
A Hybrid Procedural/Deductive Executive

For Autonomous Spacecraft �

Barney Pell z Edward B. Gamble x Erann Gat x Ron Keesing y James Kurien y

William Millar y P. Pandurang Nayak z Christian Plaunt y Brian C. Williams k

Abstract

The New Millennium Remote Agent (NMRA) will be the
�rst AI system to control an actual spacecraft. The space-
craft domain places a strong premium on autonomy and
requires dynamic recoveries and robust concurrent execu-
tion, all in the presence of tight real-time deadlines, changing
goals, scarce resource constraints, and a wide variety of pos-
sible failures. To achieve this level of execution robustness,
we have integrated a procedural executive based on generic
procedures with a deductive model-based executive. A pro-
cedural executive provides sophisticated control constructs
such as loops, parallel activity, locks, and synchronization
which are used for robust schedule execution, hierarchical
task decomposition, and routine con�guration management.
A deductive executive provides algorithms for sophisticated
state inference and optimal failure recovery planning. The
integrated executive enables designers to code knowledge via
a combination of procedures and declarative models, yield-
ing a rich modeling capability suitable to the challenges of
real spacecraft control. The interface between the two ex-
ecutives ensures both that recovery sequences are smoothly
merged into high-level schedule execution and that a high
degree of reactivity is retained to e�ectively handle addi-
tional failures during recovery.

1 Introduction

We are developing the �rst on-board AI system to control an
actual spacecraft (Bernard et al. 1998). The mission, Deep
Space One (DS-1), is the �rst in NASA's New Millennium

�This paper describes work partially performed at the Jet Propul-
sion Laboratory, California Institute of Technology, under contract
from the National Aeronautics and Space Administration.

zRIACS, NASA Ames Research Center, MS 269/2, Mo�ett Field,
CA 94035.

kNASA Ames Research Center, MS 269/2, Mo�ett Field, CA
94035.

yCaelum Research, NASA Ames Research Center, MS 269/2, Mof-
fett Field, CA 94035.

xJet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109.

Program (NMP), an aggressive series of technology demon-
strations intended to push Space Exploration into the 21st
century. DS-1 will launch in mid-1998 and will navigate
by near-Earth asteroid 3352 McAuli�e, Mars, and comet
West-Kohoutek-Ikemura, taking pictures and sending back
information to scientists on Earth. One key technology to
be demonstrated is spacecraft autonomy, including robust
plan execution (Pell et al. 1997b). Since aborting a plan
and taking time to re-plan can cause the spacecraft to miss
critical mission activities, execution of plans must be highly
robust. Hence, the execution system must maintain space-
craft safety and successfully execute the plan, even in the
presence of hardware faults and other unexpected events.

This work is being implemented as part of the New Mil-
lennium Remote Agent (NMRA) architecture (Pell et al.
1997a). This architecture integrates traditional real-time
monitoring and control with constraint-based planning and
scheduling (Muscettola 1994), robust multi-threaded execu-
tion (Gat 1996), and model-based diagnosis and recon�gu-
ration (Williams & Nayak 1996; 1997).

Pell et al. (1997b) describes the approach we have taken
to the automatic generation of robust plans, which incorpo-
rate exibility to be used by the execution system in case
problems or opportunities arise during execution. This pa-
per focuses on the execution system itself. In particular, we
found it necessary to develop a hybrid procedural and deduc-
tive executive in order to achieve the high levels of reliability
required in the autonomous spacecraft domain. A procedu-
ral executive provides sophisticated control constructs such
as loops, parallel activity, locks, and synchronization which
are used for robust schedule execution, hierarchical task de-
composition, and routine con�guration management. A de-
ductive executive provides algorithms for sophisticated state
inference and optimal failure recovery planning. The inte-
grated executive enables designers to code knowledge via a
combination of procedures and declarative models, yielding
a rich modeling capability suitable to the challenges of real
spacecraft control. The interface between the two executives
ensures both that recovery sequences are smoothly merged
into high-level schedule execution and that a high degree of
reactivity is retained to e�ectively handle additional failures
during recovery.

This paper discusses our domain, the component execu-
tion technologies, and the approach we took to integrating
these technologies into a hybrid executive that supports the
strengths of each while minimizing potentially negative in-
teractions between the two systems. The paper is organized
as follows. Section 2 discusses the spacecraft domain and re-
quirements which inuence our design. Section 3 describes



our problem and hybrid approach to execution systems. Sec-
tion 4 describes the capabilities in our procedural executive.
Section 5 addresses the capabilities in the deductive execu-
tive. Section 6 shows how we have integrated the two sys-
tems. Section 7 discusses some key points about our design.
We then consider related work and conclude.

2 Domain and Requirements

The spacecraft domain presents a number of challenges for
robust plan execution.

2.1 High Reliability

A central requirement of spacecraft operation is high relia-
bility , since spacecraft are expensive and often unique. Part
of this high reliability is achieved through the use of reli-
able hardware. However, the harsh environment of space or
the inability to test in all ight conditions can still cause
unexpected hardware failures. When hardware failures or
unexpected ight conditions do occur, the software system
is required to compensate for such contingencies when possi-
ble. This requirement dictates the use of an executive with
elaborate system-level fault protection capabilities. Such
an executive can rapidly react to contingencies by retry-
ing failed actions, recon�guring spacecraft subsystems, or
putting the spacecraft into a safe state to prevent further,
potentially irretrievable, damage.

