
A* Search for Soft Constraints
Bounded by Tree Decompositions

Martin Sachenbacher and Brian C. Williams

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{sachenba, williams}@mit.edu

Abstract. Some of the most efficient methods for solving soft con-
straints are based on heuristic search using an evaluation function that is
mechanically generated from the problem. However, if only a few best so-
lutions are needed, significant effort can be wasted pre-computing heuris-
tics that are not used during search. Recently, a scheme for depth-first
branch-and-bound search has been proposed that avoids the problems of
pre-computation by interleaving search with the generation of heuristics
using tree decomposition and dynamic programming. In this paper, we
extend this idea to A* search, which has the advantage of expanding a
minimal number of search nodes to find optimal solutions, and allows to
generate solutions in best-first order. The approach uses tree decomposi-
tion and dynamic programming to generate only those heuristics that are
specifically required to generate a next best solution. The time complex-
ity of the approach is thus optimal among all search algorithms having
access to the same heuristics, while its space complexity is bounded by
structural parameters of the constraint graph (induced width) in the
worst case, and is even lower in the average case.

1 Introduction

Many problems in Artificial Intelligence, such as monitoring, diagnosis, planning,
configuration, and autonomous control, can be framed as constraint optimization
problems [14]. In order for these applications to meet real-time requirements,
an optimal solution should be generated as fast as possible. In order for these
applications to be robust, generating one best solution is often not enough;
instead, a best solution and possibly a limited number of next best solutions
need to be generated. For instance, in fault diagnosis, the goal is to compute the
most likely diagnoses that cover most of the probability density space [12, 17].
Likewise, in planning, it might be necessary to compute a least-cost plan and
also some backup plans in case the best plan cannot be executed.

A* search [7] allows to generate solutions to constraint optimization problems
in best-first order. It uses a lower bound g for the partial assignment made so far,
and an optimistic estimate h of the value that can be achieved when extending
the assignment to all variables. At each point in the search, A* expands the

Submitted to: Journal of Heuristics, Special Issue on Soft Constraints, 2005

2

assignment with the best combined value of g and h. A* is run-time optimal as
it visits a minimal (of all search algorithms having access to the same heuristics)
number of search nodes to generate the best solution [2]. However, its memory
requirements can make the approach infeasible.

[9, 10] have proposed a scheme for combining A* search with a scheme for
computing heuristics from a structural decomposition of the problem into a
hierarchy of subproblems (tree). In this case, the memory requirements of A* can
be bounded by structural parameters of the constraint graph (limited induced
width). The method consists of a pre-computation phase that computes heuristic
values using dynamic programming on the tree, and a search phase that guides
search using the pre-computed values. However, if only a few best solutions are
needed, then the method can waste significant effort pre-computing heuristics
that are not used during search.

More recently, [8, 15] have proposed an approach to interleave search with
the computation of values using dynamic programming on a tree decomposition
of the problem. In the following, we call this approach demand-driven heuristics
computation in order to distinguish it from pre-computation of heuristics as in
[9, 10]. The method thus benefits from the complexity bounds provided by the
structural decomposition, while avoiding the problems of pre-computation of
heuristics and thus allowing a much smaller average-case complexity. However,
the method in [15] is based on depth-first branch-and-bound search and not A*
search.

In this paper, we extend the ideas in [9, 10, 15] and present an algorithm for
demand-driven heuristics computation for A* search. The approach interleaves
A* search with dynamic programming on a tree decomposition of the problem,
performing dynamic programming on the tree only to an extend that is specifi-
cally required to generate a next best solution. Thus, as in [9, 10], the approach
benefits from the optimal time complexity of A* search, while its worst-case
memory requirements are bounded by structural parameters of the constraint
graph. However, due to the demand-driven computation similar to [8, 15], the
average case memory requirements are typically much lower than those of the ap-
proach in [9, 10]. A key step of our approach that allows us to combine A* search
with demand-driven heuristics computation is a dual problem formulation that
treats constraints as variables and tuples of constraints as domain values. We
present the approach in the context of valued constraint satisfaction problems
(VSCSPs) [14], a general framework for soft constraints with totally ordered
preferences. We illustrate the performance of our algorithm with experimental
results on randomly generated problems.

2 Valued Constraint Satisfaction Problems

Definition 1 (Valued Constraint Satisfaction Problem [14]). A valued
constraint satisfaction problem (VCSP) consists of a tuple (X,D, F) with vari-
ables X = {x1, . . . , xn}, finite domains D = {d1, . . . , dn}, constraints F = {f1,
. . . , fm}, and a valuation structure (E,≤,⊕,⊥,>). The constraints fj ∈ F are

3

Fig. 1. The full adder example consists of two AND gates, one OR gate, and two XOR
gates. Variables x, z, s, and c are observed as indicated

functions defined over var(fj) ⊆ X and map assignments to var(fj) to values
in E. The set E is totally ordered by ≤ with a minimum element ⊥ ∈ E and a
maximum element > ∈ E, and ⊕ is an associative, commutative, and monotonic
operation with identity element ⊥ and absorbing element >.

