources. Therefore, in RA
invoking the planner is analogous to commanding other subsystems like propulsion or atti-
tude control. Future planning activities appear in plans on a timeline. Domain constraints
enforced in the plan ensure that their resources and preconditions will all be achieved be-

22



Imaging Imaging IdleIdle

Attitude

contained_by

Goal Cruise_to_Target(t)

Planning Idle Planning

Nav

before

before

Turn(a,b) Point(b) Turn(b,a)Point(a) Point(b)

Dead Reckoning IdleOrbit Calc

Figure 7: Sample Plan Fragment.

fore planning is invoked. This aspect of planning to plan [60] can be considered a form of
meta-planning [7].

RA's approach to planning to plan is illustrated in Figure 7. In this example, the plan
fragment has a constraint that the next round of planning should occur only after the Nav-
igation expert has performed a new orbit calculation. This calculation relies on analysis
of several pictures, so PS inserts into the plan the supporting imaging activities and the
turns required to point the camera at the corresponding targets. During execution, EXEC
will initiate the next round of planning when it executes the Planning token installed in the
plan. Because of the constraints explicit in the plan, this will happen only after the activities
required for planning have been successfully completed.

4.1.2 Concurrent Planning and Execution

Even at pre-scheduled times, the limited computational resources available for planning,
combined with the di�culty of planning with severe resource limitations, cause each round
of planning to take a long time to complete. Throughout this process, the spacecraft will
still need to operate with full capabilities. For example, with the current on-board processor
capabilities, it is reasonable to expect PS to take up to 8 hours to generate a plan for one
week of operation. This adds up to about six percent of the total mission time spent in
generating plans. However, to reach the designated targets IPS propulsion may need to
operate with high duty cycles in excess of 92% of the available time. Since other activities
already require the IPS engine to be o� (such as scienti�c experiments and observations),
omitting IPS thrusting during planning would leave insu�cient total thrust accumulation
to reach the target. Hence, EXEC continues plan execution while PS is planning [60]. This
necessitates tracking changes to the planning assumptions while planning, and using the
currently executing plan for prediction about activities that will happen while planning for
the next period is underway.

23



4.1.3 Replanning with degraded capabilities

When operating over extended periods of time, a spacecraft will face problems arising from
aging: the capabilities of its hardware and control system may diminish over time. Once these
failures are recognized through a combination of monitoring and diagnosis (see Section 5),
EXEC will keep track of such degradation when commanding future planning cycles. For
example, one fault mode in DS1 is for one of the thrusters to be stuck shut. The attitude
control software has redundant control modes to enable it to maintain control following the
loss of any single thruster, but an e�ect of this is that turns take longer to complete. When
EXEC is noti�ed of this permanent change by MIR, it passes health information back to PS.

4.2 Robust Plan Execution

We have seen that in nominal operations EXEC invokes the planning machinery as a by-
product of plan execution, which ensures that resources are available for planning and that
the projected state used as a basis for planning is well-de�ned. However, if execution fails
before the planning activity is properly prepared and executed, the agent still needs a way to
generate a plan and continue making progress on mission goals. RA addresses this problem
as follows: if EXEC is unable to execute or repair the current plan, it aborts the plan, cleans
up all executing activities, and puts the controlled system into a standby mode. This serves
(by design) as a well-de�ned invocation point for planning.

Entering a standby mode following plan failure is costly with respect to mission goals,
because it interrupts the ongoing planned activities and important mission opportunities
may be lost. For example, a plan failure causing EXEC to enter a standby mode during
a comet yby would cause loss of all the encounter science, as there would be no time to
re-plan before the comet passed out of sight. Such concerns motivate a strong desire for
plan robustness, so that plan execution can continue successfully even in the presence of
uncertainty and failures.

RA achieves robust plan execution by:

� Executing exible plans by running multiple parallel threads and using fast constraint
propagation algorithms in EXEC to exploit plan exibility.

� Choosing a high level of abstraction for planned activities so as to delegate as many
detailed activity decisions as possible to the procedural executive.

� Handling execution failures using a combination of robust procedures and deductive
repair planning.

4.2.1 Executing exible plans

As discussed in Section 3.3, plans are constraint networks representing envelopes of desirable
behaviors for the system. EXEC incrementally interprets plans and in doing so determines
at run time the actual behavior of the system. This process involves propagating execution
time information through the plan's constraint networks.

24



The process of interpreting a plan is carried out by EXEC's plan runner. Here is a brief
sketch of how the plan runner works. The plan runner treats each state variable as a separate
thread of execution. Each token on the state variable corresponds to a program that runs on
that thread. The transition between one token and the following one on the state variable is
represented by a time point, i.e., a time variable in the underlying plan constraint network.
Starting and terminating the execution of tokens involves a certain amount of processing,
which must be done for each time point in the plan. The plan runner has to wait until a
time point is enabled, i.e., all time points that must precede it have been executed, and the
current time is within its time bound. When a time point can be executed, the plan runner
executes the following cycle:

1. Set the execution time of the time point to be the current time;

2. Set all parameters of the tokens started by the time point to one of the acceptable
values;

3. Propagate the consequences of the previous value assignments to the rest of the plan;

4. Terminate execution of all tokens ending with the time point;

5. Start execution of all tokens starting with the time point;

After the execution of the previous cycle the plan runner waits until the current time
enters the time bound of some other enabled time point. Note that step 3 adjusts the set of
possible values for both the start/end time bounds and the parameters of still unexecuted
tokens.

Making the plan runner work in a real-world application raised an issue that is often
overlooked in AI execution research: the need for EXEC to give real-time guarantees about
its operation.1 A real-time guarantee can be seen as a way to quantify the \reactivity"
of an agent. The way the problem arises in the plan runner is the following. Processing
the execution cycle takes time, the execution latency �. One can show that EXEC will be
unable to guarantee the exact execution time of a time point with a precision �ner than the
latency. In other words, when EXEC is asked to execute an event precisely at time t, it
can only guarantee that the actual event execution time will be somewhere in the interval
[t� 1

2
�; t+ 1

2
�] [53]. Therefore, in order to produce a highly reactive and temporally precise

agent (e.g., one that can guarantee taking a picture of a target within a few milliseconds of
a given time) it is necessary to reduce the execution latency to a minimum.

One important way to reduce � is to speed up the execution-time constraint propagation.
In RA we address this speed-up problem for propagation in the time constraint network. One
can show that it is always possible to transform a simple temporal constraint network into an
equivalent one (i.e., one that represents the same set of consistent time assignment to time
points) that is minimal dispatchable. Dispatchable means that EXEC's time propagation
need only propagate execution time to the immediately adjacent time points in the temporal
constraint network. Minimal means that the network contains the minimum number of edges
among all dispatchable networks [54, 66]. This means that the exible temporal constraint
networks that PS gives to EXEC are those for which execution can be the fastest possible.

1An alternative approach to real-time execution guarantees is addressed in the CIRCA architecture [55].