2.2 Concurrent Temporal Processes

Many devices and systems must be controlled, leading to
multiple threads of complex activity. These concurrent pro-
cesses must be coordinated to control for interactions, such
as vibrations of the thruster system violating stability re-
quirements of the camera. Also, activities may have precise
real-time constraints, such as taking a picture of an asteroid
during a short time period of observability.

2.3 Interacting Recoveries

A particularly challenging problem in the design of a space-
craft fault protection system arises from the combination of
the above two properties: recovering failed activities in the
presence of concurrent activity. As an example, consider two
spacecraft subsystems in DS-1: the engine gimbal (EG) and
the solar panel gimbal (SPG). A gimbal is part of a physical
system that enables it to rotate. For example, the engine
nozzle can be rotated to point in various directions without
changing the spacecraft orientation, and the solar panels can
be independently rotated to track the sun. In DS-1, both
sets of gimbals communicate with the main computer via a
shared board called the gimbal drive electronics (GDE). If
either system experiences a communications failure, one way
to reset the system is to power-cycle (turn on and o�) the
GDE. However, resetting the GDE to �x one system also re-
sets the communication to the other system. In particular,
resetting the engine gimbal, to �x an engine problem, causes
temporary loss of control of the solar panels. Thus, �xing
one problem can cause new problems to arise. To avoid this,
the recovery system needs to take into account global con-
straints from nominal schedule execution, rather than just
making local �xes in an incremental fashion. Examples like
this drove the design of our hybrid execution system.

3 Approach

In this section we �rst describe the problem we faced, and
then our approach to solving it.

3.1 The Problem

Complex execution of spacecraft plans requires capabilities
of both procedural and declarative execution systems.

On the one hand, execution requires reactivity, time-
sensitivity, and sophisticated control constructs such as loops,
parallel activity, locks, and synchronization. The standard
approach to this is to build executives which interpret direc-
tives in a rich procedural language, make fast choices based
on contextual knowledge, and choose alternatives when pre-
vious choices fail (Firby 1978).

However, this strict procedural approach has its limita-
tions | it is hard to procedurally encode optimal choices in
all, possibly degraded, situations. Speci�cally, execution re-
quires choosing component con�gurations with di�erent ca-
pabilities and costs. Similarly, robust recovery may require
novel combinations of actions in order to trade o� costs and
bene�ts. For example, the propulsion system on the Cassini
spacecraft (Brown, Bernard, & Rasmussen 1995) has a com-
plex set of valves, including explosive pyro valves which can
change states only once, and ordinary valves with varying
amounts of wear and tear. It is di�cult to procedurally
express the right valve choices to redirect uid ow while
minimizing costs and risks in all possible situations.

On the other hand, a deductive executive of the form de-
veloped by Williams & Nayak (1996) can reason e�ciently
about such tradeo�s using declarative models of the costs
and bene�ts of con�gurations and recoveries. Furthermore,
the compositional nature of such models allows compact rep-
resentations of the costs and bene�ts of each possible choice.
Finally, deductive executives have sophisticated state in-
ference algorithms, supporting the identi�cation of hidden
state, failed sensors, and multiple faults. However, declara-
tive models can lack the exibility and richness of activity
description found in procedural execution systems. For ex-
ample, the Livingstone system (Williams & Nayak 1996) is
based on a propositional temporal logic which does not ex-
plicitly model metric time or execution loops. Thus it is
hard to encode knowledge like:

To send a signal down to earth via an antenna,
�rst turn o� the antenna's exciter, then turn on
the antenna's power supply, wait 5 seconds, and
turn the exciter on again.1

3.2 Hybrid Approach

From this we see that the procedural and deductive ap-
proaches to execution have complementary strengths and
weakness. Hence, our approach is to develop a hybrid exec-
utive, as follows:

� Use a procedural executive for timing, control knowl-
edge, schedule execution, hierarchical task decomposi-
tion, and routine con�guration handling.

� Use a deductive executive for state inference, novel
responses based on global context, and cost/bene�t
analysis.

1The reason for this requirement is that turning on the power sup-
ply sends a surge of power which would destroy the sensitive exciter.
Hence the exciter should be switched o� while the surge is happening,
and then switched on again.



� Work out clear interfaces between the two systems to
exploit the strengths of each.

Note that some divisions are arbitrary, since certain ca-
pabilities exist in both systems. This gives the designer ex-
ibility to choose the best system and language for speci�c
purposes. For example, while routine con�guration manage-
ment can be handled either procedurally or declaratively, we
have chosen to handle it procedurally. In our treatment, the
procedural executive draws on the planning capability of the
deductive executive by using it as a recovery expert, sending
it a set of global constraints that ensure that the resulting
recovery plans can be integrated within the current execu-
tion context.

