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ABSTRACT

‘The ability to reason about a scries of complex cvents over time
is essential in analyzing physical systems. This paper discusses the
role of continuity in qualitative physics and its application in a System
for analyzing the behavior of Digital MOS circuits that cxhibit analog
behavior. ‘The discussion begins with a brief overview of the reasoning
steps necessary (0 perform a qualiatve simufation using Temporal
Qualitative (1Q) Analysis. ‘The discussion then focuses in on the use
of continuity and the relationship between quantitics and their higher
order derivatives in describing how physical quantities change over
time.

INTRODUCTION

The ability to reason about behavior at the qualitative level is
cssential 1o perform such tasks as designing, modeling, analyzing
and troubie-shooting physical systems. One objective of a qualitative
physics is to provide a theory for this type of rcasoning.  Over
the fast few years a framework for a qualitative physics has been
evolving which incl(xdcs mechanisms for both device centered (de
Klcer and Brown, 1984) and process eentered ontologies (Forbus,
1983), through the use of a qualitative algebra for expressing physical
interactions. “This paper cxamines the role of continuity in Teasuning
about change. drawing from a.fow simple theorems of caleulus relevant
to a qualitative physics. The discussion begins with a brief overview
of the reasoning steps neeessary in performing a qualitative simulation
using Temporal Qualitative (TQ) Analysis, a system for analyzing the
large signal behavior of MOS circuits. The discussion then focuscs
on the use of continuity and the relationship between quantitics and
their derivatives in describing the behavior of physical quantitics over
time.

TEMPORAL QUALITATIVE ANALYSIS

Temporal Qualitative Analysis deseribes the causal qualitative
behavior of a cireuit in response to an input over time, where time is
viewed as a set of intervals in which deviees move through different
vperating regions. The qualifative reasoning process, modcled by TQ
Analysis. is best illustrated Yy a4 simple example. Figure 1 shows a
parallel RC circuit which exliibits the tollowing behavior:

Figure 1 : RC Circuit

Assume that at instant ¢1 the voltage across the capacitor
(Vi) is positive. This causcs the voltage across the resistor to
be positive, producing a positive current through the resistor,
which hegins to discharge the capacitor and decrease (Vin ),
Vin decreases for an interval of time and cventually reaches
zero. 1AL this poing the current stops flowing and the circuit
has reached a steady state at zcro volts,

“This description is marked by a series of events such as Vi being
initially positive or Vi~ moving to zcro, which break the description
into a serics of time intervals. ‘I'wo types of reasoning are required
to analyze the circuit during cach interval.

One type of reasoning involves determining the instantancous
response of the circuit tw a set of primary causes which mark the cvent;
for example, “a positive voltige across the resistor, produces a positive
current through the resistor . . .~ The mechanism corresponding to-
this type of reasoning in 1Q Analysis is Causal Propagation,

‘The sccond type of reasuning determines the long term cffects of
these qualitative inputs; for cxample, 'V, decreases for an interval of
time and cventually reaches zero.™ This type of reasoning is modeled
by Transition Analysis.

REPRESENTATION

To provide a mechanisin for analyzing circuits, a representation
for the circuit and s resuiting behavior is needed, Quantitatively, a
circuit is represented as a network of devices. The functionality of
cach type of device is described by a deviee model and the interactions

ISince Vin isa decaying eponential, i 15 Positive for ¢ < oo and reaches
2670 at 00,



between devices are described by a set of network laws. A device
model consists of a sot of algebraic relations between state variables
associated with the device's terminals (c.g., current, voltage, charge
and their derivatives). The relevant cquations constraining the circuit’s
behavior in the above example are:

Vin = | InR Resistor Model
Ie = C%%~  Capacitor Model

Ip

C—=Ic Kirchoff's Current Law

‘The behavior of the overall circuit is inferreg from the network laws
and device models and is expressed as a function of time. The
behavior of Vi in thé RC circuit is:

VIN = Vinuwaie™ fore > g

Quatitatively, the space of values which a quantity of intcrest can
take on is broken in(ora sct of open intervals or regions scparated
by a set of boundarics| Time is represented as a sequence of open
intervals, scparated by linstants, and the circuit's state variables are
represented by their sign, using zcro as a boundary between pusitive
and ncgative. (The sign| of a-quan(ity (X) is denoted [x}.)