25



Thrust
Goals Delta_V(direction=b, magnitude=200)

Attitude

Engine

ACS mode

Thrust segments

Point (b) tokens

TVC modeRCS mode

Figure 8: Plan fragment for achieving a change in spacecraft velocity.

4.2.2 Delegating activity details to execution

Generation of plans with temporal exibility follows from the PS being a constraint-based,
least-commitment planner. A complementary source of plan robustness relies on careful
knowledge representation for each domain. The approach is to choose an appropriate level
of abstraction for activities planned by PS so as to leave as many details as possible to
be resolved by EXEC during execution. A PS token is abstracted in the sense that it
provides an envelope of resources (e.g., execution time allowances, maximum allocated power
consumption). For each token type EXEC has a task decomposition into more detailed
activities that in the absence of exogenous failures are guaranteed by design to be executable
within the resource envelopes.

An example from DS1 illustrates this approach (see Figure 8). A Delta V goal token
requires the achievement of a certain change (delta) in the velocity of the spacecraft. Velocity
changes are achieved by thrusting the engine for some amount of time while pointing the
spacecraft in a certain direction. A total velocity change is achieved via a series of shorter
thrust (time) segments, where between each segment the engine thrust is stopped while
the spacecraft must be turned to the direction required by the next segment. There is a
constraint that ACS be in Thrust Vector Control (TVC) mode shortly after IPS has started
thrusting and it must be in Reaction Control System (RCS) control mode upon termination
of a thrusting activity.2

Initiating a thrust activity involves performing a number of complex operations on the
engine and there is considerable uncertainty about how long this initiation takes before thrust
starts accumulating. This translates into uncertainty about when to switch attitude control
modes, how much thrust will be actually accumulated in a given segment, and how many

2In TVC mode, the spacecraft is turned by steering the main engine gimbal, whereas in ACS mode the

spacecraft is turned using small attitude thrusters.

26



Solar Panel
 Gimbal

Gimbal Drive
Electronics

Engine
Gimbal

Figure 9: Interacting gimbal subsystems in DS1.

thrust segments are necessary to achieve the total desired thrust. RA takes the following
approach to this problem. PS inserts thrust tokens into the plan which may not need to be
executed. EXEC tracks how much thrust has been achieved, and only executes thrust tokens
(and associated turns) for so long as thrust is actually necessary. Similarly, PS delegates
to EXEC the coordination of activity details across subsystems that are below the level of
visibility of PS. In this example, we represent in EXEC's domain knowledge the constraint
between the engine thrust activity and the control mode of the ACS. The result is that
plan execution is robust to variations in engine setup time and in thrust achievement. We
note that this delegation of labor from PS to EXEC relies on many of the capabilities of a
sophisticated procedural execution system [58, 36, 35].

4.2.3 Hybrid procedural/deductive executive

The preceding discussion has described ways to achieve robust execution primarily in the
presence of uncertainty in timing or task progress. Another major cause of execution fail-
ure in the spacecraft domain is activity failure, often due to problems with the hardware.
Several properties of the spacecraft domain drove us to design an executive that combines
a rich procedural execution language with local recovery planning. These challenging prop-
erties include tight coupling between subsystems, irreversible actions, and complex internal

structure.
As an example of tight coupling between subsystems, consider two spacecraft subsystems

in DS1 (see Figure 9): the engine gimbal and the solar panel gimbal. A gimbal enables the
engine nozzle to be rotated to point in various directions without changing the spacecraft
orientation. The solar panels can be independently rotated to track the sun. In DS1, both
sets of gimbals communicate with the main computer via a common gimbal drive electronics
(GDE) board. If either system experiences a communications failure, one way to reset the
system is to power-cycle (turn on and o�) the GDE. However, resetting the GDE to �x one
system also resets the communication to the other system. In particular, resetting the engine
gimbal, to �x an engine problem, causes temporary loss of control of the solar panels. Thus,
�xing one problem can cause new problems. To avoid this, the recovery system needs to
take into account global constraints from the nominal schedule execution, rather than just
making local �xes in an incremental fashion, and the recovery itself may be a sophisticated
plan involving operations on many subsystems.

Another problem stems from the need to repair systems with complex internal structure
and irreversible actions. For example, the propulsion system on the Cassini spacecraft [10]

27



Fuel Oxidizer

Valve

Pyro Valve

Solid black indicates
closed valve

Figure 10: Simpli�ed schematic of Cassini spacecraft propulsion system.

has a complex set of valves (see Figure 10) including explosive pyro valves, which can change
states only once, and ordinary valves with varying amounts of wear and tear. It is di�cult
to express the right valve choices to redirect uid ow while minimizing costs and risks in
the wide variety of situations that might be encountered in ight.

Examples like these drove the design of RA's hybrid execution system [59], which inte-
grates EXEC, the procedural executive based on generic procedures, with MIR, a deductive
model-based executive (see Section 5) that provides algorithms for sophisticated state infer-
ence and optimal failure recovery planning.

RA's integrated executive enables designers to encode knowledge via a combination of
procedures and declarative models, yielding a rich modeling capability suitable to the chal-
lenges of real spacecraft control. The interface between the two executives ensures both that
recovery sequences are consistent with high-level schedule execution and that a high degree
of reactivity is retained to e�ectively handle additional failures during recovery.

The need to integrate EXEC with the local-recovery planning ability of MIR had a
signi�cant impact on the design of EXEC. In particular, we found that our integration
approach required synchronization constructs that were not present in most execution lan-
guages. In the NewMAAP RA prototype, EXEC was based on the language provided by
RAPS [33]. RAPS supports robust execution through the de�nition of multiple methods

for each procedure. If one method fails, the RAP interpreter selects among alternate meth-
ods or variable bindings until it has run out of options, in which case the entire procedure
fails. E�ectively, RAPS handles failures on an activity-by-activity basis. The NewMAAP
RA prototype followed a similar approach and EXEC invoked MIR to plan a recovery for
each activity separately. However, the design of real ight software for DS1 introduced the
problems of tightly interacting subsystems described above. This caused us to re-design the
interface so that EXEC would suspend failed activities and provide global constraints (to
preserve the health of functioning subsystems) as part of a request to repair failures. This
turned out to be extremely di�cult to do in RAPS, for three reasons. First, RAPS has no

28



constructs for tasks to describe properties they need maintained for successful execution.
Second, RAPS does not support nested contexts for recovery procedures, so that tasks can
respond to failures in a speci�c way but ultimately draw on more generic recoveries. Third,
RAPS does not support suspending threads based on external interrupts while a global re-
covery is in progress.3 These di�culties motivated the design the new execution language,
ESL, with facilities for easy language extension, a more exible notion of concurrent activ-
ity and interrupts, hierarchical recovery procedures, and declarations of required properties
[35, 36].

4.3 Summary

EXEC is a robust event-driven and goal-oriented multi-threaded execution system that co-
ordinates the activity of the other ight software modules, both internal and external to the
Remote Agent. This section has discussed the following major points:

� Coherent autonomous operation across a long-term mission can be achieved through
periodic planning guided by a mission pro�le.