In the next sections we describe the procedural exec-
utive and the deductive executive. To reect their roles
in the NMRA, we will often refer to the procedural execu-
tive as Exec and the deductive executive as MIR, the mode-
identi�cation and recon�guration system.

4 Procedural Executive

Our procedural executive is based upon a sophisticated script-
ing language called Executive Support Language, (ESL) (Gat
1996), for describing control constructs necessary for exe-
cution. Such constructs manage concepts of time, events,
multiple methods, class hierarchies, and generic procedures.
Some of these constructs are summarized later in this sec-
tion. An executive also needs a source of state update knowl-
edge. In NMRA, Exec bene�ts from being insulated from
the hardware details by relying on the results of the mode
identi�cation (MI) component of MIR (see Section 5).

A

B

C

Z

10

ON

0

OFF
.

.

.

.

.

Interrupt
Task

Maintain Properties
Daemon

Subscribe

Update

Database

Property LocksTasks

Spacecraft

Commands
Control

Monitors
Achieve
Property

Event
Lock

Event

Figure 1: Procedural Executive Resource Manager

The executive manages a set of concurrent control tasks,
as shown in Figure 1. Each control task requires a set of
resources, or properties, to be established and maintained
over some period of time. For example, the activity of tak-
ing pictures with a camera requires that the camera is on
and functional. If some other activity requires the camera
to be o�, these two activities compete for the resource of
controlling the camera's power state. The executive must

achieve, maintain, and monitor properties required for each
task, and resolve task resource conicts.

A task is represented at run-time by an independent ex-
ecution thread. Threads communicate with other theads di-
rectly via signals, or indirectly via changes to a database.
Receipt of a signal or noti�cation of a change to the database
are examples of events.

Each activity uses the (with-maintained-properties)
construct to declare those properties that it requires main-
tained over its interval of execution. In this way, Exec un-
derstands the constraints which support the entire current
execution context. When a property is achieved and re-
served for a task, it is said to be locked until the task re-
linquishes it, so that other tasks will not be permitted to
violate that property. Of course, the locks reect properties
true in the current state, and sometimes these properties
can change despite the best e�orts of the software system to
maintain them. For example, switches on a spacecraft some-
times change state accidentally. In this case, we describe the
properties as lost or violated, and the tasks requiring them
as unsupported.2

In the event that some property is lost or otherwise un-
achievable without the help of a recovery expert, Exec sus-
pends the unsupported threads, formulates a query based on
the active constraints, and uses the automatic-recoveries
thread to send the query o� to the recovery expert (in this
case, MIR).

When the recovery expert returns an action, Exec per-
forms the action and then re-activates any suspended threads
which may now be supported. The threads then attempt to
re-establish their maintained conditions. Note that most
Exec procedures count the number of times they have re-
tried a particular approach, and try something else or give
up if this retry counter exceeds a threshold.

The automatic-recoveries thread remains in action for-
ever, so unsatis�ed constraints following execution of some
recovery step will lead to a new recovery request.

We now elaborate on some of the key constructs we have
developed within the procedural executive that support the
behavior described above.

4.1 Achieving properties

(achieve <property>)

� If this is the �rst thread to request the property, then
execute an achievement method for the property.

� When achievement is successful, signal other waiting
threads.

� If some other thread is already achieving the property,
then wait for it to �nish.

� If the property is inconsistent with a current lock, ei-
ther wait for lock to be released or fail immediately
(based on preferences set by the invoking thread).

4.2 Maintained Properties

(with-maintained-properties <properties> body)

2Note that property locks can serve a role similar to typical locks in
multi-threaded systems, such as semaphores and mutexes. However,
there is a major di�erence since these property locks are database-
relative, and can hence be \taken" by the outside world changing.
Note also that naive use of property locks can result in deadlock, just
as occurs with standard locks in multi-threaded operating systems.



� If properties are all currently true, body is executed.

� If properties are false, the executive tries to achieve
them �rst.

� Once they are true, the executive locks the properties
and executes body.

� If the properties become false during execution of body,
signal this loss and let the enclosing context of body
choose the response.

4.3 Device Management Idioms

Devices and classes are formalized using generic descrip-
tions. Individual devices, switches, etc., are then modeled
as instances of these classes.

(define-device-class :camera
:power-function #'fsc-power-request
:talk-function #'camera-talk-msg)

(define-device :camera_A :camera
:powered-thru :power_bus_1
:switched-thru :fsc_camera_sw1
:ready-state ((:health_state :ok)

(:power_state :on)))

Based on these device idioms, we have de�ned generic
procedures for device con�guration and management:

(with-selected-device <class>
(do-activity))

This construct selects a device of the class, achieves its
ready-state, and then locks the properties of that ready-
state and maintains them as it executes the enclosed activity.
Based on the camera de�nition above,

(with-selected-device :camera (take-pictures))

would select a camera (say camera A), achieve its ready
state of being powered on and healthy, and then take pic-
tures within a context that ensures that the health and
power of the camera are maintained throughout picture tak-
ing.

4.4 Recovering failed properties

In the case where a maintained property is lost (for exam-
ple, device switch ips o� unexpectedly or the engine per-
forms an automatic shutdown), the enclosing context of the
(with-maintained-properties) form determines the ap-
propriate response. If no response is de�ned for the enclosing
context, then the form fails.