The set of valuations E expresses different levels of constraint violation, such
that ⊥ means satisfaction and > means unacceptable violation. The operation
⊕ is used to combine (aggregate) several valuations. A constraint is hard, if all
its valuations are either ⊥ or >.

For example, the problem of diagnosing the full adder circuit in Fig. 1 can be
framed as a VCSP with variables X = {u, v, w, y, a1, a2, e1, e2, o1}. Variables u
to y describe boolean signals and have domain {0, 1}. Variables a1 to o1 describe
the mode of each gate, which can either be G (good), or U (unknown failure).
The VCSP has five constraints fa1, fa2, fe1, fe2, fo1, one for each gate in the
circuit. Each constraint expresses that if the gate is G then it correctly performs
its boolean function, and if it is U then it is broken in an unknown way and
no assumption is made about its behavior. The valuation structure captures the
likelihood of being in a mode, and is ([0, 1],≥, ·, 1, 0) (with · being multiplication
over the real numbers). We assume Or-gates and Xor-gates have a .95 probability
of being G, and a .05 probability of being U, whereas And-gates have a .99
probability of being G and a .01 probability of being U. Table 1 shows the
constraints for the example, where each tuple is assigned the probability of its
corresponding mode.

Definition 2 (Combination and Projection). Let f and g be two constraints
defined over var(f) and var(g), respectively. Let t ↓Y denote the restriction of
an assignment t to a subset Y of its variables. Then,

1. The combination of f and g, denoted f ⊕ g, is the constraint over var(f) ∪
var(g) that maps each t to the value f(t ↓var(f))⊕ g(t ↓var(g));

2. The projection of f onto a set of variables Y , denoted f ⇓Y , is the constraint
over Y ∩ var(f) that maps each t to the value min{f(t1), f(t2), . . . , f(tk)},
where t1, t2, . . . , tk are all the assignments for which ti ↓Y = t.

4

Given a VCSP and a subset Z ⊆ X of variables of interest, a solution is
an assignment t with value ((

⊕m
j=1 fj) ⇓Z)(t). In particular, for Z = ∅, the

solution is the value α∗ of an assignment with minimum constraint violation,
that is, α∗ = (

⊕m
j=1 fj) ⇓∅. For the full adder circuit example, α∗ is 0.044,

corresponding to a single failure either of the Or-gate or of the first Xor-gate.

3 Tree Decomposition

An important class of algorithms for constraint optimization finds solutions by
searching through the space of possible assignments, guided by a heuristic eval-
uation function. In the following, we focus on the approach of automatically
generating evaluation functions from solutions to smaller subproblems of the
original problem. This idea underlies many of the known most efficient search
algorithms, such as branch-and-bound with mini-bucket elimination (BBMB)
[10], best-first search with mini-bucket elimination (BFMB) [9], Russian Doll
search (RDS) [16], and backtracking with tree decompositions (BTD) [8, 15].

A problem can be broken down into smaller subproblems (”clusters”) by
decomposing the constraint hypergraph H, which associates a node with each
variable xi, and a hyperedge with the variables var(fj) of each constraint fj .

Definition 3 (Tree Decomposition [6, 11]). A tree decomposition for a prob-
lem (X, D, F) is a triple (T, χ, λ), where T = (V, E) is a rooted tree, and χ, λ
are labeling functions that associate with each node (cluster) vi ∈ V two sets
χ(vi) ⊆ X and λ(vi) ⊆ F , such that

1. For each fj ∈ F , there exists exactly one vi such that fj ∈ λ(vi). For this
vi, var(fj) ⊆ χ(vi) (covering condition);

2. For each xi ∈ X, the set {vj ∈ V | xi ∈ χ(vj)} of vertices labeled with xi

induces a connected subtree of T (connectedness condition).

In addition, we demand that the constraints appear as close to the root of the
tree as possible, that is,

3. If var(fj) ⊆ χ(vi) and var(fj) 6⊆ χ(vk) with vk the parent of vi, then fj ∈
λ(vi).

Table 1. Constraints for the example (tuples with value 0 are not shown).

fa1: a1 w y fa2: a2 u v fe1: e1 u y fe2: e2 u fo1: o1 v w

G 0 0 .99 G 0 0 .99 G 1 0 .95 G 0 .95 G 0 0 .95
G 1 1 .99 G 1 1 .99 G 0 1 .95 B 0 .05 B 0 0 .05
B 0 0 .01 B 0 0 .01 B 0 0 .05 B 1 .05 B 0 1 .05
B 0 1 .01 B 0 1 .01 B 0 1 .05 B 1 0 .05
B 1 0 .01 B 1 0 .01 B 1 0 .05 B 1 1 .05
B 1 1 .01 B 1 1 .01 B 1 1 .05

5

Fig. 2. Hypergraph for the example in Fig. 1.

