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Abstract

Many applications of autonomous agents require groups to
work in tight coordination. To be dependable, these groups
must plan, carry out and adapt their activities in a way that is
robust to failure and uncertainty. Previous work has produced
contingent plan execution systems that provide robustness
during their execution phase, by dispatching temporally flexi-
ble plans, and during their plan extraction phase, by choosing
between functionally redundant methods. Previous contin-
gent plan execution systems use a centralized architecture in
which a single agent conducts planning for the entire group.
This can result in a communication bottleneck at the time
when plan activities are passed to the other agents for exe-
cution, and state information is returned.

This paper introduces a robust, distributed executive for tem-
porally flexible plans. To execute a plan, the plan is first dis-
tributed over multiple agents, by creating a hierarchical ad-
hoc network and by mapping the plan onto this hierarchy.
Second, the plan is reformulated using a distributed, parallel
algorithm into a form amenable to fast dispatching. Finally,
the plan is dispatched in a distributed fashion.

We then extend the distributed executive to handle contingent
plans. Contingent plans are encoded as Temporal Plan Net-
works (TPNs), which use a non-deterministic choice operator
to compose temporally flexible plan fragments into a nested
hierarchy of contingencies. A temporally consistent plan is
extracted from the TPN using a distributed, parallel algorithm
that exploits the structure of the TPN.

At all stages of the distributed executive, the communication
load is spread over all agents, thus eliminating the commu-
nication bottleneck. In addition, the distributed algorithms
reduce the computational load on each agent and provide op-
portunities for parallel processing, thus increasing efficiency.

Introduction

The ability to coordinate groups of autonomous agents is
key to many real-world tasks, such as a search and rescue
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mission, or the construction of a Lunar habitat. Achieving
this ability dependably requires techniques that are robust to
four types of disturbances; temporal uncertainty, execution
uncertainty, plan failure, and communication latency. We
address the first three types of disturbances by leveraging
prior work on robust plan execution.

Temporal Uncertainty. Temporally flexible plans (Dean
& McDermott 1987) (Muscettola 1994) allow us to model
activities of uncertain duration. Use of these plans allows us
to provide robustness to temporal uncertainty.

Execution Uncertainty. To adapt to uncertainty in ex-
ecution times, while executing the plan in a timely man-
ner, the dispatcher dynamically schedules events. In par-
ticular, we use the methods of (Tsamardinos, Muscettola,
& Morris 1998), which use a least commitment strategy.
Here, scheduling is postponed until execution time, allowing
temporal resources to be assigned as-needed. To minimize
the computation that must be performed on-line at dispatch
time, the plan is first reformulated off-line. This scheme
provides robustness to execution uncertainty, including the
uncertainty in the execution times of other agents.

Plan Failure. To address plan failure, (Kim, Williams, &
Abramson 2001) introduced a system called Kirk, that per-
forms dynamic execution of temporally flexible plans with
contingencies. These contingent plans are encoded as al-
ternative choices between functionally equivalent sub-plans.
In Kirk, the contingent plans are represented by a Temporal
Plan Network (TPN) (Kim, Williams, & Abramson 2001),
which extends temporally flexible plans with a nested choice
operator. Kirk first extracts a plan from the TPN that is tem-
porally feasible, before executing the plan as above. Use of
contingent plans adds robustness to plan failure.

As a centralized approach, however, Kirk can be brittle to
failures caused by communication latency. Once a plan has
been extracted and reformulated it must be executed and in
the case of a multi-agent plan, this involves multiple agents.
Therefore, we must communicate the primitive activities to
all of the agents that will take part in the execution. This
creates a communication bottleneck at the master agent.

We address this limitation through a distributed version of
Kirk, called D-Kirk, which performs distributed execution
of contingent temporally flexible plans. In the distributed
framework, all agents send and receive messages. This



evens out communication requirements and eliminates the
brittleness to communication bottlenecks. In addition, we
distribute computation between all agents to reduce compu-
tational complexity and take advantage of parallel process-
ing, thus improving performance relative to the centralized
architecture

D-Kirk consists of the following four phases.