(with-automatic-recoveries body)

This form indicates that the response to lost properties
within body is to suspend the thread while waiting for an
automatic recovery, and then retry the body. Note that this
is only one way to create an enclosing context to handle
the lost properties noti�cation. For example, a thread could
establish its own local recovery expert, or decide to try al-
ternative methods if properties are lost, rather than waiting
for a automatically generated recovery.

4.4.1 Automatic Recoveries Thread

A special thread in the executive manages the property
locks. Whenever some property lock is violated:

1. Suspend all tasks who have a violated lock.

2. Ask for an automatic recovery for all required locks.

3. Wait for a recovery action to be generated in response
to this query.

4. Execute the recovery action.

5. Signal recovery-event.

The e�ect of signaling recovery-event is to wake up all
threads who were suspended waiting for a property which
was restored (possibly as a result of the recovery action).
Each awakened thread then retries the body, attempting to
re-establish all their required properties.

For properties which were restored by the recovery ac-
tion, this will succeed. For properties which are still failed,
the a�ected threads will block again, and wait for another
recovery step.

If the automatic-recoveries thread fails to return with
a recovery action while some threads are blocking on re-
quired properties, the waiting tasks fail automatically. This
can happen either when the recovery expert believes no fur-
ther actions need be achieved, or when it fails to �nd a
solution to the recovery request.

5 Deductive Executive

The deductive executive can be viewed as a discrete model-
based controller that attempts to keep the spacecraft state
on a trajectory that achieves a set of high-level input prop-
erties (analogous to the set-point of a continuous controller).
In the NMRA architecture, the dedective executive is also
referred to as MIR reecting that control is achieved through
mode identi�cation (the sensing component) and mode re-
con�guration (the actuation component).

MIR is model-based in the sense that it uses a single
declarative, compositional model of the spacecraft to sup-
port all of its capabilities. MIR views each component as
a �nite state machine, and the entire spacecraft as concur-
rent, synchronous state machines. Nodes in the graph rep-
resent behavioral modes, and arcs represent possible transi-
tions among modes, some exogenous, some commandable.
Modes partition the state space of the component, and are
speci�ed using well-formed formulae in a propositional lan-
guage.

Mode identi�cation (MI) involves tracking the most likely
trajectory of the spacecraft state by observing all commands
that are sent to the spacecraft and monitoring information
from spacecraft sensors. Each point in a trajectory con-
sists of the current behavioral mode of each component in
the spacecraft. Components include both hardware devices
and lower-level software modules. With modes identi�ed,
more detailed component state information is available at
the propositional level.

MI provides a service for tracking and reporting state
changes to external software modules as they occur. The
idea is that external modules will typically be interested
only in higher-level properties (and corresponding higher-
level events) involving spaceraft state, rather than the �ner
grained view available to MI. These abstract properties are
naturally de�ned as well-formed formulae, and are easily



tracked using MI's inference capabilities. In the NMRA ar-
chitecture, MI's state update service is an integral part of
the interface between MIR and Exec.

Mode recon�guration (MR) involves generating a sequence
of actions that moves the spacecraft from its most likely cur-
rent state to a new state that achieves a desired set of prop-
erties. MR is comprised of two stages. First, the requested
set of properties to be achieved is used to generate a speci�c
goal state for each of the spacecraft's components. Second,
a sequence of actions that move the spacecraft from the cur-
rent state to the goal state is incrementally generated. We
refer to this second stage as model-based reactive planning
(MRP). The sequence may be empty meaning that no ac-
tion is necessary, or sequence generation may fail meaning
that no recon�guration plan could be found. Each action in
the sequence is a primitive operator from the perspective of
MIR's models. When MIR functions as a stand-alone de-
ductive executive, each primitive operator corresponds to a
command directly executable by an external software mod-
ule. In the NMRA architecture, Exec speci�es the desired
properties of the goal state and primitive operators in the
action sequence are bound to Exec procedures.

MIR uses algorithms adapted and extended from model-
based diagnosis (de Kleer & Williams 1987; 1989) to provide
the above functionality. The main idea behind model-based
diagnosis is to identify the set of possible component states
in a system given models and observations of each compo-
nent in the system. In many systems, especially spacecraft,
there may be inadequate information in the models and ob-
servations to uniquely identify every component's state at all
times. The approach is thus to select the most likely compo-
nent con�guration from amongst those that are consistent
with the models and observations.

The primary workhorse in the deductive executive is an
extremely e�cient conict-directed best-�rst search algo-
rithm (Williams & Nayak 1996). The algorithm is exploited
by MI to identify the most likely component con�guration
consistent with models and observations, and by MR to se-
lect a speci�c goal state having a speci�ed set of properties.
Additionally, a recent approach to MRP (Williams & Nayak
1997) exploits the algorithm at compile time to compile away
irrelevant information in system models in support of e�-
cient planning. Such reuse of algorithms and system models
across MIR's capabilities is a signature of the model-based
approach, and greatly simpli�es the development and main-
tenance of our deductive executive.

6 Integration

Having described the procedural and deductive executives,
we now discuss how we combined these systems in the NMRA
architecture to form an integrated hybrid executive. Recall
that we exploit the procedural executive (Exec) for sched-
ule execution, hierarchical task decomposition, and routine
con�guration management, while the deductive executive
(MIR) is used both for state inference and failure response.

Here we make explicit that the communication inter-
face between Exec and MIR consists of the following: state
updates from MIR to Exec, recovery requests from Exec
to MIR, and recovery actions from MIR to Exec. Both
state updates and recovery requests are represented as well-
formed formulae in a propositional language shared between
Exec and MIR. Recovery actions are instantiations of Exec's
generic procedures.

To support state updates, MIR continually tracks the
most likely state of the spacecraft and informs Exec of changes

to any higher-level property it wants tracked. Exec uses this
state information to make task decomposition and con�gu-
ration management decisions, and to determine the truth
of properties needed by various threads of execution. Exec
procedures are generally written to exploit MIR by allowing
it to perform most inferences about spacecraft state that
may be required. The properties to be tracked for Exec by
MIR are agreed upon at compile time, but we note that the
interface can be extended naturally to allow the notion of
registering tracked properties on the y; such run-time ex-
ibility would allow for more e�cient communication during
critical mission phases, and enable Exec activities to dy-
namically declare their own interface with MIR to improve
modularity.

Exec also views MIR as a recovery expert. As events
occur in Exec's schedule, it provides MIR with the current
set of properties that must be maintained to support all
active threads. At the time of invocation, some of these
properties will be true and some may be false. Using its
declarative models and knowledge of the current state, MIR
generates an action sequence that is expected to move the
spacecraft to a goal state in which all the requested prop-
erties are achieved. MIR provides the �rst action in this
sequence to Exec. Exec then executes this action and waits
for state updates from MIR to determine the status of its
required properties. The recovery interaction repeats with
MIR until either all desired properties are achieved or MIR
indicates that it can �nd no sequence to achieve those prop-
erties.

Three points are worth noting about the recovery in-
terface. First, note that MIR sends only the �rst action
in the recovery sequence. This improves the reactivity of
the hybrid executive in two ways: Exec is free to make �ner
grained recovery requests to reect any changes in the status
of schedule execution since the previous request, while MIR
is free to factor any asynchronous spacecraft state changes
that may have occurred into its next recovery plan. Achiev-
ing this level of reactivity would be somewhat more di�cult
if the Exec were expected to robustly execute a full plan re-
turned from MIR, for either the plan would then have to be
much larger to reect all contingencies or Exec would have
to encode the robustness into the primitive procedures over
which MIR reasons.

Second, treating recovery actions as instances of generic
procedures fully exploits the representational strengths of
both systems. In practice, a natural modeling approach that
addressed both representional convenience and e�ciency was
to encapsulate all issues related to metric time and iteration
inside Exec's procedural constructs. This was natural, for
instance, in the case of the downlink example provided in
Section 3.

Third, note that when used as a stand-alone con�gura-
tion system, MIR is free to generate any sequence of actions
resulting in a state with the requested properties. However,
as part of the hybrid executive, properties requested dur-
ing recovery are viewed as constraints on the entire recovery
plan, not just the goal state; this means that MIR must not
generate a recovery plan that is expected to deviate from
a requested property. Depending on the approach to MRP
that one adopts, this places additional computational re-
quirements on the reactive planner that may require one to
give up optimality or e�ciency guarantees; this is indeed
the case for the approach used in (Williams & Nayak 1997),
for example. Combined with the requirement on Exec to
include all required properties as part of a recovery request,
this restriction on MIR ensures that recovery sequences are



smoothly merged into nominal schedule execution, resolving
the problems of resource preemption and interacting recov-
eries discussed in Section 2.

7 Discussion and Future Work

In this section we discuss ongoing issues and limitations in
our current hybrid executive and indicate future work.

7.1 Compositionality and Modularity

A major design goal within the NMRA is to develop modu-
lar, compositional representations of spacecraft subsystems.
A subtle limitation violating this goal exists in our current
recovery framework; it arises in the context of multiple fail-
ures, even when they occur in otherwise independent sub-
systems.

Consider two independent subsystems, managed seper-
ately by two Exec activities. Suppose one subsystem can be
recovered if it fails, and the other cannot. In the event of
independent failures in each subsystem, the recovery frame-
work would procede through two seperate recovery attempts
and result predictably in the recovery of one subsystem.
However, should those same failures instead occur in suf-
�ciently close temporal proximity, MIR would report the
failures to the Exec simultaneously. The Exec would then
form a recovery request to MIR asking for the recovery of
the conjunction of the two failed properties of interest. MIR
would then be forced to report that no such recovery is pos-
sible (since only one of the properties is recoverable) and the
Exec activities managing the independent subsystems would
both fail, resulting in the recovery of neither subsystem.