Fig. 2 shows the hypergraph for the example, and Fig. 3 shows two possible
tree decompositions.

The separator of a node, denoted sep(vi), is the set of variables that vi shares
with its parent node vj : sep(vi) = χ(vi) ∩ χ(vj). For convenience, we define
sep(vroot) = ∅. Intuitively, sep(vi) is the set of variables that connects the sub-
problem rooted at vi with the rest of the problem:

Definition 4 (Subproblem). For a VCSP and a tree decomposition (T, χ, λ),
the subproblem rooted at vi is the VCSP that consists of the constraints and
variables in vi and any descendant vk of vi in T , with variables of interest sep(vi).

For a tree node vi, we denote solutions to the subproblem rooted at vi by
h(vi). The subproblem rooted at vroot is then identical to the problem of finding
α∗ for the original COP.

The benefit of a tree decomposition is that each subproblem needs to be
solved only once (possibly involving re-using its solutions); the optimal solu-
tions can be obtained from optimal solutions to the subproblems using dynamic
programming. Thus, the complexity of constraint solving is reduced to being
exponential in the size of the largest cluster only.

4 Generating Search Heuristics from Decompositions
using Dynamic Programming

Kask and Dechter [9, 10] show how the solutions h(vi) to subproblems can be
exploited to guide the search for solutions to the original constraint optimization
problem with variables of interest X.

In order to exploit the decomposition during search, the variables must be
assigned in an order that is compatible with the tree, namely by first assigning
the variables in a cluster before assigning the variables in the rest of the subprob-
lems rooted in the cluster. This is called a compatible order in [8]. For example,
for both trees shown in Fig. 1, a compatible order is u, v, w, y, a1, a2, e1, e2, o1.

In [9, 10], the approach to guide search by solutions to subproblems is pre-
sented for a so-called bucket trees. A bucket tree is a specialization of a tree

6

Fig. 3. Bucket tree (left) and tree decomposition (right) for the example in Fig. 1. The
trees show the labels χ and λ for each node.

decomposition where there is one node (cluster) for each variable in the prob-
lem, and thus (provided that the clusters of the tree are traversed in a fixed
order, such as depth-first left-first), there exists exactly one compatible order.

Assume the compatible variable order of the bucket tree is x1 ≺ . . . ≺ xn.
Consider a point in the search where the current assignment is x1 ← x0

1, . . . , xi ←
x0

i . Let function g(i) be defined as the combination of all constraint functions in
the λ-label of nodes v1, . . . , vi in the bucket tree:

g(i) =
i⊕

j=1

(
⊕

fk∈λ(vj)

fk).

Let function h(i) be defined as the combination of all solutions to subproblems
of nodes c1, . . . , cl that are children of v1, . . . , vi:

h(i) =
l⊕

j=1

h(cj).

Then g(i) ⊕ h(i)(x0
1, . . . , x

0
i) is the best value achievable when completing this

assignment.
For example, consider the bucket tree on the left-hand side of Fig. 3 for the

case for the case where u to a1 have been assigned a value, that is, nodes v1 to v5

have been traversed. Then g(5) = fa1, and h(5) = h(v6)⊗ h(v7)⊗ h(v8)⊗ h(v9).
We generalize the idea of deriving bounding functions for search from bucket

trees to tree decompositions. Consider again an assignment x1 ← x0
1, . . . , xi ←

x0
i . Let function g(i) be generalized to be the combination of all constraints in

the λ-label of nodes v1, . . . , Vp(xi) that are fully instantiated:

g(i) =
Vp(xi)⊗

j=1

(
⊗

fk∈λ(vj),var(fk)⊆{x1,...,xi}
fk). (1)

7

Let function h(i) be defined as the combination of all functions in the λ-label of
Vp(xi) that are not fully instantiated, and all solutions to subproblems of nodes
c1, . . . , cl that are children of v1, . . . , Vp(xi), projected on x1, . . . , xi:

h(i) = (
l⊗

j=1

h(cj)
⊗

fk∈λ(Vp(xi)),var(fk) 6⊆{x1,...,xi}
fk) ⇓{x1,...,xi} . (2)

For example, consider the tree on the right-hand side of Fig. 3 and the case
where the variables {u, v, w, y, a1} have been assigned a value. Then g(1) ⊗ h(1)

with g(1) = fa1 and h(1) = fa2 ⇓u,v ⊗h(v2) ⊗ h(v3) is an (exact) bounding
function for the value that can be achieved when completing this assignment.