1. Distribute the TPN across the processor network,

2. Select a temporally consistent plan from the TPN.

3. Reformulate the selected plan for efficient dispatching.

4. Dispatch the selected plan, while scheduling dynamically.

This paper begins with a summary of dispatchable execu-
tion. We then present the steps required to execute a tem-
porally flexible plan in a distributed manner. These are the
distribution, reformulation and dispatching algorithms and
correspond to steps 1, 3 and 4 above. Our key innovation is
a set of distributed algorithm that handle limited inter-agent
communication and are robust to all communication delays.

Finally, we extend the work to include contingent plans.
We present a summary of TPNs and of previous work
by (Wehowsky 2003) for dynamically selecting a feasible
plan from a TPN, which corresponds to step 2 above.

Dispatchable Execution

The task of the executive is to robustly execute a temporally
flexible plan. Temporally flexible plans make use of simple
temporal constraints to describe uncertain durations. A sim-
ple temporal constraint [l, u] places a bound t+ − t− ∈ [l, u]
on duration between the start time t− and end time t+ of the
activity or sub-plan to which it is applied.

In all that follows, we discuss temporally flexible plans in
terms of a graph representation, where nodes represent time
events and directed edges represent simple temporal con-
straints. An example temporally flexible plan is shown in
graph form in Fig. 1.
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Figure 1: Example temporally flexible plan

Given a temporally flexible plan to be executed, tradi-
tional execution schemes fix the execution schedule at plan-
ning time, thus removing the temporal flexibility prior to ex-
ecution. This approach leads to two problems. First, the
fixed schedule lacks the flexibility to respond to temporal
uncertainty at execution time, so the plan is prone to fail-
ure. Second, if we generate a very conservative schedule
to increase the likelihood of successful execution, then the
execution becomes sub-optimal in terms of total execution
time.

We overcome this limitation with dispatchable execu-
tion (Muscettola, Morris, & Tsamardinos 1998), where
scheduling is postponed until execution time. At execution

time we have the most information available regarding exe-
cution history, so the dispatcher can schedule activities just-
in-time. This provides robustness to uncertain durations that
lie within the temporally flexible bounds of the plan.

Just-in-time scheduling introduces an added run-time
computation that increases latency in the system’s ability to
respond to disturbances. To minimize the amount of com-
putation that must be conducted in real-time, we use a two-
stage execution strategy. Prior to execution, we use refor-
mulation to compile the plan to a form that allows easy dis-
patching. In particular, we reformulate the plan to a Minimal
Dispatchable Graph (MDG), which requires the minimum
amount of processing at dispatch time. This is followed by
dispatching, when the plan is executed. Dispatching of a
plan in MDG form requires only local propagation of timing
information.

To form the MDG, reformulation identifies the non-
dominated edges in the plan. These are the edges along
which execution information must be propagated at run
time. The most simple reformulation algorithm begins by
forming the All Pairs Shortest Path (APSP) graph. It then
traverses the APSP graph and tests every edge to determine
whether it is non-dominated. However, constructing the en-
tire APSP graph is inefficient, requiring O(N2) time com-
plexity and O(N2) space complexity, where N is the num-
ber of nodes in the plan. Furthermore, searching the APSP
graph for non-dominated edges has O(N3) time complexity,
giving an overall complexity for the simple reformulation al-
gorithm of O(N3) in time and O(N2) in space.

We overcome this problem with fast reformula-
tion (Tsamardinos, Muscettola, & Morris 1998). Fast
reformulation extracts non-dominated edges by a series
of traversals of the graph, without forming the complete
APSP graph. In the worst case, we conduct a traversal
from every node in the plan graph, to test whether the
implicit edge from that node to the node being investigated
is non-dominated. In order for the dominance tests to be
conducted efficiently, we must conduct each traversal in
Reverse Post Order (RPO) for the predecessor graph rooted
at the relevant start node.

We can further reduce complexity by exploiting Rigid
Components (RCs). A rigid component is a set of nodes
whose execution times are fixed relative to each other. Dur-
ing reformulation we can represent each RC by a single
node, thus reducing the effective value of N . The other
nodes in each RC are then added back into the plan once
reformulation is complete. Note that the treatment of RCs in
this way is also required for the dominance tests to function
correctly.