The standard response to this problem is to emphasize
that this limitation only arises in the case of simultaneous,
independent failures. For most missions, such events are
deemed su�ciently unlikely that they are considered accept-
able risks and beyond the scope of current fault protection
systems. It is worth noting that this risk assessment is based
in part on another limitation of current fault protection
frameworks: the mindset within the spacecraft community
is that unlikely hardware failures are less likely than a de-
sign aw in a complex fault protection system that attempts
to support these unlikely failures. Our methods aim to ad-
dress this general concern �rst and foremost by simplifying
the design of robust execution systems to enable broader
fault coverage. We view modularity and compositionality
as key requirements of a simple design.

The solution is to augment the recovery framework to en-
able consideration of partial recoveries, rather than attempt-
ing an all-or-nothing recovery. The open design issue is to
understand whether this is best accomplished with modi-
�cations to Exec or MIR. In the former case, Exec could
be augmented to formulate a series of independent partial
recovery requests that would collectively achieve total fea-
sible recovery, giving priority to the most urgent activities.
The intuition here is to have Exec be more clever in asking
for only what it needs, though this would currently require
access to system models stored in MIR. Alternatively, MIR
could generate recovery plans that satisfy a maximal subset
of the requested properties, though in practice this would
require additional communication between Exec and MIR
to allow Exec to specify its preferences. These approaches
are complementary, and striking a proper balance between
them is an area of ongoing research.

7.2 Heterogeneous Knowledge Representation

A strength of our hybrid executive system is that we can
represent execution and repair knowledge in a procedural
way, a declarative way, or a combination thereof, depending
on the situation. This has proven to be useful in our domain.
On the ip-side, this approach can lead to a fair amount of
duplicated knowledge between Exec and MIR. We are cur-
rently developing an approach to permit maximal sharing
of domain models across the two systems that still a�ords
the representational power and convenience of our hybrid
approach. Note that this sharing of system models also sup-
ports the partial recovery issue addressed above by enabling
Exec to access system models during formulation of partial
recovery sequences.

7.3 Dealing with Uncertainty

Ambiguity management is a critical issue in spacecraft oper-
ations, primarily due to limitations in the number and type
of onboard sensors and the possibility of sensor failures. Re-
call that MIR currently tracks only the most likely trajec-
tory of the spacecraft, a restriction driven primarily by the
severely limited onboard computation available to it (10%
of a 20MHz CPU on DS-1). MIR deals with ambiguity by
assuming a worst-case scenario. For example, if there is am-
biguity as to whether a device has failed or a communication
path to that device has failed, MIR assumes that both have
failed. Although this construction of a worst-case trajectory
works well in the case of the DS-1 models, one can construct
models for which the worst-case scenario leads to subopti-
mal recoveries and unsound conclusions. We are working an
approach that allows MIR to track a small set of the most
likely trajectories to deal more cleanly with ambiguity in an
e�cient manner.

Recall further that MI exports to Exec only the most
likely state of the world. Exec acts as if this state were
the true state and responds quickly in the face of new in-
formation. Hence, Exec obeys the rapid feedback principle
discussed by Schoppers (1995), and so is more likely to re-
main robust in the face of its unmodeled uncertainty. How-
ever, the lack of explicit communication of uncertainty and
ambiguity between MI and Exec makes it di�cult to write
ambiguity resolution procedures in the Exec. At present,
such procedures must be either hard-wired in the code (e.g.,
do a calibration experiment before thrusting the engine) or
accessed exclusively via the interface with MR. We are pur-
suing an approach to active testing wherein Exec and MIR
cooperate to synthesize optimal sequences from systemmod-
els that resolve ambiguity in a manner that preserves space-
craft safety and non-renewable resources.

8 Related Work

This paper has described the integration of procedural and
deductive capabilities within a hybrid executive. This sec-
tion discusses related work and addresses procedural reason-
ing systems that provide support for deduction, deductive
reasoning systems that provide support for reaction, hybrid
action description languages, and systems that cleanly sep-
arate a deductive planning or inference component from a
procedural execution component.

Like our Exec, RAPS (Firby 1978) is centered around
procedural reasoning, but provides language features to ex-
press deductive state inference (in the form of memory-rules)
and to incorporate the results of deductive problem-solving



systems (in the form of problem-solvers). RAPS also pro-
vides constructs to indicate resource locks for thread syn-
chronization, but these constructs are used only at the low-
est level of the system.

PRS (George� & Lansky 1987) is also similar to our
Exec in that it provides a language based around proce-
dural reasoning and it has been applied to support diagno-
sis (George� & Lansky 1986) and plan execution (George�,
Lansky, & Schoppers 1987). PRS also provides support for
procedures to perform meta-level reasoning about execution
context (Ingrand & George� 1990) and some constructs to
express resource usage to prevent harmful task interactions
(e.g., the require construct).

Our hybrid executive extends the capabilities of these
systems (and similar procedural reasoners such as RPL (Mc-
Dermott 1993) and APEX (Freed & Remington 1997)) in
two major ways. The �rst is to provide explicit access to de-
ductive model-based reasoning for diagnosis and planning.
The second is to extend resource locks into a task-level con-
struct and to provide a way to use them to constrain the
results of deductive inference.