Suite variables are then combined into a set of relations using a
qualitative algebra consi ting of addition, shbtrzlction and nultiplica-
tion on signs, For cxaEnplc. the sum of two negative numbers is
negative ((—) 4 (~) = ) while the sum of a positive and a nega-
tive number is unknows ((+) + (=) = )(de Kleer, 1979).(Forbus,
1983). The qualiuicivc cquivalent of the above models and laws arc:

Vinl = [I) Resistor Model
el = [£%2] Capacitor Model
= L] Kirchoffs Current Law

[Ir]

An analogous set of cquations may also be created for the first and
higher order derivatives of current and voltage. The number of
higher order derivatives used in the analysis depends on the level of
detail of behavior which must be observed in the particular analysis
task. For the analysis of performance MOS circuits we have found it
adequate 0 cxamine ﬁrsq and sceond derivatives, making it possible
to recognize minimums, maximums and inflection points in the circuit

behavior.? For simplicity,| we only keep track of quantitics and their
first derivatives in the RQ cxample.

The circuit's overall Pchaviur. in response to a set of inputs is
described by a sequence of intervals and the qualitative valucs of
the circuits state variablcs for cach interval. During an interval cach
quantity of interest remaihs within a single qualitative region {c.g..
“the voltage is positive™ or “the mosfet is in saturation during the
interval™). The end of the interval and the beginning of the next is
marked by one or more Quantitics transitioning between qualitative
regions. ’

Mhis differs from carlier quafitative feasoning systems which focused only on first
derivauves (de Kleer, 1979).

CAUSAL PROPAGATION

Causal Propagation oceurs at the stdrt of a time interval when a
set of qualitative inputs (referred to as P bnar;v causes) are propagated
forward, using the device models and network laws, to determine their
instantaneous effect on ather circuit quantitics. This may be viewed as
a qualitative small signal analysis. 3 In the RC cxplanation, it is given
that (Vi) is positive at instant ¢1. Using V as the primary cause,
Causal Propagation produces the following result (where “4 — B"
reads “A causcs B™);

[Vin] = +Given
=» L} = +Resistor Model -
~) [l = —KirchofF's Current [aw ‘
) [ = —Capacitor Model
=¥ (4] = —Resistor Model

) ) =

+Kirchoffs Current Iaw

TRANSITION ANALYSIS

Causal Propagation predicts the instantancous response of the
circuit, but does not describe how  quantities change ouver time,
Transition Analysis determines whether or not a Quantity transitions
between wo qualitative regions {c.g.. moving from positive o zero or
saturation to cutoff) at the cnd of a time interval, and may be viewed
as a qualiative large signal analysis.4

Transition Analysis is broken into two steps: Transition Recognition
and Transition Ordering. Transition Recognition determines whether
Or fot a quantity is moving wwards another qualitative region or
boundary (c.g., the positive charge on the capacitor is decreasing
towards zero, or a mosfet is moving from the boundary between oN
and OFF o the region ON). Transition Recognition often doter
mincs that more thap one quantity is moving towards another region
or boundary. Transition Ordering determines which subset of these
quantitics will transition into a new region or boundary first, marking
the end of that interval, Although this article only discusscs transi-
tions across zero, the mechanism described here is casily extended to
recognize transitions across boundarics other than zcro (c.g., transi-
tions between device operating regions) and is deseribed in (Williams,
1984). )

TRANSITION RECOGNITION

The basic assumption underlying Transition Recognition and
Transition Ordcring is:

XCausal Propagauon is simitar 1o de Kleer's Ineremental Qualitative Analysis (de Klcer,
1979} except that the quantitics being prepagaled are not restricied to firs denvatives,
but may include quantiues and higher order denivatives.

‘.\Ilcmmivc approaches to describe the behavior of quantitics across qualitative region

* boundanies have been proposed by (de Kicer and Brown. 1984), (Forbus, 1983) and

(Kupers, 19823), -



The behavior of real physical systems is continuous’

More precisely, it is the functions which describe a physical
system that are continuous. There are a number of simple theorems
of calculus which describe the behavior of continuous functions over
tme intervals. In this scction we discuss the intuition which these
theorems provide in Jdcu:rmining how quantitics move between and
within qualitative regions. These thcorems are then used to derive
two rules about qual[imiivc quantitics: the Continuity Rule and the
lntegration Rule. "The first rule requires that a quantity is continuous
over the interval of interest, while the second assumes that a quantity
is both continuous and differentiable$

The Intermediate Value Theorem

Inorder to describe the behavior of some quantity over time, a sct
of rules is nceded for determining how a quantity changes from one
interval or instant to ithc next. IF, for example, a quantity is positive
during some intervall of time, will it be positive, zero or ncgative
during the next time interval? The /ntermediate Value Theorem states
that: 7

If £ is continupus on the closed interval [, b} and if { is any
number between f(a) and f(b). then there is at least one
point X in {a, ] for which f(X)=I. (Loomis, 1977)

Intuitively, this means that a continuous quantity will ahwvays
cross a boundary when moving from onc¢ qualitative open region
to another. Thus cach statc vhriublc must cross zero when moving
between the positive|and negative regions, In the above example,
the positive quantity 'may be positive or zero during the next time
interval, however, it cannot be negative.

State Variables and 'I'in‘ue

By assuming that quantitics are continuous and by using the
results of the Intermediate Value Theorem., a relationship can be
drawn between the repfesentations for state variables and tme. Reeall
that the represcntation ;'or time consists of a serics of instanis separated
by opgn intervals. An instant marks a quantity moving from an
open region o a b()uddury or from a boundary t0 an open region.
Also, recall that the n‘ngc of a state variable is represcnted by the
open regions positive (0,00) and negative (—co,0) scparated by the
houndary zerv, which we denote +, — and 0. respectively. [f some
quantity (@) is pusitive at some time instant t1 (Q@tl = ¢ where
€ > 0), then there cxists some finite open interval (¢, 0) separating the

5Cominunly: “The function f i conunvous if 2 small change in z produces only 2
srialt change in f{:z). and [ we can keep the change n f(z) as smalf as we wish by
holdiny the change in T sufficiently small.” (Loomus, i977)

St'ven when a arcuit’s behavior is modeled by a discontinuous function, the discon-
unwitics are isoiated at a fow places and the rest of tie function behaves comtinuousty

{0.2.. & Mep s only discontin
discontinuous can be deniil
applyvig those rules winch dg
n ume.

"The noation (g, b) denotes

uous at one panl). I the pont at which a quaaty s
cd. Transiwion Anaivsis can deal with o simply by not
pend on continuaty o the paruciiar quantity at that point

the onen interval between @ and b, while [a, 5] denotes

the closed interval between @ and 6 iclusive.

value of @ from zero (any two distinct] points are scparatcd by an
open interval). |

If we assume that @ is described by a coatinuous function of
time, then it will take some finite interval of time {(21,£2) where
t1 5% ¢2} to move from ¢ to 0, traversing the interval (e, 0). Similarly,
it will take a finite interval of time to move from 0 to some positive
value e. Furthermore, we can say that a Quantity moving from 0 to ¢
will leave zcro at the beginning of an open intervai of time, arriving
at e at the cnd of the interval. Converscly, a quantity moving from e
to 0 will leave e-at the beginning of an open interval and arrive at 0
at the end of the open interval. )

Another way of viewing this is that a quantity will move through
an open region during an open iaterval of time, and a quantity will
remain on a boundary for some clused interval of time (possibly
for only an instant). This notion of continuity. is captured with the
following rule;

Continuity Rule

L. If some quantity- @ is positive (negative) during an instant, it
will remain positive (ncgative) for some open interval of time
immediately following that instant.

2. If some quantity Q is zero during some open interval of time, it
will remain zero during the instant following the open interval.
Returning to the RC example, we deduced by Causal Propagation

that ail of the circuit’s state variablcs were pusitive or ncgative during
instant ¢1. Using the first part of the Continuity Rule, we predict that
cach state variable must remain positive or negative during the open
interval immediately following e1 (interval 72). They may, however,
transition 1o zero at the instant following I2,

Mecan Value Theorem

In addition to looking at the continuity of quantitics, information
can also be derived by looking at the relationship between quantitices
and their derivatives. The following two corollarics of the AMean Value
Theorem (Thomas, 1968) are of particular interest o TQ Analysis:

L. [f a function (f) has a derivative which is equal to zcro for ail
values of z in an interval (a,b), then the function is constant
throughout the interval,

2. Let f be continuous on [a, 5] and differentiable on (,8). If f(z)
is pusitive throughout (a, ), then f is an increasing function
on [a,3], and if f(z) is ncgative throughout (a,b), then f is
decreasing on [a, 4].

By ‘combining these two corvllarics with the Intermediate Value
Theorem, the behavior of a state variable is described over an interval
(instant) in terms of its value during the previous instant (interval)
and its derivative. At the qualitative fevel, this is similar to integration
and is capturcd by the following rule:

Qualitative Integration Rule
Transitions to Zero

L. 1f a quantity is positive and decreasing (negative and increasing)
over an open time interval. then it will move towards zero during
that interval and possibly transition to zero at the end of«he



interval.
. If a quantity is positive but not decrcasing (ncgative and not
increasing) over an #)pcn time interval, then it cannot transition
to zero and will ren}ain positive (negative) during the following
instant. R
Transitions Off Zero
3. If a quantity is increasing (decreasing) during some open time
interval and was zere during the previous instant, then it will be
positive (ncgative) during the interval.