� Executing exible constraint-based plans with bounded execution-time propagation
results in robust plan execution with guaranteed real-time behavior.

� Procedural and deductive capabilities can be integrated within the reactive execution
loop.

� Enhanced synchronization primitives to track state requirements are necessary for con-
current execution systems.

� A robust multi-threaded executive provides the core capabilities to support an archi-
tecture for autonomous operations over extended missions.

5 Model-based mode identi�cation and recon�guration

The mode identi�cation and recon�guration component of the Remote Agent architecture
is provided by the Livingstone system [71]. Livingstone is a discrete model-based controller
that sits at the nexus between the high-level feed-forward reasoning of classical planning
and scheduling systems, and the low-level feedback control of continuous adaptive methods
(see Figure 11). It is a discrete controller in the sense that it constantly attempts to put
the spacecraft hardware and software into a con�guration that achieves a set point, called a
con�guration goal , using a sensing component, calledmode identi�cation, and a commanding
component, called mode recon�guration. It is model-based in the sense that it uses a single
declarative, compositional spacecraft model for both MI and MR.

A con�guration goal is a speci�cation of a set of hardware and software con�gurations
(or modes). More than one con�guration can satisfy a con�guration goal, corresponding

3Similar concerns apply to other procedural execution systems, like PRS [37], RPL [46], Interrap [50] and

Golog [43].

29



Planner
Executive

CommandsMonitored
values

State
updates

Goals
Model

Reconfig.
cmds.

Spacecraft

MRMI

Figure 11: Livingstone architecture diagram.

Figure 12: Di�erent con�gurations that achieve thrust. The circled valve has failed.

to line and functional redundancy. For example, Figure 12 shows two con�gurations that
satisfy the goal of providing thrust, with the one on the right being used when the circled
valve fails. Other con�gurations, corresponding to di�erent combinations of open valves, are
used to handle other valve failures.

Livingstone's sensing component, mode identi�cation (MI), provides the capability to
track changes in the spacecraft's con�gurations due to executive commands and component
failures. MI uses the spacecraft model and executive commands to predict the next nominal
con�guration. It then compares the sensor values predicted by this con�guration against the
actual values being monitored on the spacecraft. Discrepancies between predicted and mon-
itored values signal a failure. MI isolates the fault and diagnoses its cause, thus identifying
the actual spacecraft con�guration, using algorithms adapted from model-based diagnosis
[23, 24].

MI provides a variety of functions within the RA architecture, including:

� Mode con�rmation: Provides con�rmation to EXEC that a particular spacecraft com-

30



mand has completed successfully.

� Anomaly detection: Identi�es observed spacecraft behavior that is inconsistent with
its expected behavior.

� Fault isolation and diagnosis: Identi�es components whose failures explain detected
anomalies. In cases where models of component failure exist, identi�es the particular
failure modes of components that explain anomalies.

� Token tracking: Monitors the state of properties of interest to the executive, allowing
it to monitor plan execution.

When the current con�guration ceases to satisfy the active con�guration goals, Living-
stone's mode recon�guration (MR) capability can identify a least cost set of control pro-
cedures that, when invoked, take the spacecraft into a new con�guration that satis�es the
goals. MR can be used to support a variety of functions, including:

� Mode con�guration: Place the spacecraft in a least cost con�guration that exhibits a
desired behavior.

� Recovery: Move the spacecraft from a failure state to one that restores a desired
function, either by repairing failed components or �nding alternate ways of achieving
the goals.

� Standby and sa�ng: In the absence of full recovery, place the spacecraft in a safe state
while awaiting additional guidance from the high-level planner or ground operations
team.

Within the RA architecture, MR is used primarily to assist EXEC in generating recov-
ery procedures, in response to failures identi�ed by MI. (Section 4.2.3 has a more detailed
discussion.)

Three technical features of Livingstone are particularly worth highlighting. First, the
long held vision of model-based reasoning has been to use a single central model to support
a diversity of engineering tasks. As noted above, Livingstone automates a variety of tasks
using a single model and a single core algorithm, thus making signi�cant progress towards
achieving the model-based vision. Second, Livingstone's representation formalism achieves
broad coverage of hybrid discrete/continuous, software/hardware systems by coupling the
concurrent transition system models underlying concurrent reactive languages [44] with the
qualitative representations developed in model-based reasoning [68, 25]. Third, the approach
uni�es the dichotomy within AI between deduction and reactivity [1, 9], by using a conict-
directed search algorithm coupled with fast propositional reasoning. We now discuss these
latter two points in more detail.

31



5.1 Representation formalism

Implemented model-based diagnosis systems traditionally specify behavior through constraint-
based modeling, for example, see [17, 23, 65, 39]. In this formalism, system models are built
compositionally from individual component models and a speci�cation of the connections
between components. Each component model consists of a set of modes, corresponding to
the di�erent nominal and failure modes of the component. A set of constraints characterize
the behavior of the component in each of its modes. The compositional, component-based
nature of the modeling formalism enables plug-and-play model development, supports the
development of complex large-scale models, increases maintainability, and enables model
reuse.

While compositional, constraint-based modeling is well suited for many model-based
diagnosis applications it has a signi�cant limitation. Its widespread use is restricted by the
fact that it typically has no model of dynamics, in other words, no model of transitions
between modes. Modeling dynamics is essential for Livingstone since it needs to track
changes in spacecraft con�gurations and determine recon�guration sequences.

Most formalizations of model-based diagnosis, on the other hand, have assumed that
models are speci�ed in �rst-order logic [62, 21]. The enticement of �rst-order logic is its clear,
well understood semantics. However, �rst order logic is not an accurate reection of existing
implementations, and is wholly inappropriate as a representation formalism for building
practical diagnosis systems. On the one hand, its expressiveness leads to computational
intractability (�rst-order satis�ability is semi-decidable), precluding its use in a real-time
system. On the other hand, �rst-order logic does not o�er a particularly natural language
for describing the dynamics of state change. Modeling dynamics is essential to modeling
most hardware and software systems. Finally, �rst order logic by itself, is an impractical
language for writing large scale models, with its at structure of constants, functions, and
relations.

Our challenge with Livingstone then was to develop a practical modeling language that
is e�ective for compositional modeling, can represent the dynamics of hardware and software
naturally, has a clean underlying semantics, and can be computed with e�ciently in real-
time.

5.1.1 Concurrent transition systems

We overcame the above limitation by coupling compositional constraint-based modeling with
the concurrent transition systems used to model reactive software [44]. In this formalism,
each component is modeled as a transition system consisting of a set of modes with explicit
transitions between modes. For example, Figure 13 shows the modes and transitions of
a valve and a valve driver. Each transition is either a nominal transition, modeling an
executive command, or a failure transition. As before, each mode is associated with a
set of constraints that describe the component's behavior in that mode, for example, the
inflow = outflow = 0 constraint of the Closed mode of a valve. To ensure that the
representation is computable and has a well de�ned semantics, we restrict constraints to
�nite domains, and compile them down into propositional logic.