While Exec, RAPS and PRS may be viewed as procedu-
ral reasoning systems with deductive attachments, a large
body of work in automated reasoning has focused on deduc-
tive reasoning systems with procedural attachments (Gene-
sereth & Nilsson 1987). Most of this work focuses on using
procedures to support inference, rather than on describing
action in a dynamic environment. However, researchers have
recently begun exploiting the ability to view logical systems
like Prolog (Clocksin & Mellish 1981) through both an op-
erational and a denotational semantics to create logical de-
scriptions of procedures which can support both procedural
and deductive reasoning in the presence of a changing en-
vironment. Example systems include Golog (Levesque et
al. 1997; de Giacomo, Lesperance, & Levesque 1997) and
InterRAP (Muller & Pischel 1994).

Estlin, Chien, &Wang (1997) describe a hybrid approach
to action descriptions for planning systems that integrates
Hierarchical Task Network (HTN) planning, which can be
viewed as a procedural representation, with operator-based
planning, which deduces action sequences from �rst princi-
ples. Also related is the OSCAR architecture (Pollock 1998),
which integrates planning and reasoning activities within a
general-purpose defeasible reasoner.

Perhaps the most typical approach to developing a hy-
brid system is to develop separate components for both
styles of reasoning and de�ne a clear interface to support
the interaction. Much of the research on integrating plan-
ning and execution (Wilkins et al. 1995; Bonasso et al. 1997;
Hayes-Roth 1995; Simmons 1990; Currie & Tate 1991; Pell
et al. 1998, for example) takes this approach. Whereas
these systems generally treat the planner and executive as
functioning on widely di�erent time-frames, our approach
exploits fast deduction to provide these capabilities within
the reactive execution loop itself.

In terms of separate components for procedural execu-
tion and deductive state inference (as opposed to planning),
Ogasawara (1991) describes a hybrid architecture based on
Bayesian networks and decision-theory for state inference,
where the results of inference can be used by a system ex-
ecuting high-level procedures. The Touring Machine archi-
tecture (Ferguson 1992) also provides a separate capability
for deductive world modeling that informs the activities of
a procedural executive.

9 Conclusion

This paper has described the integration of procedural and
deductive capabilities within a hybrid executive. While there
has been much research on integrating planning or state
inference with execution and on incorporating procedures
within deductive systems or vice-versa, comparatively lit-
tle work has attempted to do so within a fast reactive loop
or in the presence of concurrent activities. In addressing
such an integration, we found we had to constrain or mod-
ify the component systems to address a number of technical
problems. These problems included resource preemption,
interacting concurrent recoveries, and non-compositionality
of independent recoveries. The hybrid executive we have de-
veloped addresses all these issues to some extent, and per-
mits an extremely exible and powerful representation of
knowledge while still remaining robust and reactive.

Now that we have this exibility, a major challenge re-
mains to understand how to take most advantage of it. Key
issues include the following:

� Understanding the tradeo�s between knowledge repre-
sentations that are procedural, declarative, or hybrid.

� How to ensure consistency of knowledge across hetero-
geneous representations.

� Developing robust approaches to active sensing and
active diagnosis within a hybrid executive.

� More integrated approaches to uncertainty manage-
ment.

Lastly, it should be noted that our hybrid approach has
evolved considerably over the last few years, based on lessons
in the real spacecraft domain. We have now developed hy-
brids between Livingstone (Williams & Nayak 1996) and two
di�erent procedural execution systems: ESL (Gat 1996) and
RAPS (Firby 1978). On the basis of this, we hope that our
approach will be useful for integrating a wide variety of pro-
cedural and deductive executives. However, we found the
explicit support for language extensions in ESL to be ex-
tremely useful for developing the new language constructs
which enabled the strong integration discussed in this paper.
This suggests language extension capabilities will make the
job easier for other attempts to do a similar integration.

10 Acknowledgments

We acknowledge the contributions of other members of the
DS1 Remote Agent team who have inuenced the design of
the hybrid execution architecture: Doug Bernard and Sandy
Krasner. We thank John Bresina, Greg Dorais, Michael
Lowry, Rich Washington, and the anonymous reviewers for
useful comments on drafts of this text.

References

[1] Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr., E. B. G.;
Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;
Nayak, P. P.; Pell, B.; Rajan, K.; Rouquette, N.; Smith,
B.; and Williams, B. C. 1998. Design of the remote agent
experiment for spacecraft autonomy. In Proceedings of the
IEEE Aerospace Conference. Snowmass, CO: IEEE.

[2] Bonasso, R. P.; Kortenkamp, D.; Miller, D.; and Slack,
M. 1997. Experiences with an architecture for intelligent,
reactive agents. JETAI 9(1).



[3] Brown, G.; Bernard, D.; and Rasmussen, R. 1995. At-
titude and articulation control for the cassini spacecraft:
A fault tolerance overview. In 14th AIAA/IEEE Digital
Avionics Systems Conference.

[4] Clocksin, W. F., and Mellish, C. S. 1981. Programming
in Prolog. Springer-Verlag: Berlin, Germany.

[5] Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture. Art. Int. 52(1):49{86.

[6] de Giacomo, G.; Lesperance, Y.; and Levesque, H. 1997.
Reasoning about concurrent execution, prioritized inter-
rupts, and exogenous actions in the situation calculus. In
Procs. of IJCAI-97 , 1221{1226.