The node representing a given RC is known as the RC
leader, and is the node with minimum Single Source Short-
est Path (SSSP) distance from the start node. In order for
it to represent the RC in the dominance tests, the edges
to all other RC members are re-routed to the leader node.
The member nodes themselves are connected with a doubly
linked chain of edges, in increasing SSSP distance, as shown
in Fig. 2. All other edges are deleted. We connect RC mem-
ber nodes in this way because the doubly linked chain edges
are guaranteed to be part of the MDG, so do not need to be



processed in the dominance tests.
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Figure 2: Rigid Components; (a) Before processing; (b) Af-
ter processing

Plan Distribution
The first step of D-Kirk is to distribute the input plan over
the available processors. A plan is distributed by assigning
to each processor the responsibility for zero or more nodes
of the plan graph, such that each node is assigned to exactly
one processor. During the subsequent steps of D-Kirk, each
processor maintains all data relevant to its assigned nodes.

D-Kirk begins by establishing a hierarchical, ad-hoc com-
munication network, using the leader election algorithm
in (Nagpal & Coore 1998). Given a set of processors with
fixed but unknown communication availabilities, this algo-
rithm forms a hierarchy of processors where communication
is guaranteed between a processor and its leader, neighbor
leaders and followers, as shown in Fig. 3.
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Figure 3: Example processor hierarchy, showing communi-
cation availability for processor p2

We then use a distribution algorithm (Wehowsky 2003)
to assign nodes to processors in the hierarchy. The tempo-
ral consistency checking performed in the planning phase is
centered around the temporal constraints between nodes of
the plan. Therefore, this algorithm distributes the plan such
that each pair of processors responsible for nodes linked by
a temporal constraint are able to communicate.

The algorithm allows the plan to be distributed down to a
level at which a processor handles only a single node; this
permits D-Kirk to operate on heterogeneous systems that in-
clude computationally impoverished processors.

Reformulation
In D-Kirk we distribute the fast reformulation algorithm be-
tween all nodes, using a message passing scheme. We use
a state machine approach to structure the reformulation al-
gorithm, so each node can track its progress through the
computation. This means that we do not require any ex-
isting synchronization between nodes: the state machine
provides synchronization based solely on the messages re-
ceived. Also, this allows a node to act only on received mes-
sages relevant to the phase of the computation with which it
is currently concerned, while postponing processing of any
messages for future phases that are received early.

As a result, the algorithm is robust to delays in message
delivery and ensures correct operation even when messages
arrive in an order different from that in which they were sent.
This allows reliable operation when guarantees can not be
placed upon the speed of communication channels. Also, the
algorithm provides significant error checking with regard to
the type of message that can be received at a given time.



The algorithm operates on the distance graph correspond-
ing to the input plan. It requires only the communication
channels guaranteed during distribution of the plan. Mes-
sages that must be sent between nodes that are not connected
by known channels are redirected to follow the channels,
with the re-routing handled internally by the algorithm.

Throughout the algorithm, we exploit parallel processing
wherever possible. In the following subsections, we discuss
the approaches used in each section of the distributed refor-
mulation algorithm, and show how efficiency is maximized.

We also present the computational complexity of each
phase of the algorithm, for comparison with the centralized
case. Note that the algorithm is event driven, where an event
is the receipt of a message. The computation to be per-
formed on receipt of each message is simple, so the com-
putational complexity is of the same order as the message
complexity.

We illustrate the operation of the algorithm on the exam-
ple temporally flexible plan shown in Fig. 1. Line numbers
refer to the pseudo-code for the distributed reformulation al-
gorithm shown in Fig. 4.

Rigid Component Processing (lines 1-16)

As mentioned above, for correct operation of the dominance
tests, we must represent each RC by a single node. RC pro-
cessing is therefore the first part of the distributed reformu-
lation algorithm and proceeds as follows.