In terms of dynamics, nominal transitions have preconditions that model the conditions

32



Valve

Closed

Open Stuck
open

Stuck
closed

 cmd = open
2

cmd =
close 2

0.1

0.1

0.01
0.01

inflow = outflo w

Valve Driver

cmd =off
1

On

Off

Resettable
failure

Permanent
failure

cmd
= on

1

cmd =
off 1

cmd = reset 1
0.1

0.05

0.01

vcmdin = vcmdout

Figure 13: Transition systems for a valve and a valve driver. Shaded modes are failure
modes. Fractional numbers represent transition probabilities and whole numbers represent
transition costs.

under which that transition may be taken. For example, in the absence of failure, a valve
transitions from Open to Closed when it receives a Close command. At any given time, ex-
actly one nominal transition is enabled, but zero or more failure transitions may be possible,
for example, a Closed valve may fail by transitioning to the Stuck open or Stuck closed modes.
Hence, transitions have associated probabilities, which are used to model the likelihood of a
failure occurring. Probabilistic failure transitions can be used to model intermittence, e.g.,
an On valve driver may fail by transitioning to the Resettable failure mode, but may tran-
sition back to On without any explicit command. Nominal transitions also have associated
costs, providing a way to model the di�erent costs of command sequences. For example, the
least cost way of repairing a valve driver exhibiting Resettable failure is to Reset it, rather
than turning it o� and then on.

Components within a larger system can be viewed as acting concurrently, communi-
cating over \wires." Hence, as with constraint-based modeling, system models are built
compositionally by connecting component transition system models. The resulting model
is a concurrent transition system model in the sense that a single transition of the system
corresponds to concurrent transitions by each of the component transition systems. Natu-
rally, component transitions are consistent with the component connections. For example,
the Open/Close command input to the valve is not directly controllable, but rather is an
output from the valve driver. Hence, a valve transition can be commanded only if the valve
driver is On.

To support large scale modeling, we have built a compositional, model-based program-
ming language that supports the speci�cation of these concurrent transition system models.
This speci�cation is compiled down into a restricted propositional temporal logic formula
with a well-de�ned semantics. This formula is used directly by Livingstone's MI and MR
components. We have found that this modeling formalism has enabled us to naturally
model (a) discrete, digital systems, e.g., the valve driver; (b) analog systems using qualita-
tive modeling [68, 25], e.g., the valve; and (c) real-time software, e.g., the spacecraft attitude
controller. Hence, the primary lesson of our experience is:

Probabilistic, concurrent transition systems provide an appropriate formalism for

33



building model-based autonomous systems that is expressive, has a clean seman-

tics, and is tractable.

5.1.2 Qualitative modeling

As noted above, we use simple, qualitative representations for modeling analog systems.
Sacks and Doyle [63] have strongly criticized the value of such qualitative representations,
arguing that they are too ambiguous, and can be used to analyze only a handful of simple
systems. They conclude their critique with the comment that \[Qualitative] equations are
far too general for practical use." [63]. Indeed much of the work on qualitative reasoning
and model-based diagnosis has focused on a variety of methods that try to eliminate the
computation of ambiguous values, by applying more and more quantitative information.

Our experience has been quite to the contrary. First, the fact that a model may lead
to ambiguous values is no indicator of whether or not a representation is su�cient. In the
case of diagnosis it simply must be the case that enough values have su�cient precision to
rule out incorrect diagnoses. Second, the detail of modeling information necessary to rule
out incorrect diagnoses can be very little. For example, researchers at Xerox PARC tried to
develop a simplest set of copier models su�cient to cover all diagnoses listed within a human
generated diagnostic repair procedure [4]. What they found is that the representations used
in these models were far simpler than the representations Sacks and Doyle asserted were so
impoverished.

Based on this lesson, we adopted a modeling formalism for Livingstone that models
analog behaviors using an extremely simple representation based on qualitative deviations
from nominal behavior. We found that such representations were more than adequate for
all of Livingstone's mode identi�cation and recon�guration tasks. Furthermore, the very
simplicity of the models had important bene�ts. First, in contrast to detailed quantitative
models, they are easy to acquire, and can be acquired during early stages of the design
process. We did not have to tease out the exact form of quantitative equations, or worry
about carefully tuning numerical parameters. This enabled us to rapidly prototype the fault
protection system concurrently with hardware design. Second, qualitative models provide
a measure of robustness to design changes and modeling inaccuracy. For example, if the
hardware designers choose to substitute a di�erent thruster valve to produce more thrust,
the qualitative model does not change: while the underlying meaning of nominal thrust
changes, the qualitative model in terms of deviations from nominal remains the same. Third,
qualitative models allow us to use propositional encodings that enable fast inference. This
was essential to providing rapid and timely response. (We discuss this point in detail shortly.)
The essential lesson we draw from our experience is the following:

Extremely simple, qualitative models are appropriate for many practical and sig-

ni�cant tasks.

5.2 Reactivity and deduction

A key contribution of Livingstone is the fact that it uni�es the dichotomy within AI between
deduction and reactivity. Several authors, principally [1, 9], have argued that symbolic

34



reasoning methods, such as planning, deduction, and search, are unable to bridge the gap
between perception and action in a timely fashion. For example, in discussing the construc-
tion of reactive systems that rapidly handle the complexity, uncertainty, and immediacy of
real situations, Agre and Chapman claim that \Proving theorems is out of the question." [1].
Rather, the argument goes, the right way to construct reactive systems is to compile out all
the inference into a network of combinational circuits, possibly augmented with timers and
state elements, leading, for example, to the subsumption architecture [9]. But is this solution
adequate for all types of reactive systems, particularly remote agents? Equally important,
is it even correct that deduction and search can play no role in reactive systems?

5.2.1 Fast deduction and search

Consider, �rst, the question of the adequacy of the above thesis. Autonomous system,
such as deep space probes, Antarctic and Martian habitats, power and computer networks,
chemical plants, and assembly lines, need to operate without interruption for long periods,
often in harsh environments. In such systems, rapid correct response to anomalous situations
is essential for carrying out the mission. Responding to any single anomalous situation using
a hardwired network is plausible. However, as the length of time for which autonomous
operations is desired increases, the combinations of anomalous situations that may arise
grows exponentially. Constructing a reactive network that responds correctly to this cascade
of failures is a truly daunting task. The compositional, model-based paradigm embodied in
Livingstone, with its ability to identify multiple failures and synthesize correct responses
directly from a compact declarative model, provides a much more practical solution.

But what of the concern that search and deduction are su�ciently time-consuming that
responses at reactive time-scales are not possible? Livingstone addresses this concern with a
combination of techniques (see [71] for details). We formulate both MI and MR as combina-
torial optimization problems: MI is formulated as �nding the most likely transitions that are
consistent with the observations; MR is formulated as the least cost commands that restore
the current con�guration goals.

Livingstone does follow the spirit, proposed by Brooks of compiling the system into a
simple network. However, instead of a functional network that is evaluated, Livingstone
compiles the models into a propositional constraint network. This is a very simple deductive
search problem that we highly tune for performance. Our motive for reducing all model-
based tasks to a highly tuned, search algorithm on propositional constraints parallels the
intuitions behind reduced instruction set computers (RISC).