Kask and Dechter [9, 10] present two search algorithms BBMB and BFMB
that exploit this idea of mechanically generating search heuristics from a decom-
position of the problem (they also present a way to approximate the heuristics;
we will return to this issue in Section 8). The algorithms proceed in two separate
phases. First, a pre-computation phase computes the functions h(vi) (solutions
to the subproblems), and then in a second phase, search is guided using the pre-
computed values. BBMB uses branch-and-bound search, whereas BFMB uses
best-first (A*) search. It is shown in [9] that, given enough memory, the best-
first search variant can outperform branch-and-bound by a factor of 5-10.

5 Demand-Driven Heuristics Computation

However, using a separate phase to pre-compute all functions h(vi) can be waste-
ful, because typically only a fraction of the heuristic values will be needed to gen-
erate a best solution to the problem. The cost of pre-processing can be avoided
by interleaving the dynamic programming and the search phases with each other.
In the following, we call this approach demand-driven heuristics computation in
order to distinguish it from pre-computation of heuristics as in [9, 10].

Recently, [8, 15] have proposed an algorithm called BTD (backtracking with
tree decompositions) that achieves interleaving of depth-first branch-and-bound
search with dynamic programming on tree decompositions. BTD assigns vari-
ables along a compatible order, beginning with the variables in χ(vroot). Inside a
cluster vi, it proceeds like classical branch-and-bound, taking into account only
the constraints λ(vi) of this cluster. Once all variables in the cluster have been
assigned, BTD considers its children (if there are any). Assume vj is a child of vi.
BTD first checks if the restriction of the current assignment to the variables in
sep(vj) has previously been computed as a solution to the subproblem rooted at
vj . If so, the value of this solution (called a “good”) is retrieved and combined
with the value of the current assignment, thus preventing BTD from solving
the same subproblem again (called a “forward jump” in the search). Otherwise,
BTD solves the subproblem rooted at vj for the current assignment to sep(vj)
and the current upper bound, and records the solution as a new good. Its value
is combined with the value of the current assignment, and if the result is below
the upper bound, BTD proceeds with the next child of vi.

8

In fact, the goods that the BTD algorithm computes correspond to a partial
construction of the solutions to the subproblems h(vi). BTD thus benefits from
the complexity bounds of dynamic programming on tree decompositions, while
avoiding the problem of performing dynamic programming prior to search and
thus allowing a much smaller average-case complexity. It has been shown [8] that
BTD can outperform BBMB by several orders of magnitude.

6 A* Search with Demand-Driven Heuristics

In the following, we extend the idea of demand-driven heuristics computation
from depth-first branch-and-bound search to the case of A* search. A* search [7]
uses a lower bound g for the partial assignment made so far, and an optimistic
estimate h of the value that can be achieved when extending the assignment to
all variables. At each point in the search, A* expands the assignment with the
best combined value of g and h. Given the same heuristic, A* search is faster
than branch-and-bound because it can be shown to expand an optimal number
of search nodes to find the best solution [2].

Combining demand-driven heuristics computation with A* search will thus
result in an algorithm with a time complexity that is optimal among all search
algorithms having access to the same heuristics. In addition, its space complexity
is bounded by dynamic programming and, as we have seen for BTD, typically
much lower in the average case.

The main step of extending demand-driven heuristics computation to A*
search is to limit the expansion of an A* search node to expanding the next best
child only, instead of expanding all children of the node. This in turn allows to
limit the computation of heuristics to compute a value for the next best child
only, as illustrated in Fig. 4.

Proposition 1. If g0 ≤ g1 for g0, g1 ∈ E, then for h0 ∈ E, g0 ⊕ h0 ≤ g1 ⊕ h0.

Proof. Because ⊕ distributes over min, min(g0⊕h0, g1⊕h0) = h0⊕min(g0, g1).
Because g0 ≤ g1, min(g0, g1) = g0. Thus, min(g0 ⊕ h0, g1 ⊕ h0) = g0 ⊕ h0.

Proposition 1 is an instance of preferential independence [1, 17] and implies
that in A* search, if the value of a successor node is better than or equal to the
values of all its siblings, then the siblings cannot immediately lead to solutions
that have a better value. Consequently, it is sufficient to generate this successor
node only and to delay the generation of the siblings, rather than generating
all possible successors at once (see Fig. 4). Exploiting preferential independence
can significantly limit the number of nodes created at each expansion step in
A* search. Here, we exploit the idea in the following way: if the expansion of a
search node can be limited to expanding the next best child only, then also the
computation of a heuristics can be limited to computing a heuristic value for the
next best child only.

9

Fig. 4. