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Abstract. As many real-world problems involve user preferences, costs,
or probabilities, the constraint framework has been extended from satis-
faction to optimization by extending hard constraints to soft constraints.
However, techniques for constraint satisfaction, such as local consistency
or conflict learning, do not easily generalize to optimization. Thus, solv-
ing soft constraints appears more difficult than solving hard constraints.
In this paper, we present an approach to solving soft constraints that
exploits this disparity by re-formulating soft constraints into an opti-
mization part (with unary objective functions), and a satisfiability part.
We describe a search algorithm that exploits this re-formulation by enu-
merating subspaces with equal valuation, that is, plateaus in the search
space, rather than individual elements of the space. Experimental results
indicate that this hybrid approach can in some cases be more efficient
than other methods for solving soft constraints.

1 Introduction

Many real-world problems are naturally framed as optimization problems where
the task is to find assignments to variables that optimize user preference, cost,
or probability. Therefore, constraint satisfaction problems (CSPs) have been
extended from satisfaction to optimization by the notion of soft constraints.
One general framework for soft constraints are valued constraint satisfaction
problems (VCSPs) [20, 1], which augment CSPs with a valuation structure and
subsume many earlier notions such as fuzzy CSPs, probabilistic CSPs, or partial
constraint satisfaction.

For the case of solving CSPs, techniques such as local consistency filtering [16]
and conflict (nogood) learning [5] have proven to be very effective. Substantial
progress has been made in extending these techniques to the more general case
of soft constraints [2, 7]; however, the optimization case still appears far more
difficult than the satisfaction case.

In practical applications, the constraints often exhibit structure or regulari-
ties that can be exploited in order to make optimization feasible. For instance,
approaches based on tree decomposition [8, 12] exploit favorable properties of
the constraint graph (limited width) to break down the problem into lower-
dimensional subproblems.



In this paper, we present an approach to exploit a form of structure that
can occur only in VCSPs, but not in CSPs: namely that the valuations are not
distributed evenly across the space of assignments, but there rather exist large
sets of assignments that have equal valuation (corresponding to “plateaus” in
the search space).

Our approach exploits this by factoring optimization problems into a set of
soft constraints that carry all the information about valuations of assignments,
and a set of hard constraints that do not carry valuations but just need to be
satisfied. A special instance of such a re-formulation is taking the dual of the
problem [14], which yields a factorization into hard constraints and unary soft
constraints.

The benefit of this re-formulation is that it allows to apply optimization
techniques to the optimization part, and to apply satisfiability techniques to the
satisfiability part. In particular, if the soft constraint part is small enough, it
becomes feasible to use optimization techniques such as A* search [10], which is
optimal in the number of search nodes visited, but would be infeasible to apply
on the complete, original problem due to its memory requirements. For the hard
constraint part, it becomes possible to use state-of-the-art the techniques for
CSPs that exploit local consistency and conflicts.

This principled idea has been underlying algorithmic approaches in the area
of model-based reasoning and diagnosis [24, 9] for quite some time. Model-based
reasoning captures the behavior of physical systems in terms of constraint-based
models, where a (typically small) subset of variables capture preferences (such
as the failure probability of components, or the cost of repairing them), and
constraints capture consistency. [25] formally defines these problems as so-called
optimal CSPs and presents an algorithm called conflict-directed A* that solves
them using a mixture of optimization and satisfaction techniques. We generalize
upon these methods, and by coupling them with a method for transforming val-
ued CSPs into optimal CSPs, we extend their applicability to the general case of
soft constraints. Our resulting hybrid algorithm enumerates plateaus (parts of
the search space with the same valuation) in best-first order, and subsequently
checks if there exists a consistent solution within the plateau. This can be more
efficient than enumerating individual elements of the search space, because de-
pending on the problem, there can be much fewer plateaus than total elements
of the search space.

The remaining parts of the paper are organized as follows: We review the
definitions of valued CSPs [20] and optimal CSPs [25] and present a method
for transforming between them. The method is similar to dualization [14] in
that it yields a separation into hard constraints and unary soft constraints. We
then present a variant of conflict-directed A* that exploits this re-formulation
by searching over sets of assignment with equal valuation rather than searching
over individual assignments of the variables in the problem. We give experimental
results demonstrating that this algorithm sometimes outperforms other methods
for solving valued CSPs, and we indicate several directions for future work.