Livingstone solves these combinatorial optimization problems using a conict-directed4

best-�rst search, coupled with fast propositional inference using unit propagation. Empir-
ically, the use of conicts dramatically focuses the search, enabling rapid diagnosis and
response. While unit propagation is an incomplete inference procedure, it su�ces for our
applications. The reason is that we use causal models, with few (if any) feedback loops, so
that unit propagation is complete or can be made complete with a small number of carefully
chosen prime implicates [19].

4A conict is a partial assignment such that any assignment containing the conict is guaranteed to be

infeasible.

35



5.2.2 Truth maintenance

The above techniques allow Livingstone to identify modes and recon�gure hardware while
evaluating only an extremely small set of candidate solutions. Hence the potentially exponen-
tial search appears not to be a major part of the problem. Nevertheless, with requirements
for response times on the order of hundreds of milliseconds on a slow processor, unit propaga-
tion becomes a signi�cant problem. Livingstone's performance is enhanced by another order
of magnitude using a truth maintenance system, called the Incremental Truth Maintenance

System ITMS [56], that computes unit propagations over time. The ITMS is a variant of the
more traditional Logic-based TMS (LTMS) [45, 28] that optimizes context switching. The
ITMS, like the traditional LTMS, computes truth assignments over a trajectory of states in
an \event driven manner." That is, the ITMS propagates changes in truth assignments from
one state to another, rather than performing a full unit propagation in every state.

Livingstone's use of an ITMS is in sharp contrast to other model-based diagnosis systems
[23, 24, 20, 30] that use a fundamentally di�erent type of TMS, called the Assumption-based
TMS (ATMS) [22]. Concerns about the e�ciency of the LTMS in the 80's lead de Kleer
to introduce the ATMS and write that traditional TMSs \. . . have proven to be woefully
inadequate. . . they are ine�cient in both time and space" [18]. The advantage of the ATMS
is its ability to switch contexts without any label propagation, thus avoiding the linear time
cost of unit propagation. However, this comes at the cost of an exponential time and space
pre-labeling process. These costs can be particularly problematic for embedded, real-time
systems. More recently, various ATMS focusing algorithms have been developed to alleviate
the exponential cost of labeling by restricting ATMS label propagation to just the current
context [24, 34, 29]. Precise empirical comparisons between model-based diagnosis systems
based on focused ATMSs and those based on LTMSs/ITMSs are unavailable. However we
did perform limited experiments on a version of Livingstone that contained no TMS. Even
without a TMS, Livingstone's run time on a standard diagnostic test suite was comparable
to diagnostic algorithms, such as Sherlock [24], that contain an ATMS.

This result led us to revisit the LTMS technology, which had received little attention over
the last decade. We found that the addition of a traditional LTMS signi�cantly improved
Livingstone's performance. On the other hand, we also found that the LTMS performance
was in some cases far from ideal. In the best case an LTMS update would be linear in the
number of labels that change between successive states. Unfortunately, applying Livingstone
to the DS1 spacecraft models, we found that the LTMS spent a signi�cant percentage of its
time on labels that remain constant; more speci�cally, 37% on average, and 670% in the
worst case. This worst case can be deadly for real systems with hard time requirements.
The ITMS o�ers a more aggressive approach to label update that is merely 5% o� ideal,
with a worst case overhead of only 100%. The use of this TMS resulted in an order of
magnitude improvement in Livingstone's performance, over the version with no TMS, and
allowed Livingstone to meet the stringent timing requirements of DS1.

The primary lessons of the above discussion are the following:

Search and deduction are often essential in reactive systems. Furthermore, search

and deduction can be carried out at reactive time scales. Finally, LTMS-style

truth maintenance systems can provide an essential tool for speeding up deductive

36



search.

5.3 Summary

Livingstone is a discrete model-based controller that provides the mode identi�cation and
recon�guration capability within the Remote Agent architecture. Our experience with Liv-
ingstone has provided the following technical lessons:

� Many reactive system tasks can be carried out using a single model.

� Concurrent transition systems provide an appropriate formalism for building model-
based autonomous systems.

� Strikingly simple qualitative models are e�ective for many real-world tasks.

� Search and deduction are often necessary in a reactive system.

� Search and deduction can be carried out reactively.

� Truth maintenance systems are powerful tools for speeding up search.

6 Lessons from technology insertion

Most of the discussion in this paper has focused on technical issues we encountered while
developing the RA. In addition to raising technical issues, the process of working on a real
mission and with a real mission schedule provided valuable lessons about inserting this kind
of technology into operational missions [2].5

Three key technology insertion lessons are the following:

� Human-centered operations: While new classes of missions may require systems
with highly autonomous capabilities, it is important that such systems also support
operational modes in which humans exercise tight control over the system.

� Validation and Testing: A major barrier to increasingly autonomous systems is
concern about how to test them and validate that they will actually perform as desired.
Architectural design choices that let spacecraft engineers focus on the domain model,
rather than on the problem-solving methods, can signi�cantly help address this barrier.

� Schedule impacts: Putting an autonomous system on-board a spacecraft potentially
has a major impact on the traditional ight software development schedule, as it can
require knowledge normally codi�ed during operations (after the system is built) to be
encoded in the system early on. Developing �rst things �rst can alleviate this problem.

5Montemerlo [49] provides a set of lessons summarizing earlier experience with technology insertion at

NASA.

37



� Model-based Skunkworks: Ensuring coherence of mental models across a large soft-
ware team can be inordinately time-consuming. This has motivated us to develop a
research paradigm in which all software will be programmed in a uni�ed modeling lan-
guage by a small team supported by automated synthesis techniques and collaborative
modeling environments.

We believe that these lessons generalize to other situations in which complex autonomous
systems are deployed. We briey discuss these lessons in the following subsections.

6.1 Human-centered operations

The NewMAAP RA prototype was designed to support scenarios involving extremely au-
tonomous operations in which human communication was impossible. As we moved from
prototyping into actual ight code development and teamed with ground operators, we had
to extend the RA architecture to address the broader operational context in which the RA
would be used. The key insight we gained was that, while extreme autonomy is necessary for
certain mission phases, also essential is support for human interaction when such interaction
is possible [61, 8]. Such an approach o�ers two key bene�ts. First, the ability to draw on
human expertise, especially in anomalous conditions, can simplify the design of the system
and increase the chance of mission success. Second, designers and operators can automate
capabilities incrementally, rather than relying on a fully autonomous system at launch time.
This can help increase con�dence and improve operator acceptance.

As a result of extensions we made to the RA for these purposes, the RA now has the
following features: RA shares the long-range mission pro�le with ground operators to enable
asynchronous ground updates; ground operators can monitor and command the spacecraft
at multiple levels of detail simultaneously; and ground operators can provide additional
knowledge to the RA, such as parameter updates, model updates, and diagnostic information,
without interfering with the activities of the RA or leaving the system in an inconsistent
state. Additional forms of support for human interaction with remote agents is a major area
of ongoing research [61, 8].

6.2 Validation and Testing

The strict separation between modeling and problem solving heuristics within PS (see Sec-
tion 3) also addresses another lesson learned from the DS1 experience. While AI planning
research has so far concentrated on problem-solving performance, in mission-critical applica-
tions it is validation of the problem-solving system that takes a much more prominent role.
In our interaction with spacecraft engineers the question that is most often and insistently
asked is \How can we be sure that your software will work as advertised and avoid unin-
tended behavior?" Indeed, this is a question that applies to the development of all aspects
of mission-critical embedded software systems, AI based or not. However, systems like the
RA promise complete autonomy over a much wider variety of complex situations than was
previously possible. On the face of it, this makes validation of these systems harder than
traditional systems. Fortunately, the declarative nature of AI technology allows the inspec-

38



tion of the models and facilitates a deep understanding of the behavior of the system which
is unprecedented in traditional software development approaches.

Our use of a declarative approach dictates a clean separation between models and heuris-
tics. This ensures that system and mission engineers can focus on guaranteeing that require-
ments are met, and not on the details of how the reasoning engines manipulate the models
in order to produce solutions e�ciently. A strict separation between models and heuristics
allows non-AI specialists to inspect the model and understand the knowledge embedded
in the system without having to be experts in AI problem solving methods. We believe
that inspectable representational techniques and tools to automatically analyze models and
synthesize problem solving heuristics are important research areas that will widen the appli-
cability of AI techniques to real-world applications.

6.3 Schedule impacts

In the traditional approach to spacecraft development, designers build into the ight software
only those capabilities necessary to ensure safety of the system. When anything goes wrong
on the spacecraft, it puts itself into a safe state and waits for help from ground operators.
This approach enables much knowledge of system interactions to remain uncodi�ed, available
only in the heads of the designers. It also enables additional automation to be put into the
ground system, typically on a schedule much later than the ight software development.

In the RA approach to building an autonomous system on-board a spacecraft, designers
must codify the knowledge at a much earlier stage, so that it can be included in the on-board
models used by the RA. This need for earlier modeling can potentially have a major impact
on the traditional ight software development schedule. While this is not a technical concern,
such schedule issues play a major role in the success of technology insertion, especially in
the new era of faster development cycles and concurrent engineering.

Fortunately, we have found that our model-based programming approach has advantages
which compensate for the schedule impacts. Since the declarative models mirror the hard-
ware design, the models are easier to maintain in the face of changing hardware details, as
compared to traditional software which keeps hardware design assumptions implicit.

With this said, there still remains considerable exibility about the order in which to
perform model development. The key lesson we learned in this respect is work �rst things

�rst: focus �rst on the critical models at the level necessary to meet launch requirements.
Then progressively re�ne the models to provide increased performance and capabilities. This
approach reduces the tendency to have detailed models of some components while major
spacecraft capabilities are still unmanaged, and enables the model-based approach to �t into
the risk management approach of the overall ight software project.

6.4 Model-based Skunkworks

Often the creativity and speed of a design time decreases exponentially with the size of the
team. Lunar Prospector [40] and Mars Path�nder [14] are two excellent examples of missions
developed by small teams, that were inexpensive, were assembled together in a short time
span, and operated awlessly. However it is di�cult to sustain this pace as we move towards

39



far more capable missions that come closer to emulating a virtual presence. For example,
the DS1 ight software team was comprised of more than 40 individuals, broken into teams
responsible for writing hardware speci�cations, systems engineering speci�cations, simula-
tors, attitude control codes, discrete device drivers, EXEC procedures, MIR models and PS
models, test scripts and systems integration. A signi�cant fraction of the development time
was devoted to preparing documents and meeting presentations directed towards knowledge
acquisition, scoping, model de�nition and validation. What made this so challenging is that
each of the seven teams had their own mental model of how the spacecraft behaved. The
purpose of these time-consuming meetings was to bring these many perspectives into align-
ment. The large team size and the fact that many of these models were both implicit and
changing made miscommunication inevitable, making the task inordinately time-consuming.

The research challenge is then to provide a development paradigm and a set of tools
that allow a small team, perhaps a dozen, to develop an equivalent system. These tools
should allow models at all levels to be explicit, should facilitate the development of a single
coherent model, and should be able to easily track a dynamically changing hardware de-
sign. The paradigm we are developing we call model-based skunkworks. In this paradigm
all aspects of the ight software will be programmed through models. Automated synthesis
techniques will use models to generate simulators, discrete ight codes, continuous attitude
control codes, and test scripts. To facilitate model synergy, models will be developed using a
uni�ed model-based programming language that incorporates the best ideas of encapsulation
from classical programming languages. Model building by a disparate team will be facili-
tated by distributed, collaborative modeling environments. Finally, human assessment of the
ight software's capability by systems engineers and project management will be facilitated
through analysis tools that generate review documents from models. Finally, an extensive,
reusable model library will ultimately allow future spacecraft to be plugged together from
past knowledge.

7 Conclusions and future work

The challenge of building a remote agent to assist in establishing a virtual presence in
space has proved to be an exciting and unique opportunity for AI. The characteristics of
the domain that require highly reliable autonomous operations over long periods of time
with tight deadlines, resource constraints, and concurrent activity among tightly coupled
subsystems, has led to the development of a Remote Agent architecture based on the princi-
ples of model-based programming, on-board deduction and search, and goal-directed, closed
loop commanding. The resulting architecture integrates constraint-based temporal planning
and scheduling, robust multi-threaded execution, and model-based mode identi�cation and
recon�guration. These components draw upon research in a variety of di�erent areas of
AI, including constraint propagation, search, temporal reasoning, planning and scheduling,
plan execution, reactive languages, deduction, truth maintenance, qualitative reasoning, and
model-based diagnosis.

Jumping headlong to meet fast-paced challenges, �rst with the NewMAAP demonstration
and then with DS1, has provided us with an invaluable opportunity to reassess some of
AI's conventional wisdom. Our experience has been in sharp contrast to this conventional

40



wisdom, with the main lessons being that generative planning can scale up to solve practical
problems, and that search and deduction can be carried out within the reactive control
loop. Furthermore, our embedding in an important real-world problem not only provides
a veritable fountain of interesting research problems, but also ensures the relevance of the
research. In some sense, this is the most important lesson of our experience!

While the Remote Agent is a signi�cant step toward reaching the goal of providing full
autonomy for NASA's explorers, much still remains to be done. Future remote agents will
need to be much more adaptive in how they react with an uncertain environment. They will
need to anticipate imminent failures, and plan for contingencies. They will need to be active
information seekers, to better understand their environment and their own state. As eets
of explorers descend upon distant planets, they will need to collaborate with each other to
achieve mission goals. We expect future NASA missions, such as the ones highlighted in the
Introduction, to provide the concrete challenges that require building more and more capable
remote agents. This exciting future is aptly captured by the following vision for autonomy:

\With autonomy we declare that no sphere is o� limits. We will send our space-
craft to search beyond the horizon, accepting that we cannot directly control
them, and relying on them to tell the tale."

| Bob Rasmussen, Cassini AACS Cognizant Engineer and New Millennium
Autonomy Team.