4. If a quantity is constant during some open time intcrval and was
zero during the prcvious instant, then it will be zero during that

(38

interval.

It is intercsting  note that, while in the first two parts of the
rule the derivative of the quantity affects how it behaves during the
following instant, in the: last two parts the derivative of a quantity
affects that quantity duri?g the same interval. For example, suppose
that a quantity (@) is resting at zero at some instant (¢1) (i.c.. [Q]@tl =
0 and [4R]@t1 = 0). If 42 becomes positive for the next open
interval (I2), then it wi11 causc @ to incrcasc during that interval
and becomne positive. Furthermore, @ moves off zero instantancously,
thus @ is also positive during I2. In the above casc, the causal
relationship between a qhanr.ity and its derivative is similar to that
between two ditferent quantitics related by a qualitative expression
(c.g.. in a resistor a changF in current instantancously causes a change
in voitagc),

If we arc interested in analyzing a system which includes a
number of higher order derivatives, then the Integration Ruic may
alsv be applied between cach derivative and the next higher order
derivative. For cxample, Supposc the system being analyzed involves
the position (z), velocity|(v) and acccleration (a) of a mass (where
4% = a) and that all three quantitics are constant at somc instant (1)
If a becomes positive for the next open interval (72), then it will cause
an increase in v, making iTpositivc for I2. Similarly. positive v causcs
an increase in z. making it positive for 2. Thus the Integration Rule
uses the relation between! cach quantity and its derivative to locally
propagate the cffects of changes along a chain from higher order
derivatives down towards the lower order derivatives,

As we have scemr above, the Integration Rule describes the
direction a quantity is moving with respect to zero (e.g.. towards
or away from zero). If a quantity is zcro and increasing or decreasing
during the next interval, then the quantity must transition from zcro.
If. however, a quantity (A) is moving towards zero for some interval
of time, it may or may not reach zero by the end of the interval,
Suppose somc other quantity (B) reaches zero first and B causes 14 1o
become zero. then A will not reach zcro. Thus we nced a mechanism
for Jetermining which qrj;mtity or sct of quantitics will reach zero

al of tme.
|

first during an open inte

TRANSITION ORI)F.RI%G

As a resuit of Transition Recognition we have divided the set
of all quantitics into 1) those which may transition (they are moving

towards zero) 2) those which can't transifon (they are not moving
towards zero) and 3) thosc whose status i unknown (their direction
is unknown), |

Next we want to determine which subsets of these quantities can
transition without leading w 1) quantitics which are inconsistent with
the set of qualitative relations (c.g., [A] = + and [B] = 0 when
(4] = (B]) and 2) quantitics which violate the Intermediate Value
Theorem and thus are discontinuous (c.g.. @ is caused to jump from
-+ to — without crossing 0).

The simplest solution to this is to enumerate all sets of possible
transitions and test each for the above two criteria, However, the
number of scts of possibie transitions grows cxponentially with the
aumber of quantitics which can transition. thus this solution becomes
intractable for large systems. (de Kleer and Bobrow, 1934) use a
similar approach, but only need to consider the transitions of the
independent state variables.

Instead, Transition Ordering uscs 1) the dircction cach quantity is
moving with respect to zero, and 2) the qualitative relations between
these quantitics as a set of constraints. to determine which quantitics
can transition first and stll satisfy the critcrion of consistency and
contnuity. If in the worst case, every qualiative relation is used
during Transition Ordering, then this solution grows lincarly with the
number of refations in the system.

If the derivative of 2 non-zcro quantity (Q) is unknown, then its
dircction cannot be determined by Trunsition Recognition. In this
casc a qualitative relation associated with Q. along with the directions
of the other quantitics invoived in that relation can sometimes be 4
used to determine Q's dircction.

The qualitative relations used in modcling devices consists of
cquality, ncgation, addition and multiplication. Thus for cach of
these operations Transition Ordering contains a sct of rules which
place constraints on the dircetion {c.5., toward zcro) and transition
status (¢.g., can’t transition) of cach quantity involved in the operation,
The next section provides a fow cxamples of these rulcs for cach type
of operation. A complcte list of Transition Ordering rules is presented
in (Williams, 1984).