2 Valued CSPs

A classical constraint satisfaction problem (CSP) is a triple (X, D,C) with vari-
ables X = {x1, . . . , xn}, finite domains D = {d1, . . . , dn}, and constraints C =
{c1, . . . , cm}. Each constraint cj ∈ C is a relation cj ⊆ Πxi∈var(cj)di over vari-
ables var(cj) ⊆ X. An assignment t to variables var(cj) satisfies the constraint
if t ∈ cj , and violates it otherwise.

Definition 1 (Valuation Structure [20]). A valuation structure is a tuple
(E,≤,⊕,⊥,>) where E is a set of valuations, totally ordered by ≤ with a min-
imum element ⊥ ∈ E and a maximum element > ∈ E, and ⊕ is an associative,
commutative, and monotonic binary operation with identity element ⊥ and ab-
sorbing element >.

The set of valuations E expresses different levels of constraint violation, such
that ⊥ means satisfaction and > means unacceptable violation. The operation
⊕ is used to combine (aggregate) several valuations. A constraint is hard, if all
its valuations are either ⊥ or >.

Definition 2 (Valued Constraint Satisfaction Problem [20]). A valued
constraint satisfaction problem (VCSP) consists of a classical CSP (X, D,C)
with valuation structure (E,≤,⊕,⊥,>), and a mapping φ from C to E which
associates a valuation with each constraint.

For example, the problem of diagnosing the polycell circuit in Fig. 1 [25]
can be framed as a VCSP with variables X = {a, b, c, d, e, f, g, x, y, z}. Each
variable corresponds to a boolean signal and has domain {0, 1}. The VCSP
has five ternary constraints fo1, fo2, fo3, fa1, fa2 corresponding to the gates
in the circuit, and four unary constraints fc, fd, ff , fg corresponding to the
observations. The ternary constraints express that the gates are performing their
boolean functions. The unary constraints express that the variables c, d, and g
are observed to be 1, whereas variable f is observed to be 0. The valuation
structure (N+

0 ∪∞, +,≤, 0,∞) captures the cost of violating a constraint, which
we assume to be 1 for the constraints fo1, fo2, fo3, 2 for the constraints fa1 and
fa2, and ∞ for the constraints modeling the observations.

Given a VCSP, the problem is to find an assignment t to X which mimimizes
the combined valuation of all violated constraints,

⊕
{cj∈C|t[var(cj)]/∈cj} φ(c). For

the boolean polycell example, the minimum valuation of an assignment is 1,
corresponding to a fault of a single OR gate.

3 Optimal CSPs

Since solving VCSPs is more complex than solving classical CSPs, an algorith-
mic approach that is based on spliting the VCSP into a set of classical (hard)
constraints and a set of valued (soft) constraints can be useful.

In the following, we consider a specialization of this approach where the
constraints are divided into hard constraints and unary soft constraints. In [25],
this type of optimization problem is called optimal CSP:



Fig. 1. The boolean polycell example consists of three OR gates and two AND gates.
Variables c, d, f , and g are observed as indicated.

Definition 3 (Optimal CSP). An optimal CSP (OCSP) consists of a classical
CSP (X, D, C), with valuation structure (E,≤,⊕,⊥,>), and a set U of unary
functions uj : yj → E defined over a subset Y ⊆ X of the variables. The
variables in Y are called decision variables, and the variables in X \Y are called
non-decision variables.

An OCSP can be viewed as a special case of a VCSP where soft constraints
(constraints with valuation φ(cj) < >) must be unary. A solution to an OCSP is
an assignment to Y with minimal valuation such that there exists an extension
to all variables X that satisfies all constraints in the CSP. Hence, whereas a
solution to a VCSP is a single assignments to X, a solution to an OCSP is an
assignments to the decision variables Y that can stand for a whole collection of
assignments to X that have all the same valuation (plateau) and differ only with
respect to the non-decision variables X \ Y .