Acknowledgments

We would like to acknowledge the contributions of the members of the NewMAAP and DS1
Remote Agent teams, without whose tireless e�orts this work would not have been possible:
Douglas Bernard, Steve Chien, Scott Davies, Greg Dorais, Julia Dunphy, Dan Dvorak, Chuck
Fry, Ed Gamble, Erann Gat, Othar Hansson, Jordan Hayes, Bob Kanefsky, Ron Keesing,
Sandy Krasner, James Kurien, Jim Larson, Ina Lungu, Bill Millar, Sunil Mohan, Paul Morris,
Illah Nourbakhsh, Chris Plaunt, Gregg Rabideau, Kanna Rajan, Nicolas Rouquette, Scott
Sawyer, Rob Sherwood, Reid Simmons, Ben Smith, Will Taylor, Hans Thomas, Yu-wen
Tung, Todd Turco, Michael Wagner, Greg Whelan, and David Yan. We would also like to
acknowledge the invaluable contributions of Guy Man, Gregg Swietek, and Bob Rasmussen
for their tireless promotion of spacecraft autonomy. John Bresina, Dan Clancy, Greg Dorais,
Ari Jonsson, Jim Kurien, Paul Morris, Kanna Rajan, David Smith, and Rich Washington
provided comments on earlier drafts of this paper.

References

[1] Philip E. Agre and David Chapman. Pengi: An implementation of a theory of activity.
In Proceedings Conference of the American Association for Arti�cial Intelligence, pages
268{272, 1987.

41



[2] Abdullah S. Aljabri, Douglas E. Bernard, Daniel L. Dvorak, Guy K. Man, Barney Pell,
and Thomas W. Starbird. Infusion of autonomy technology into space missions { DS1
lessons learned. In Proceedings of the IEEE Aerospace Conference [41].

[3] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832{843, 1983.

[4] David Bell, Daniel Bobrow, Brian Falkenhainer, Markus Fromherz, Vijay Saraswat, and
Mark Shirley. Rapper: The copier modeling project. In Working Papers of the Eighth

International Workshop on Qualitative Reasoning about Physical Systems, 1994.

[5] Douglas E. Bernard, Gregory A. Dorais, Chuck Fry, Edward B. Gamble Jr., Bob Kanef-
sky, James Kurien, William Millar, Nicola Muscettola, P. Pandurang Nayak, Barney
Pell, Kanna Rajan, Nicolas Rouquette, Benjamin Smith, and Brian C. Williams. De-
sign of the remote agent experiment for spacecraft autonomy. In Proceedings of the

IEEE Aerospace Conference [41].

[6] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Arti�cial Intelligence, 90:281{300, 1997.

[7] Mark Boddy and Thomas L. Dean. Deliberation scheduling for problem-solving in
time-constraint environments. Arti�cial Intelligence, 1994.

[8] R. P. Bonasso, D. Kortenkamp, and T. Whitney. Using a robot control architecture to
automate space shuttle operations. In Procs. of AAAI-97, pages 949{956, Cambridge,
Mass., 1997. AAAI, AAAI Press.

[9] Rodney A. Brooks. Intelligence without representation. Arti�cial Intelligence, 47:139{
159, 1991.

[10] G.M. Brown, D.E. Bernard, and R.D. Rasmussen. Attitude and articulation control
for the Cassini spacecraft: A fault tolerance overview. In 14th AIAA/IEEE Digital

Avionics Systems Conference, Cambridge, MA, November 1995.

[11] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32(3):333{377,
1987.

[12] Peter Cheeseman, Bob Kanefsky, and William Taylor. Where the really hard problems
are. In Proceedings of IJCAI-91, pages 163{169, 1991.

[13] Steve A. Chien and Helen B. Mortensen. Automating image processing for scienti�c
data analysis of a large image database. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(8):854{859, 1996.

[14] Richard Cook. Mars Path�nder mission operations: Faster, better, cheaper on Mars.
In Proceedings of the IEEE Aerospace Conference [41].

[15] K. Currie and A. Tate. O-plan: the open planning architecture. Art. Int., 52(1):49{86,
1991.

42



[16] S. Sam Dallas. Space interferometry mission. In Proceedings of the IEEE Aerospace

Conference [41].

[17] Randall Davis. Diagnostic reasoning based on structure and behavior. Arti�cial Intel-
ligence, 24:347{410, 1984.

[18] Johan de Kleer. Choices without backtracking. In Proceedings of AAAI-84, pages 79{85,
1984.

[19] Johan de Kleer. Exploiting locality in a TMS. In Proceedings of AAAI-90, pages 264{
271, 1990.

[20] Johan de Kleer. Focusing on probable diagnoses. In Proceedings of AAAI-91, pages
842{848, 1991. Reprinted in [38].

[21] Johan de Kleer, Alan Mackworth, and Raymond Reiter. Characterizing diagnoses and
systems. Arti�cial Intelligence, 56:197{222, 1992. Reprinted in [38].

[22] Johan de Kleer and Brian C. Williams. Reasoning about multiple faults. In Proceedings

Conference of the American Association for Arti�cial Intelligence, pages 132{139, 1986.

[23] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Arti�cial Intelligence,
32(1):97{130, 1987. Reprinted in [38].

[24] Johan de Kleer and Brian C. Williams. Diagnosis with behavioral modes. In Proceedings
of IJCAI-89, pages 1324{1330, 1989. Reprinted in [38].

[25] Johan de Kleer and Brian C. Williams, editors. Arti�cial Intelligence, volume 51. Else-
vier, 1991.

[26] T.L. Dean and D.V. McDermott. Temporal data base management. Arti�cial Intelli-

gence, 32:1{55, 1987.

[27] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Art. Int., 49:61{95,
May 1991.

[28] J. Doyle. A truth maintenance system. Arti�cial Intelligence, 12:231{272, 1979.

[29] Oskar Dressler and Adam Farquhar. Putting the problem solver back in the driver's
seat: Contextual control of the ATMS. In Lecture Notes in Arti�cial Intelligence 515.
Springer-Verlag, 1990.

[30] Oskar Dressler and Peter Struss. Model-based diagnosis with the default-based diagnosis
engine: E�ective control strategies that work in practice. In Proceedings of ECAI-94,
1994.

[31] Tara A. Estlin, Steve A. Chien, and Xuemei Wang. An argument for a hybrid
htn/operator-based approach to planning. In Procs. of the Fourth European Conference

on Planning, 1997.

43



[32] Richard Fikes and Nils Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Arti�cial Intelligence, 2(3/4), 1971.

[33] R. James Firby. Adaptive execution in complex dynamic worlds. PhD thesis, Yale
University, 1978.

[34] Kenneth D. Forbus and Johan de Kleer. Focusing the ATMS. In Proceedings of AAAI-

88, pages 193{198, 1988.