Form predecessor graph. The predecessor graph is
the graph of shortest paths from the start node to all other
nodes. To form the predecessor graph we use the distributed
Bellman-Ford algorithm (Lynch 1997), algorithm to find
the SSSP distance to each node (line 2). The distributed
Bellman-Ford algorithm requires only local knowledge of
the graph at each node, hence allowing the SSSP calculation
to be performed locally. To ensure that the algorithm con-
verges in time linear in the number of nodes, the Bellman-
Ford algorithm is run synchronously. This algorithm is fully
parallel. Once the SSSP distances have been computed, we
use them to form the predecessor graph (line 3).

Note that for the purpose of extracting RCs, we perform
the SSSP calculation from a phantom node, a virtual node
which has edges of zero length to every other node in the
plan. The distance graph corresponding to the example plan
in Fig. 1, with phantom node added, is shown in Fig. 5(a).
The SSSP distances and predecessor graph for the example
plan are shown in Fig. 5(b).

The complexity of this stage is dominated by the SSSP
calculation, which has computational complexity O(Ne),
where e is the number of edges at each node.

Extract reverse post order. The post order is the order
in which nodes are removed from the search queue during
search. We extract the Reverse Post Order (RPO) from a
Depth First Search (DFS) on the predecessor graph (line 4).
Since the RPO is inherently ordered, this part of the algo-
rithm can not be conducted in parallel and is entirely serial.
The computational complexity for each node is O(e).

Note that in the presence of the phantom node, this search
is more complicated than a simple DFS. We simulate a DFS

1: Process Rigid Components
2: Compute SSSP distances from phantom node using syn-

chronous distributed Bellman-Ford
3: Form predecessor graph using SSSP distances
4: Perform DFS on predecessor graph and record RPO
5: for Each node in the graph, taken in RPO order do
6: Perform DFS on transposed predecessor graph to ex-

tract members of this RC and their edges
7: Determine member node with minimum SSSP dis-

tance and set as RC leader
8: for Each member node do
9: Form edges for RC doubly linked chain and record

as members of MDG
10: Delete all other edges
11: end for
12: for Each edge do
13: Relocate to RC leader
14: Inform remote node of the relocation
15: end for
16: end for
17: Perform Dominance Tests
18: for Each RC leader do
19: Compute SSSP distances from this node for the

graph of RC leaders using synchronous distributed
Bellman-Ford

20: Form predecessor graph using SSSP distances
21: Perform DFS on predecessor graph and record RPO
22: Begin traversal in RPO
23: for Each node traversed do
24: Use minimum and non-positive data to apply dom-

inance tests
25: if Implicit edge is non-dominated then
26: Record implicit edge as member of MDG
27: end if
28: Update minimum and non-positive data
29: Propagate minimum and non-positive data to suc-

cessors
30: end for
31: Record non-dominated edges as members of MDG
32: end for
33: Initialize Execution Windows
34: Compute SSSP distances from start node using outgoing

non-negative MDG edges using synchronous distributed
Bellman-Ford

35: Record SSSP distances as upper bound of execution
windows

36: Compute SSSP distances from start node using incom-
ing non-positive MDG edges using synchronous dis-
tributed Bellman-Ford

37: Record SSSP distances as lower bound of execution
windows

Figure 4: Distributed Reformulation Algorithm

search from the phantom node by starting a DFS from ev-
ery node that has a zero SSSP distance. The RPO for the
example plan is shown in Fig. 5(c).

A given node must complete its part in forming the pre-
decessor graph before it can take part in RPO extraction, but
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Figure 5: Reformulation example: (a) Distance graph with
phantom node; (b) SSSP distances and predecessor graph;
(c) RPO

we do not require all nodes to have completed the predeces-
sor graph for the RPO extraction to begin. The RPO extrac-
tion process is begun as soon as the start node has completed
its part in forming the predecessor graph, so it occurs con-
currently with formation of the predecessor graph, waiting
for a node to finish its part in forming the predecessor graph
where necessary.