It is observed in [14] that a number of optimization problems can be directly
expressed with hard and unary soft constraints, that is, as OCSPs; an example
are combinatorial auctions [19].

4 Translation from Valued CSPs to Optimal CSPs

In general, a VCSP may have non-unary soft constraints and thus it does not
necessarily have the form of an OCSP. However, it is possible to transform a
VCSP into an OCSP with an equivalent optimal solution. This transformation
is based on viewing the constraints of the VCSP as decision variables of the
OCSP, similar to the hidden variable representation described [14]. The transla-
tion demonstrates that OCSPs, though syntactically more restricted than VC-
SPs, actually have the same expressive power as VCSPs. OCSPs could therefore
be viewed as a “normalization” of VCSPs that achieves the desired separation
into a hard constraint part and a soft constraint part.

Definition 4 (Translation of VCSP to OCSP). The translation of a VCSP
(X, D, C) with valuation structure (E,≤,⊕,⊥,>) and mapping φ into an OCSP



(X ′, D′, C ′) with unary functions U over decision variables Y ⊆ X ′ is defined
as follows:

– X ′ consists of X and one decision variable yj for each constraint cj ∈ C;
– D′ consists of D and the domain {true, false} for each decision variable yj;
– U consists of one unary function uj per decision variable yj. The function

maps the value true to ⊥ and the value false to φ(cj);
– C ′ consists of one constraint c′j for each cj ∈ C. Each c′j is a relation over

variables var(c′j) = var(cj) ∪ yj. An assignment t to var(c′j) satisfies c′j if
and only if t[var(cj)] ∈ cj and yj = true or t[var(cj)] /∈ cj and yj = false.

For example, the translation of the VCSP for the boolean polycell circuit
yields an OCSP with variables {a, b, c, d, e, f, g, x, y, z, y1, y2, . . . , y9}. Variables
y1 to y9 are decision variables, and variables {a, b, c, d, e, f, g, x, y, z} are non-
decision variables. There are nine unary functions u1, u2, . . . , u9 ∈ U , and nine
constraints fo1, fo2, fo3, fa1, fa2, fc, fd, ff , fg obtained by extending each
constraint of the original VCSP with a decision variable.

Theorem 1. A VCSP and its translation to an OCSP have the same optimal
solution.

The transformation as described in Def. 4 turns a VCSP with n variables and
m constraints into an OCSP with n + m variables and 2 ·m constraints. We can
further reduce the size of the OCSP by observing that for any hard constraint
cj in the VCSP (φ(cj) = >), choosing the value false for its corresponding
decision variable yj can never give rise to a solution of the OCSP because it will
immediately lead to the valuation >. Therefore, we do not need to introduce
decision variables for hard constraints in the VCSP.

Definition 5 (Reduced translation of VCSP to OCSP). A reduced trans-
lation of a VCSP (X,D, C) with valuation structure (E,≤,⊕,⊥,>) and map-
ping φ into an OCSP (X ′, D′, C ′) with unary functions U over decision variables
Y ⊆ X ′ is defined as follows:

– X ′ consists of X and one decision variable yj for each constraint cj ∈ C for
which φ(cj) < >;

– D′ and U are as in Def. 4;
– C ′ consists of one constraint c′j for each cj ∈ C. If φ(cj) = > then c′j = cj,

else c′j is defined as in Def. 4.

The equivalence of optimal solutions (Theorem 1) will also be preserved by
the translation in Def. 5. Note that for the special case of a VCSP that is actually
a CSP (a VCSP where φ(cj) = > for all cj ∈ C), the reduced translation is the
CSP itself. Therefore, solving a CSP as an OCSP does not incur any overhead.

For the boolean polycell example, the translation using Def. 5 no longer
introduces a decision variable for the hard constraints fc, fd, ff , fg corresponding
to observations, and thus the resulting OCSP has only five decision variables y1,
y2, . . . , y5 corresponding to the constraints fo1, fo2, fo3, fa1, fa2.