[35] Erann Gat. ESL: A language for supporting robust plan execution in embedded au-
tonomous agents. In Louise Pryor, editor, Procs. of the AAAI Fall Symposium on Plan

Execution. AAAI Press, 1996.

[36] Erann Gat and Barney Pell. Abstract resource management in an unconstrained plan
execution system. In Proceedings of the IEEE Aerospace Conference [41].

[37] Michael P. George� and Amy L. Lansky. Procedural knowledge. Technical Report 411,
Arti�cial Intelligence Center, SRI International, January 1987.

[38] Walter Hamscher, Luca Console, and Johan de Kleer. Readings in Model-Based Diag-

nosis. Morgan Kaufmann, San Mateo, CA, 1992.

[39] Walter C. Hamscher. Modeling digital circuits for troubleshooting. Arti�cial Intelli-

gence, 51:223{271, 1991.

[40] G. Scott Hubbard. Lunar Prospector: Developing a very low cost planetary mission. In
Proceedings of the IEEE Aerospace Conference [41].

[41] IEEE. Proceedings of the IEEE Aerospace Conference, Snowmass, CO, 1998.

[42] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of AAAI-96, pages 1194{1201, 1996.

[43] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59{84,
1997.

[44] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Sys-

tems: Speci�cation. Springer-Verlag, 1992.

[45] David McAllester. An outlook on truth maintenance. Memo 551, MIT Arti�cial Intel-
ligence Laboratory, August 1980.

[46] D. McDermott. A reactive plan language. Technical report, Computer Science Dept,
Yale University, 1993.

[47] David S. McKay, Everett K. Gibson Jr., Kathie L. Thomas-Keprta, Hojatollah Vali,
Christopher S. Romanek, Simon J. Clemett, Xavier D. F. Chillier, Claude R. Maechling,
and Richard N. Zare. Search for past life on Mars: Possible relic biogenic activity in
Martian meteorite ALH84001. Science, 273:924{930, August 1996.

44



[48] Andrew H. Mishkin, Jack C. Morrison, Tam T. Nguyen, Henry W. Stone, Brian K.
Cooper, and Brian H. Wilcox. Experiences with operations and autonomy of the Mars
Path�nder microrover. In Proceedings of the IEEE Aerospace Conference [41].

[49] Melvin Montemerlo. The AI program at NASA: Lessons learned in the �rst seven years.
AI Magazine, Winter 1992.

[50] J. Muller and M. Pischel. An architecture for dynamically interacting agents. Int.

Journal of Intelligent and Cooperative Information Systems, 3(1):25{45, 1994.

[51] N. Muscettola. HSTS: Integrating planning and scheduling. In Mark Fox and Monte
Zweben, editors, Intelligent Scheduling. Morgan Kaufmann, 1994.

[52] N. Muscettola, B. Smith, C. Chien, C. Fry, G. Rabideau, K. Rajan, and D. Yan. On-
board planning for autonomous spacecraft. In Proceedings of the Fourth International

Symposium on Arti�cial Intelligence, Robotics, and Automation for Space (i-SAIRAS),
Tokyo, Japan, August 1997. i-SAIRAS.

[53] Nicola Muscettola, Paul Morris, Barney Pell, and Ben Smith. Issues in temporal rea-
soning for autonomous control systems. In Wooldridge [72].

[54] Nicola Muscettola, Paul Morris, and Ioannis Tsamardinos. Reformulating temporal
plans for e�cient execution. In Proc. of Sixth Int. Conf. on Principles of Knowledge

Representation and Reasoning (KR'98), 1998.

[55] David Musliner, Ed Durfee, and Kang Shin. Circa: A cooperative, intelligent, real-time
control architecture. IEEE Transactions on Systems, Man, and Cybernetics, 23(6),
1993.

[56] P. Pandurang Nayak and Brian C. Williams. Fast context switching in real-time propo-
sitional reasoning. In Proceedings of AAAI-97, 1997.

[57] Barney Pell, Douglas E. Bernard, Steve A. Chien, Erann Gat, Nicola Muscettola, P. Pan-
durang Nayak, Michael D. Wagner, and Brian C. Williams. An autonomous spacecraft
agent prototype. Autonomous Robots, 5(1), March 1998.

[58] Barney Pell, Gregory A. Dorais, Christian Plaunt, and Richard Washington. The remote
agent executive: Capabilities to support integrated robotic agents. In Alan Schultz and
David Kortenkamp, editors, Procs. of the AAAI Spring Symp. on Integrated Robotic

Architectures, Palo Alto, CA, 1998. AAAI Press.

[59] Barney Pell, Ed Gamble, Erann Gat, Ron Keesing, Jim Kurien, Bill Millar, P. Pan-
durang Nayak, Christian Plaunt, and Brian Williams. A hybrid procedural/deductive
executive for autonomous spacecraft. In Wooldridge [72].

[60] Barney Pell, Erann Gat, Ron Keesing, Nicola Muscettola, and Ben Smith. Robust
periodic planning and execution for autonomous spacecraft. In Procs. of IJCAI-97, Los
Altos, CA, 1997. IJCAI, Morgan Kaufman Publishers.

45



[61] Barney Pell, Scott Sawyer, Nicola Muscettola, Ben Smith, and Douglas E. Bernard.
Mission operations with an autonomous agent. In Proceedings of the IEEE Aerospace

Conference [41].

[62] Raymond Reiter. A theory of diagnosis from �rst principles. Arti�cial Intelligence,
32(1):57{96, 1987. Reprinted in [38].

[63] Elisha P. Sacks and Jon Doyle. Prolegomena to any future qualitative physics. Com-

putational Intelligence, 8(2):187{209, 1992.

[64] Bart Selman, David Mitchell, and Hector Levesque. Generating hard satis�ability prob-
lems. Arti�cial Intelligence, 81:17{29, 1996.

[65] Peter Struss and Oskar Dressler. Physical negation: Integrating fault models into
the General Diagnostic Engine. In Proceedings of IJCAI-89, pages 1318{1323, 1989.
Reprinted in [38].

[66] Ioannis Tsamardinos, Nicola, Muscettola, and Paul Morris. Fast transformation of
temporal plans for e�cient execution. In Procs. of AAAI-98, Cambridge, Mass., 1998.
AAAI, AAAI Press.

[67] D. S. Weld. An introduction to least commitment planning. AI Magazine, 1994.

[68] Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Reasoning About

Physical Systems. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[69] David E. Wilkins. Practical Planning. Morgan Kaufman, San Mateo, CA, 1988.

[70] Brian C. Williams and P. Pandurang Nayak. Immobile robots: AI in the new millen-
nium. AI Magazine, 17(3):16{35, 1996.

[71] Brian C. Williams and P. Pandurang Nayak. A model-based approach to reactive self-
con�guring systems. In Procs. of AAAI-96, pages 971{978, Cambridge, Mass., 1996.
AAAI, AAAI Press.

[72] M. Wooldridge, editor. Proceedings of the Second International Conference on Au-

tonomous Agents. ACM Press, 1998.

46