Process rigid components. We determine the members
of each rigid component with a series of DFSs on the trans-
posed predecessor graph. The transposed predecessor graph
for the example plan is shown in Fig. 6(a). We start a DFS
from every node in the graph, with the order determined by
the predecessor graph RPO calculated above (line 5). The
nodes visited in each DFS belong to a single RC.
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Figure 6: Reformulation example: (a) Transposed predeces-
sor graph; (b) Plan with RC processing complete

During each DFS, we gather the list of member nodes and
the list of edges belonging to them (line 6). After each DFS
is complete, the relevant start node assigns as RC leader the
member node with the minimum SSSP distance (line 7). It
also sends messages to all members of the RC to instruct
them to form the doubly linked chain of edges that connects
the member nodes (line 9) and to delete all other edges (line
10). If the receiving node is the RC leader, it also adds the
rearranged edges from the other members of the RC (line
13). Finally, the start node sends messages to inform the
nodes at the far end of the RC members’ edges that the edges
have been moved to the RC leader (line 14). The example
plan with RC processing complete is shown in Fig. 6(b).

Within each DFS, processing is performed in parallel:
multiple branches of the tree are searched simultaneously.
However, the DFSs must be strictly ordered relative to each
other for the RC extraction to be successful, so this is done
sequentially.

The complexity of this phase is dominated by the extrac-
tion of the members of the RC and by rearranging edges to
the leader, giving a computational complexity of O(e).

The RC extraction process begins at the first node in the
RPO. By definition, this is the last node to complete the RPO
extraction phase, so RC extraction does not begin until RPO
extraction is complete.

Since in the presence of the phantom node the overall start
node is not necessarily the first in the RPO, the RC process-
ing phase is initiated by a message from the overall start
node to the first node in the RPO.

Dominance Test Traversals (lines 17-32)

The dominance tests determine whether an edge is a member
of the MDG and are applied in a series of graph traversals.
The traversals are conducted on the subset of the plan graph
comprised of RC leaders (line 18). In a traversal started at
node A, the dominance test applied as we traverse node B
determines whether or not the implicit edge AB is a member
of the MDG.

A given node must complete its part in RC processing
before it can begin the dominance test procedure. However,
we do not need all nodes to have completed the RC phase
before we start the dominance tests, so these two phases run
concurrently, waiting for nodes to complete RC processing
where required.

Each traversal must follow the RPO for the predecessor
graph rooted at the start node of the traversal. The procedure
for each traversal is as follows.

Form predecessor graph. We form the predecessor
graph as described above, but we do not use a phantom
node and we ignore any edges to RC non-leaders (lines 19-
20). The computational complexity per traversal remains
O(Ne).

Extract reverse post order. We extract the RPO as de-
scribed above, again not using a phantom node and ignoring
any edges to RC non-leaders (line 21). The computational
complexity per traversal remains O(e).

Traverse and apply dominance tests. We conduct the
traversal in the order given by the RPO (line 22). The traver-



sal begins at the first node in the RPO and by definition, this
is the last node to complete the RPO extraction phase, so the
traversal does not begin until RPO extraction is complete.

At each node in the traversal, we send messages to all pre-
decessor nodes with the values of the following two pieces
of data (lines 28-29).

• minimum : the minimum SSSP distance encountered on
this traversal.

• non-positive : whether a non-positive SSSP distance has
been encountered on this traversal.

When the traversal reaches a node, it uses these pieces of
data to determine whether or not the implicit edge is domi-
nated (line 25). If the edge is not dominated, it is recorded
locally (line 26). The edge is also recorded in a list which
is passed back to the start node of the traversal for recording
there (line 31).

The complexity is dominated by the need to propagate the
data used in the dominance tests to all predecessors, giving
a computational complexity per traversal of O(e).

Once a traversal is complete, the start node of the traversal
uses a message to initiate a traversal from the next node in
the graph. In this way, successive traversals are conducted
serially. The SSSP distances, predecessor graph, RPO and
non-dominated edges for the example plan are shown in
Figs. 7(a), (b) and (c) for the traversals from nodes B, H
and A respectively.
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Figure 7: Reformulation example: SSSP distances, prede-
cessor graph and non-dominated edges for MDG traversals;
(a) From node B; (b) From node H; (c) From node A

Initialize Execution Windows (lines 33-37)

Once the dominance test traversals are complete, we must
initialize the execution window for each node before dis-
patching. A node can not determine when it has completed
the dominance test phase because we can not easily calcu-
late how many traversals it will be involved in. This is be-
cause, in general, a node is only reachable from a subset
of the nodes in the plan for the purposes of SSSP distance
and RPO calculations. Therefore, when the traversal from

a given node is complete, this node sends a message to in-
form the overall start node that this is the case. Once all
such messages have been received, we know that the domi-
nance test phase is complete and the execution windows can
be calculated.