5 Solving OCSPs

The separation of valued CSPs into unary soft constraints and hard constraints
can be algorithmically exploited by coupling together specialized algorithms for
each part. In particular, for the hard constraint part, we can employ techniques
that are highly optimized for satisfaction problems, and for the soft constraint
part, we can employ techniques that work best for a relatively small optimization
problem but would be infeasible for the original, bigger problem. This hybrid al-
gorithmic approach can be more efficient than general solvers for soft constraints
that do not make assumptions about how the valuations are distributed over the
space of assignments.

5.1 Conflict-directed A* Search

Williams and Ragno [25] describe such a hybrid approach for solving a subclass of
OCSPs. The approach, called conflict-directed A*, uses backtracking search with
arc consistency and conflict-directed backjumping [5] on the hard constraints,
and A* search [10] on the unary soft constraints. Conflict-directed backjumping
is an instance of learning new constraints from inconsistencies that can be very
effective for real-world constraint satisfaction problems. A* search is an instance
of best-first search that uses a lower bound g for the partial assignment made so
far, and an optimistic estimate h of the value that can be achieved when com-
pleting the assignment; at each point in the search, A* expands the assignment
with the best combined value of g and h. A* search is run-time optimal [3] in
that it visits a minimum number of search nodes (among all search methods
having access to the same heuristics). Unfortunately, due to its memory require-
ments, A* search is hardly feasible as a solution method for general VCSPs. As
observed in [25], however, the memory requirements of A* search on OCSPs are
often much more modest, because only assignments to variables that have an
associated cost (decision variables) need to be stored in the search queue, and
conflicts from the CSP part can be exploited to further reduce the size of the
queue.

In the following, we present a simplified variant of conflict-directed A* that
is adapted to OCSPs obtained from VCSPs. The pseudo-code of the algorithm
is shown in Alg. 1. First, local consistency is established in the CSP part of the
OCSP. If an inconsistency arises during local propagation, then the OCSP has
no consistent solution (no assignment with valuation better than >). Otherwise,
the algorithm performs a best-first (A*) search over assignments to the decision
variables Y of the OCSP, using a priority queue of (partial) assignments to Y
that is ordered by their valuation. The A* search is based on two sub-procedures
updateAssignment() and switchAssignment(), shown in Proc. 2 and Proc. 3, re-
spectively. Procedure switchAssignment() establishes a (partial) assignment a to
the decision variables from the queue, trying to reuse as much as possible the
current search tree; it backtracks to the deepest point in the search tree up to
which the current assignment to Y and a are the same. If an inconsistency occurs
while trying to establish the assignment, then a conflict is extracted and added



to the set of constraints, and the assignment is discarded. Next, updateAssign-
ment() is used to assign decision variables that have only one value remaining,
and extend the assignment (and in particular, its valuation) accordingly. Since
this update might increase the valuation of the current assignment, it is now
possible that is no longer the best assignment; in this case, the assignment is
pushed back into the queue. Otherwise (if the current assignment is still the best
one), it is checked whether the assignment to the decision variables is complete.
If the assignment is incomplete, the algorithm chooses a next decision variable
yi to assign and enqueues the two possible branches yi ← true and yi ← false.
If the assignment to the decision variables is complete, then the algorithm uses
procedure consistentAssignment() to check if the assignment is consistent with
the CSP. To this end, consistentAssignment() tries to extend the assignment
to Y ⊆ X to an assignment to X by assigning the remaining (non-decision)
variables X \ Y . In Proc. 4, this is done using depth-first search with conflict-
directed backjumping. The current level of the search tree (which so far involves
only decision variables) is frozen in variable decisionLevel, and whenever a con-
flict occurs that would require to backup higher than this level (backtrackLevel
smaller than or equal to decisionLevel), the current assignment to the decision
variables must be inconsistent and is discarded. Otherwise, the assignment is
output as the next best solution.

Conflict-directed A* is thus a hybrid algorithm for OCSPs that exploits the
distinction between decision variables (which determine the valuation of an as-
signment) and non-decision variables (which determine only the consistency of
an assignment) by treating them separately: it enumerates the assignments to
the decision variables (corresponding to plateaus) in best-first order, and then
checks the consistency of these assignment (corresponding to the plateau being
empty or not). Depending on the problem structure, there can be fewer plateaus
than individual elements of the search space, and therefore this two-step ap-
proach can be more efficient than enumerating the individual elements of the
search space.