Transition Ordering Rules

If the signs of two continuous quantitics are cquivalent (ic. A=
kB, where & is a positive constant) over the open interval of intcrost
and the following instant, then we know that 1) they arc moving in
the same dircction, and 2) if vnc of the quantitics transitions to zcro
then the other quantity must transition at the same time. This may
be viewed simply as a consistency check on equality. The above rule
also holds for negation (ic, A = —kB8), sin;::.» negating a quantity

- docs not change its dircetion with respect to zero.

The case where a quantity is the sum or difference of two other

continuous quantitics is more interesting. For cxample, assume that

quantitics A and C arc moving towards zcro and B is constant, where
C=kA—+kB. If A B and C arc positive, then A will transition
to zero before C and € can be climinated from the list of potential



transitions.2 On the other hand, if B is negative, then € will transition
before A, and finally, if B is zero. then A and C will transition at
the same time (since G = k; A). Also, consider the case where A and
C arc positive and B js negative but the dircction of € is unknown.
If B is known to be constant and A is moving towards zero, then C
must also be moving towards zero and will reach zero before A,

Finally, for multipiication (c.g., A X B = kC) wc know that, if
A and/or B transitions to zcro, then € will wransition to zero at the
same time; otherwise, neither A nor B is transitioning and C won't
transition.

Thus, Transition Qrdering 1) factors the quantitics into scts which
transition at the same time and 2) creates an ordering between these
scts according to which transitions precede other transitions.

Applying the Transition Ordering Rules

Transiton Ordering rulcs arc applicd using a constraint propaga-
tion mechanism similar to the one uscd in propagating qualitative
values. If as the result of applying these inference rules it is deter-
mined that 1) all the remaining potential transitions will occur at
the same time, and 2) the direction of these quantities is known to
be toward zero, then the wansitions occur at the end of the current
interval. Otherwisc, an ordering may be externally provided for the
remaining potential transitions, or the system can try cach of the
remaining scts of possfblc transitions. More quantitative techniques
which help resolve thcl remaining scts of possible transitions are cur-
renty being cxplored. !

RC Example Revisited

Returning to the RC circuit, we have deduced thus far that the
capacitor has a positive voltage across it and is discharging through the
resistor. Next it must be determined whether or not any quantities

will transition to zero

at the end of interval I2. By applying the.

Integration Rule to {Vijv] == + and [2£%%] = —, we know that Vin

is moving towards zero
{Ir21} and [Ie] are alsg

The direction of |
determined using the

Using a similar argument, we determine that
moving towards zcro.

dvin (dlm and [4er], however, cannot be

ot
Integration Rule, since their derivatives are

153

unknown. The dircction of cach of these quantities can be determined
" using.the Transition Ordering rule for cquivalences described above..

For exampie, we know
is moving towards zcro

that [£%2] is moving towards zcro, since [Ic:]
and [Ic] = [4%] from the capacitor model.

In addition, it is deduced from KCL and the resistor model, which
are both cquivalences, that [“2x] and [2L] are also moving towards

7Cro. |

Finally, since all of the quantitics arc qualitatively equivalent,

they will all tramsition
potcntial transitions cx

1o zcro at the same time. Since no other

st, cach of these quantitics will traasition t©

31 instearl we had sud that
rom plus 1o minus without ¢

C transitioned to scro first then A would have to jump
rossing /cro (e, (A} = (C] = 1Bl = (0) — (=) =

—). This violates the tntermediate Vaiue Theorem and, therefure, cannol oceur.

zero at the end of interval J2. Thus the voltage, currents and their
derivatives are zero at the next instant. '

Both Causal Propagation and Transition Analysis have been
implemented and used to correctly predict|the behavior of many RLC
and mosfet circuits such as high and low| pass filters, oscillators and
bootstrap circuits. Temporal Qualitative Analysis is currently being
extended to incorporate more quantitative information, allowing it to
make more precise predictions about complex physical systems. [n’
addition TQ Analysis is being incorporated into a system for designing
and dcbugging high performance MOS circuits.

SUMMARY

Two components of Temporal Qualitative Analysis have been
discussed: Causal Propagation dctermines the incremental response
of a system to a change in an input or its higher order derivative, while
Transition Analysis detcrmines the Jong term cffect of these changes.
By assuming that physical quantitics are modeled by continuous
functions, we have been able to develop a few rules to detenmine
how state variables move between qualitative regions. These rules
capture onc's intuitive notion of continuity and intcgration.
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