[7] de Kleer, J., andWilliams, B. C. 1987. Diagnosing multi-
ple faults. Arti�cial Intelligence 32(1):97{130. Reprinted
in (Hamscher, Console, & de Kleer 1992).

[8] de Kleer, J., and Williams, B. C. 1989. Diagnosis with
behavioral modes. In Proceedings of IJCAI-89, 1324{
1330. Reprinted in (Hamscher, Console, & de Kleer 1992).

[9] Estlin, T. A.; Chien, S. A.; and Wang, X. 1997. An
argument for a hybrid htn/operator-based approach to
planning. In Procs. of the Fourth European Conference
on Planning.

[10] Ferguson, I. A. 1992. Touring Machines: An Architec-
ture for Dynamic, Rational, Mobile Agents. Ph.D. Disser-
tation, Computer Laboratory, University of Cambridge.

[11] Firby, R. J. 1978. Adaptive execution in complex dy-
namic worlds. Ph.D. Dissertation, Yale University.

[12] Freed, M., and Remington, R. 1997. Managing decision
resources in plan execution. In Procs. of IJCAI-97 , 322{
326.

[13] Gat, E. 1996. ESL: A language for supporting robust
plan execution in embedded autonomous agents. In Pryor,
L., ed., Procs. of the AAAI Fall Symposium on Plan Ex-
ecution. AAAI Press.

[14] Genesereth, M. R., and Nilsson, N. J. 1987. Logical
Foundations of Arti�cial Intelligence. Morgan Kaufmann:
Los Altos, CA.

[15] George�, M. P., and Lansky, A. L. 1986. A system
for reasoning in dynamic domains: Fault diagnosis on the
space shuttle. Technical Note 375, Arti�cial Intelligence
Center, SRI International.

[16] George�, M. P., and Lansky, A. L. 1987. Procedural
knowledge. Technical Report 411, Arti�cial Intelligence
Center, SRI International.

[17] George�, M. P.; Lansky, A. L.; and Schoppers, M. J.
1987. Reasoning and planning in dynamic domains: An
experiment with a mobile robot. Technical Report 380,
Arti�cial Intelligence Center, SRI International.

[18] Hamscher, W.; Console, L.; and de Kleer, J. 1992.
Readings in Model-Based Diagnosis. San Mateo, CA:
Morgan Kaufmann.

[19] Hayes-Roth, B. 1995. An architecture for adaptive
intelligent systems. Art. Int. 72.

[20] Ingrand, F. F., and George�, M. P. 1990. Managing
deliberation and reasoning in real-time ai systems. In
Procs. DARPA Workshop on Innovative Approaches to
Planning, Scheduling and Control , 284{291.

[21] Levesque, H.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. 1997. Golog: A logic programming language for
dynamic domains. Journal of Logic Programming 31:59{
84.

[22] McDermott, D. 1993. A reactive plan language. Tech-
nical report, Computer Science Dept, Yale University.

[23] Muller, J., and Pischel, M. 1994. An architecture for
dynamically interacting agents. Int. Journal of Intelligent
and Cooperative Information Systems 3(1):25{45.

[24] Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Fox, M., and Zweben, M., eds., Intelligent
Scheduling. Morgan Kaufmann.

[25] Ogasawara, G. H. 1991. A distributed, decision-
theoretic control system for a mobile robot. ACM
SIGART Bulletin 2(4):140{145.

[26] Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscet-
tola, N.; Nayak, P. P.; Wagner, M. D.; and Williams,
B. C. 1997a. An autonomous spacecraft agent prototype.
In Johnson, W. L., ed., Proceedings of the First Int'l Con-
ference on Autonomous Agents, 253{261. ACM Press.

[27] Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and
Smith, B. 1997b. Robust periodic planning and execution
for autonomous spacecraft. In Procs. of IJCAI-97 .

[28] Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscet-
tola, N.; Nayak, P. P.; Wagner, M. D.; and Williams,
B. C. 1998. An autonomous spacecraft agent prototype.
Autonomous Robotics 5(1). To Appear.

[29] Pollock, J. L. 1998. Planning agents. In Rao, A., and
Wooldridge, M., eds., Foundations of Rational Agency.
Kluwer.

[30] Schoppers, M. 1995. The use of dynamics in an intelli-
gent controller for a space faring rescue robot. Arti�cial
Intelligence 73(2):175{230.

[31] Simmons, R. 1990. An architecture for coordinating
planning, sensing, and action. In Procs. DARPA Work-
shop on Innovative Approaches to Planning, Scheduling
and Control , 292{297.

[32] Wilkins, D. E.; Myers, K. L.; Lowrance, J. D.; and
Wesley, L. P. 1995. Planning and reacting in uncertain
and dynamic environments. JETAI 7(1):197{227.

[33] Williams, B. C., and Nayak, P. P. 1996. A model-based
approach to reactive self-con�guring systems. In Procs. of
AAAI-96, 971{978. Cambridge, Mass.: AAAI.

[34] Williams, B. C., and Nayak, P. P. 1997. A reactive
planner for a model-based executive. In Procs. of IJCAI-
97 .