Theorem 2. The conflict-directed A* algorithm in Alg. 1 computes the optimal
solution of a given OCSP.

For instance, for the boolean polycell example and the OCSP encoding in
Def. 5, the algorithm has to assign five decision variables y1, y2, . . . , y5 corre-
sponding to the constraints fo1, fo2, fo3, fa1, fa2. Conflict-directed A* starts
with an empty assignment to the decision variables. Propagation does not prune
any values for the decision variables, so the algorithm assigns a decision vari-
able. Assume the decision variables are assigned in the order y1, y2, . . . , y5.
The algorithm thus creates two new assignments, 〈y1 ← true〉 with valuation
0 and 〈y1 ← false〉 with valuation 1, and puts them on the queue. The algo-
rithm pops the assignment 〈y1 ← true〉 from the queue and establishes it using
function switchAssignment(). Two new assignments, 〈y1 ← true, y2 ← true〉
with valuation 0 and 〈y1 ← true, y1 ← false〉 with valuation 1 are created and
enqueued. When establishing the best assignment 〈y1 ← true, y2 ← true〉 us-



Algorithm 1 Conflict-directed A* for OCSPs
1: if not (propagate() = conflict) then
2: queue ← 〈∅,⊥〉
3: while queue 6= ∅ do
4: 〈a, value〉 ← top(queue)
5: queue ← pop(queue)
6: if switchAssignment(a) then
7: updateAssignment(〈a, value〉)
8: if assignment with better value exists in queue then
9: queue ← push(queue, 〈a, value〉)

10: else
11: if exists yi ∈ Y , yi = unknown then
12: queue ← push(queue, 〈a ∪ (yi ← true), v〉)
13: queue ← push(queue, 〈a ∪ (yi ← false), v ⊕ φ(ci)〉)
14: else
15: if consistentAssignment() then
16: output value as best solution
17: exit
18: end if
19: end if
20: end if
21: end if
22: end while
23: end if
24: output no solution

ing switchAssignment(), propagation forces y3 to be false, and thus updateAs-
signment() refines the assignment to 〈y1 ← true, y2 ← true, y3 ← false〉 with
valuation 2. Since a better assignment exists in the queue, this assignment is
pushed back into the queue, and the next best assignment, say 〈y1 ← false〉
with valuation 1, is considered. Since this new assignment and the current as-
signment share no common prefix, switchAssignment() needs to backtrack up
to y1 in order to establish this assignment. After propagation, the updated as-
signment becomes 〈y1 ← false, y3 ← true〉 with valuation 1. The algorithm
proceeds by assigning y2 ← true and y4 ← true, at which point y5 ← true can
be derived by propagation, and therefore a complete decision variable assign-
ment 〈y1 ← false, y2 ← true, y3 ← true, y4 ← true, y5 ← true〉 with valuation
1 is obtained. Procedure consistentAssignment() determines that this assign-
ment is consistent (a satisfying assignment to the non-decision variables is e.g.
〈a ← 1, b ← 1, c ← 1, d ← 1, e ← 0, f ← 0, g ← 1, x ← 0, y ← 1, z ← 1〉), and
thus outputs value 1 as the optimal solution.

Conflict-directed A* search can be further refined in a number of ways. [25,
15] describe extensions that reduce the size of the search queue by generating
new entries only at a point where the current assignment to the decision vari-
ables becomes inconsistent, and an extension to the case of non-binary decision
variables that generates only next best child assignments instead of all children



Procedure 2 updateAssignment(〈a, value〉)
1: for all yi ∈ Y , yi /∈ a, yi 6= unknown do
2: if yi = true then
3: 〈a, value〉 ← 〈a ∪ (yi ← true), value〉
4: else
5: 〈a, value〉 ← 〈a ∪ (yi ← false), value⊕ φ(ci)〉
6: end if
7: end for

Procedure 3 switchAssignment(a)
1: level ← deepest level up to which a and current assignment are equal
2: backtrack(level)
3: for (yi ← val) ∈ a do
4: if yi 6= val then
5: return false
6: else if yi = unknown then
7: yi ← val
8: level ← level + 1
9: if propagate() = conflict then

10: CSP ← CSP ∪ conflict
11: return false
12: end if
13: end if
14: end for
15: return true

Procedure 4 consistentAssignment()
1: decisionLevel ← level
2: while exists xi ∈ X \ Y , xi = unknown do
3: choose val ∈ di

4: xi ← val
5: level ← level + 1
6: di ← di − val
7: if propagate() = conflict then
8: backtrackLevel ← analyze(conflict)
9: if backtrackLevel ≤ decisionLevel then

10: return false
11: else
12: CSP ← CSP ∪ conflict
13: backtrack(backtrackLevel)
14: level ← backtrackLevel
15: end if
16: end if
17: end while
18: return true



at once. It is also easy to extend the algorithm such that it enumerates the
solutions in best-first order, instead of computing only the optimal solution.

6 Implementation

We have implemented the transformation of VCSPs into OCSPs and the conflict-
directed A* search algorithm in C++. Conflict-directed A* search was imple-
mented on top of zChaff [17], one of the most efficient complete solvers for
boolean satisfiability (SAT) problems. The main reasons why we choose zChaff
is that it offers (1) a highly optimized data-structure for local consistency (unit
propagation), called two-literal watching scheme; (2) a method for extracting
small conflicts from inconsistencies, based on so-called unique implications points
(UIPs), which correspond to dominators in the implication graph; and (3) an
efficient variable and value ordering heuristic called variable state independent
decaying sum (VSIDS), which biases the search towards variables that occur in
recently learned clauses, i.e., conflicts. (In addition, zChaff uses other techniques
such as random restarts, which we do not exploit in our prototype).

Our prototypic implementation of conflict-directed A* adopts zChaff’s local
propagation scheme, its conflict extraction method, and its variable/value order-
ing heuristic for the non-decision variables. The decision variables are currently
assigned in no specific order. Using a SAT solver as the underlying satisfiability
engine means that the CSP part of the OCSP has to be first encoded as a SAT
problem, by mapping variables to boolean variables, and mapping constraints
to clauses in conjunctive normal form (CNF). For this purpose, we choose a
logarithmic SAT encoding of the CSP [11], although other encodings are equally
possible (see [23, 6] for two alternative encodings).

7 Experimental Results

We evaluated our prototype on various examples of valued CSPs, and compared
its performance against other algorithms for solving soft constraints.

The algorithms we compared against are branch-and-bound with maintaining
existential directional arc consistency (BB-MEDAC) [7], and cluster tree elim-
ination (CTE) [4]. BB-MEDAC is a recently proposed search algorithm that
combines depth-first branch-and-bound with a form of arc consistency general-
ized to soft constraints. In our experiments we used the implementation that is
part of the toolbar package [22]. CTE is an inference algorithm for both hard
constraints and soft constraints that is based on decomposing the constraint
graph into a tree structure, and solving it using dynamic programming. In our
experiments, the tree was computed using a greedy min-fill heuristic.

All the examples shown below (apart from the random problems) are taken
from the toolbar repository. All experiments were performed under Windows
XP using a 2.8 GHz Pentium 4 PC with 1 GB of Ram.



7.1 Academic Problems

First, we tried conflict-directed A* on three academic puzzles. Since these ex-
amples involve only hard constraints, the corresponding OCSPs do not contain
any decision variables, and thus conflict-directed A* can solve these problems as
efficiently as the underlying satisfiability engine (in our implementation, zChaff
with the given SAT encoding). For all three algorithms, we used a time bound
of 1 minute. Table 1 summarizes the results. Although these examples are rela-
tively small, note that CTE fails to solve all but one of them within the given
time bound.

Table 1. Results for academic puzzles (containing only hard constraints).

CDA* BB-MEDAC CTE

zebra (25 variables, 19 constraints) 0.188 sec 0.016 sec 0.047 sec

send (11 variables, 32 constraints) 0.312 sec 0.031 sec > 1 min

donald (15 variables, 51 constraints) 2.828 sec 0.156 sec > 1 min

7.2 Random Problems

Next, we compared the algorithms on random Max-CSP problems. Max-CSPs
are instances of VCSPs where each constraint has cost 1; thus, the task is to
minimize the number of violated constraints. To generate the examples, we used
a random binary constraint model with four parameters N , K, C, and T , where
N is the number of variables, K the domain size, C the number of constraints,
and T the tightness of each constraint (number of tuples having cost 1). Again,
we used a time bound of 1 minute. Table 2 summarizes the results for six classes
of random Max-CSP, averaged over 10 instances each.