Calculate upper bounds. We determine the upper exe-
cution bound on each node with a SSSP calculation from the
start node. We use the distributed Bellman-Ford algorithm
described above, but we do not use the phantom node and
we consider only outgoing non-negative MDG edges (lines
34-35). In the worst case, the number of MDG edges per
node is O(e), so the computational complexity per traversal
is O(Ne).

Calculate lower bounds. We determine the lower exe-
cution bound on each node with a SSSP calculation from
the start node. We use the distributed Bellman-Ford algo-
rithm described above, but again we do not use the phan-
tom node and we consider only incoming non-positive MDG
edges (lines 36-37). Again, the number of MDG edges per
node is O(e), so the computational complexity per traversal
is O(Ne). Since we can not conduct multiple Bellman-Ford
calculations simultaneously, we complete the upper bound
calculations before we begin those for the lower bounds.
The complete MDG and initial execution windows for the
example plan are shown in Fig. 8.
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Complexity

Using the complexities of each stage described above, we
obtain a worst case overall computational complexity of
O(N2e + Ne) for the distributed reformulation algorithm.
Both of these terms are due to the Bellman-Ford SSSP calcu-
lations: approximately N calculations of complexity O(Ne)
used to obtain the predecessor graphs for RC processing and
dominance test traversals, and 2 calculations of complexity
O(Ne) for the execution windows.

In the centralized case, the centralized Bellman-Ford al-
gorithm has complexity O(NE), where E is the total num-
ber of edges in the plan, giving an overall computational
complexity of O(N2E). The improvement due to dis-
tributed processing, therefore, is approximately a factor of
E

e
≈ N .

Dispatching

Once the plan has been reformulated to an MDG, the dis-
patcher executes the activities in real time. We base our dis-
tributed algorithm on the dispatching algorithm of (Muscet-
tola, Morris, & Tsamardinos 1998). We distribute the dis-
patching algorithm over all nodes, using a message passing
scheme.

As with the reformulation algorithm, we use a state ma-
chine approach to provide robustness to delays in message
delivery. This allows the algorithm to function correctly
without requiring any synchronization between processors.

However, synchronization is required for the precisely
timed execution of tasks. For this we assume a synchronous
execution model. In particular, we require that each pro-
cessor has a synchronized clock. The task of achieving this
synchronization is not trivial, but is beyond the scope of this
work. Note however, that approximate synchronization, to
within the delivery time of a single message, is sufficient for
many practical applications.

During dispatching, the processors operate independently,
monitoring incoming messages and their clock to determine
when their nodes’ activities can be executed. The only mes-
sages used are those sent to inform neighbor nodes that a
node has executed. The information carried in these mes-
sages is used to update the lower and upper bounds on a
node’s execution window and to propagate enablement con-
ditions. Line numbers in the following description of the
algorithm refer to the pseudo-code shown in Fig. 9.

1: Wait For Enablement
2: while All nodes on outgoing non-positive edges have

not executed do
3: Process received EXECUTED messages
4: end while
5: Wait For Timing
6: while No error do
7: if Current time has exceeded upper time bound then
8: Execution failure
9: end if

10: Process received EXECUTED messages
11: if current time is within execution window AND All

uncontrollable end activities are complete then
12: Break
13: end if
14: end while
15: Execute node
16: Stop all controllable end activities
17: Start all start activities
18: Inform neighbor nodes that node has executed

Figure 9: Distributed Dispatching Algorithm

First, a node must wait to be enabled (lines 1-4). A node
is enabled when all nodes that must execute before it have
been executed. These nodes are identified as those which are
found at the end of outgoing non-positive MDG edges (line
2). While waiting, the node responds to incoming messages
(line 3).

Once enabled, a node must wait for the current time to
enter its execution window and for all uncontrollable activ-
ities that end at this node to complete (lines 6-14). While
waiting, the node checks that the current time does not ex-
ceed the upper bound of the execution window (line 7), else
the plan execution fails (line 8). Also, the node continues to
respond to incoming messages (line 10).

Once the current time is in the execution window and all
uncontrollable activities have completed, we can execute the
node (lines 15-18). First, we stop any controllable activities
that end at this node (line 16) and then start any activities
which begin at this node (line 17). Finally, we send mes-
sages to inform neighbor nodes that the node has executed



(line 19).

The number of messages sent by each node is determined
by the number of edges connected to it in the MDG. In the
worst case, this number is O(e).

In the centralized case, the lead node must send messages
to every other node in the plan to instruct them to execute
their activities, giving a peak message complexity of O(E).
Therefore, compared to the centralized case, D-Kirk reduces
the number of messages at dispatch time, when we must op-
erate in real time and are most susceptible to communication
delays.

Furthermore, since the computational complexity is di-
rectly proportional to the number of messages received, D-
Kirk improves this too.

Temporal Plan Networks

In order to encode contingencies, a Temporal Plan Network
(TPN) augments the temporally flexible plan representation
with a choose operator. The choose operator allows us to
specify nested choices in the plan, where each choice is an
alternative sub-plan that performs the same function.

The primitive element of a TPN is an activity[l, u],
which is an executable command whose duration is bounded
by a simple temporal constraint. A simple temporal con-
straint [l, u] places a bound t+ − t− ∈ [l, u] on duration
between the start time t− and end time t+ of the activity
or contingent sub-plan to which it is applied. A TPN is
built from a set of primitive activities and is defined recur-
sively using the choose, parallel and sequence oper-
ators, taken from the Reactive Model-based Programming
Language (RMPL) (Williams et al. 2003). A TPN encodes
all executions of a non-deterministic concurrent, timed pro-
gram, comprised of these operators.

• choose(TPN1, . . . , TPNN ) introduces multiple sub-
networks of which only one is to be chosen. A choice
variable is used at the start node to encode the currently
selected subnetwork. A choice variable is active if it falls
within the currently selected portion of the TPN.

• parallel(TPN1, . . . , TPNN ) [l, u] introduces multi-
ple subnetworks to be executed concurrently. A simple
temporal constraint is applied to the entire network.

• sequence(TPN1, . . . , TPNN ) [l, u] introduces multi-
ple subnetworks which are to be executed sequentially.
A simple temporal constraint is applied to the entire net-
work.

Graph representations of the activity, choose,
parallel and sequence network types are shown in
Fig. 10. Nodes represent time events and directed edges rep-
resent simple temporal constraints. A choice node is shown
as an inscribed circle.

A temporally consistent plan is obtained from the TPN if
and only if a feasible choice assignment is found. See (We-
howsky 2003) for a more precise definition.

Definition 1 A temporally flexible plan is temporally con-
sistent if there exists an assignment of times to each event
such that all temporal constraints are satisfied.
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Figure 10: TPN Constructs

Definition 2 A feasible choice assignment is an assignment
to the choice variables of a TPN such that 1) all active
choice variables are assigned, 2) all inactive choice vari-
ables are unassigned, and 3) the temporally flexible plan
(program execution) corresponding to this assignment is
temporally consistent.

Plan Extraction

The plan extraction phase of D-Kirk consists of two inter-
leaved processes: generation of candidate plans and testing
them for temporal consistency.

The candidate plans correspond to different assignments
to the choice variables at each choice node and are ob-
tained by solving a conditional CSP (Mittal & Falkenhainer
1990). The D-Kirk planning algorithm uses parallel, recur-
sive, depth first search to make these assignments.

Consistency checking is implemented using the dis-
tributed Bellman-Ford SSSP algorithm and is run on the dis-
tance graph corresponding to the portion of the TPN that
represents the current candidate. Temporal inconsistency is
detected as a negative weight cycle (Dechter, Meiri, & Pearl
1991).

The planning algorithm exploits the hierarchical struc-
ture of the TPN to allow parallel processing. Consistency
checking is interleaved with candidate generation, such that
D-Kirk simultaneously runs multiple instances of the dis-
tributed Bellman-Ford algorithm on isolated subsets of the
TPN. D-Kirk uses a distributed message-passing architec-
ture that employs the following messages for candidate plan
generation.

• findfirst instructs a network to make the initial search
for a consistent set of choice variable assignments. If a
node at level n in the hierarchy receives a findfirst

message, it propagates it to all of its subnetworks at level
n + 1 simultaneously. If each subnetwork finds a con-
sistent assignment, we then check for consistency at level
n.

• findnext is used when a network is consistent inter-
nally, but is inconsistent with other networks. In this case,
D-Kirk uses findnext messages to conduct a system-
atic search for a new consistent assignment, in order to
achieve global consistency. To achieve this, a node at
level n in the hierarchy receiving a findnext message



forwards the message to each subnetwork at level n+1 in
turn. When a new consistent assignment to a subnetwork
is found, we check for consistency at level n. Therefore,
a successful findnext message will cause a change to
the value assigned to a single choice variable, which may
in turn cause other choice variables to become active or
inactive.

• fail indicates that no consistent set of assignments was
found and hence the current set of assignments within the
network is inconsistent.

• ack, short for acknowledge, indicates that a consistent set
of choice variable assignments has been found.

Whenever a node initiates search in its subnetworks, using
findfirst or findnext messages, the relevant processors
search the subnetworks simultaneously. This is the origin of
the parallelism in the algorithm.

The planning phase of D-Kirk offers an improvement in
computational complexity compared to a centralized archi-
tecture. The distributed Bellman-Ford algorithm has time
complexity O(Ne), compared to O(NE) for the centralized
version of the algorithm. Overall, the worst-case computa-
tional complexity of the planning algorithm remains expo-
nential, due to the candidate generation phase.

An example TPN containing a single choice node I is
shown in Fig. 11. The only feasible choice assignment is
the pathway through nodes M and N, and this gives rise to
the temporally consistent plan shown in Fig. 1.
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Figure 11: Reformulation example: Input TPN

Conclusion

To summarize, this paper introduced D-Kirk, a distributed
executive that performs robust execution of contingent, tem-
porally flexible plans. In particular, D-Kirk operates on
Temporal Plan Networks (TPNs) and distributes both data
and processing across available processors. D-Kirk employs
a series of distributed algorithms that first, form a processor
hierarchy and assign TPN subnetworks to each processor;
second, search the TPN for a temporally consistent plan;
third, reformulate the selected plan to a form amenable to
execution and; finally, dispatch the plan. This distributed
approach spreads communication evenly across the proces-
sors, thus eliminating the bottleneck in communication at
dispatch time that is present in a centralized architecture.
Furthermore, the distributed algorithms reduce the computa-
tional load on each processor at all four stages of execution
and allow concurrent processing for increased performance.

References

Dean, T. L., and McDermott, D. V. 1987. Temporal
database management. Artificial Intelligence 32:1–55.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.

Kim, P.; Williams, B. C.; and Abramson, M. 2001. Ex-
ecuting reactive, model-based programs through graph-
based temporal planning. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-2001).

Lynch, N. 1997. Distributed Algorithms. Morgan Kauf-
mann.

Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-1990).

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Prin-
ciples of Knowledge Representation and Reasoning, 444–
452.

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. Morgan Kaufmann.

Nagpal, R., and Coore, D. 1998. An algorithm for group
formation in an amorphous computer. In Proceedings of the
Tenth International Conference on Parallel and Distributed
Systems (PDCS-1988).

Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-1998), 254–261.

Wehowsky, A. F. 2003. Safe distributed coordination
of heterogeneous robots through dynamic simple temporal
networks. Master’s thesis, MIT, Cambridge, MA.

Williams, B. C.; Ingham, M.; Chung, S.; and Elliott, P. H.
2003. Model-based programming of intelligent embedded
systems and robotic space explorers. In Proceedings of the
IEEE: Special Issue on Modeling and Design of Embedded
Software.