Table 2. Results for random Max-CSPs (10 instances each).

(N , K, C, T ) CDA* BB-MEDAC CTE

(40, 4, 60, 4) 0.0346 sec 0.0092 sec 1.461 sec

(40, 4, 60, 8) 2.184 sec 0.022 sec 4.136 sec

(40, 4, 60, 12) > 1 min 0.0468 sec 7.325 sec

(25, 4, 100, 4) 0.818 sec 0.0156 sec > 1 min

(25, 4, 100, 8) > 1 min 0.169 sec > 1 min

(25, 4, 100, 12) > 1 min 0.131 sec > 1 min

For all these examples, BB-MEDAC converges very fast towards the optimal
solution. Unfortunately, conflict-directed A* does not perform well for the denser
and tighter instances. Further analysis of these cases reveals that the algorithm



actually quickly finds small conflicts that could potentially guide the A* search
towards the optimal solution, but then tries many assignments to the decision
variables that are useless as they are not relevant to (i.e., do not resolve) those
conflicts. Thus, we expect that using a similar variable ordering heuristic for the
decision variables as for the non-decision variables (focusing on variables involved
in conflicts) could substantially improve the performance of conflict-directed A*
for these cases.

7.3 Real-world Problems

Finally, we evaluated the performance of our algorithm on four real-world cir-
cuit examples. These are obtained by turning SAT instances from the DIMACS
challenge into Max-CSPs by making each clause a constraint with cost 1. For
these examples, we used a time bound of 10 minutes. Table 3 summarizes the
results.

Table 3. Results for DIMACS circuit examples.

CDA* BB-MEDAC CTE

ssa0432-003 (435 variables, 1027 constraints) 14.547 sec > 10 min 1.219 sec

ssa7552-038 (1501 variables, 3575 constraints) 28.312 sec > 10 min 142.969 sec

ssa2670-141 (986 variables, 2315 constraints) 101.765 sec > 10 min 6.21 sec

ssa2670-130 (1359 variables, 3321 constraints) 233.89 sec > 10 min 53.203 sec

CTE performs best for most of these examples; however, the run-times for
CTE in Table 3 show only run-times of CTE itself and do not include the time for
computing the tree decomposition, which takes longer than the run-time of CTE
for some of the examples. Also, CTE requires significantly more memory than
the other algorithms for most of the examples. BB-MEDAC, which performed
best for the academic and random examples, cannot solve any of the DIMACS
examples within the given time bound. In fact, even after 10 minutes of compu-
tation, its lower bound (best valuation found so far) is often far off the optimal
solution. We suspect that this has to do with the fact that BB-MEDAC performs
local propagation (existential directional arc consistency) for binary constraints
only, and defers the propagation of non-binary constraints until they become
binary. Thus, the propagation scheme is not effective for the DIMACS exam-
ples where almost all constraints are non-binary. In contrast, conflict-directed
A* exploits efficient local propagation (zChaff’s two literal scheme) for any hard
constraints. In fact, for instance ssa7552-038, which has optimal cost 0, conflict-
directed A* requires only one call to the SAT engine (zChaff) in order to solve it.
The actual run-time of zChaff for this example is only a fraction of the run-time
given in Table 3, indicating that the current implementation of conflict-directed
A* wastes significant time constructing unnecessary search queue entries. We
therefore expect that further improvements to the algorithm to reduce the size



of the search queue by creating entries only as needed (as described in [25, 15])
will have a strong impact for these examples.

8 Discussion and Related Work

In [14], Larrosa and Dechter already observed that transforming soft constraints
into sets of hard and unary soft constraints may provide a useful starting point
for algorithmic development. Conflict-directed A* is an instance of such an ap-
proach; it ties together two algorithms specialized to optimization and satisfac-
tion (A* search and conflict-directed backjumping). The approach is inspired by
techniques from model-based reasoning and diagnosis [24, 9], where problems can
be naturally framed as a mixture of large hard constraints and unary objective
functions (i.e., OCSPs).

The transformation of a VCSP into an OCSP makes this hybrid approach
applicable to soft constraints. It can be viewed as a process of “pre-compiling” the
objective function, which makes the preferences more explicit and can thus make
the problem easier to solve. From this perspective, the separation into unary soft
constraints and hard constraints is only a special case; it is not actually required
by the approach that the soft constraints are unary. Another useful view of the
re-formulation into OCSPs is that of giving a “normal form” for soft constraints,
which makes the degree to which the problem is an optimization problem vs.
a satisfaction problem more explicit. It seems that research in soft constraints
has so far focussed on expressive, unifying frameworks, but much less on such
canonical representations. Optimal CSPs could provide a starting point in this
direction.

A drawback of our re-formulation technique is that it can increase the size
of the problem; since one decision variable is introduced for each soft constraint,
the resulting OCSP may be much bigger than the original VCSP, especially if it
has a high ratio of constraints to variables. However, even if the re-formulation
incurs an increase in the problem size, the benefit of applying dedicated solvers
to each part of the problem (as in conflict-directed A*) may still outweigh the
increase in the search space. The ratio up to which the re-formulation is beneficial
is a subject of further research.

As already indicated in Sec. 5.1, several improvements to conflict-directed A*
are possible, in particular for switchAssignment(), the procedure that is most
critical to the performance of the algorithm. The cost of switching between two
A* search nodes (corresponding to two different assignments to the decision
variables, i.e., two CSPs) could be reduced by incremental techniques that allow
for computing only the difference between two CSP instances. In model-based
reasoning and diagnosis, truth maintenance systems (TMS) [13], which keep
track of the dependencies in the implication graph, are frequently used for this
purpose. However, the additional bookkeeping necessitated by the TMS creates a
trade-off between between making the context switch more efficient and making
the satisfiability check more efficient.



Another direction for future work is to combine conflict-directed A* search
with structural (tree decomposition) methods. As can be seen from the exper-
iments, the two approaches are fairly complementary to each other, and de-
composing the problem into smaller subproblems can dramatically improve per-
formance on examples with low tree width. The combination would involve an
instance of conflict-directed A* running on every cluster in the tree, and a spe-
cial set of decision variables that capture the cost of assignments to variables
shared between clusters (separator variables). We are currently working on such
a decomposed version of conflict-directed A*. Some earlier work on combining
best-first search with tree decompositions can be found in [18], whereas [21] de-
scribes a method for (the simpler case of) combining depth-first search with tree
decompositions.

In our implementation, we used a SAT solver (zChaff) to check consistency of
the candidates (plateaus) enumerated by A* search, mainly for the reason that it
provides an efficient implementation of local propagation and conflict extraction.
Recently, the problem of extending SAT solvers to optimization counterparts
where either the number of satisfied clauses must be maximized (max-SAT) or
the clauses carry a weight to be maximized (weighted max-SAT) has received
considerable attention [26]. Much of this work still focuses on extending the basic
DPLL search algorithm that underlies most complete SAT solvers (especially the
unit propagation and variable ordering heuristic) to this case, and does not yet
exploit more advanced concepts like conflicts. Still, it would be interesting to
compare such approaches to our method.

9 Conclusion

We presented an approach for transforming VCSPs into hard constraints and
unary soft constraints (OCSPs), and an algorithm that exploits this re-formulation
by solving the optimization and satisfiability part separately using a combina-
tion of two specialized algorithms. Because it can exploit structure in the search
space by enumerating whole sets of assignments with equal valuations (plateaus)
rather than just individual assignments, this hybrid approach can be more effi-
cient than algorithms that work directly on the VCSP. We presented an instance
of this approach, called conflict-directed A*, and its prototypic implementation
on top of a SAT solver. The prototype can outperform other solvers for VCSPs on
some problems of practical importance. Promising directions for future research
include more sophisticated, incremental methods for the critical step of switching
between plateaus, and incorporating structural decomposition methods.
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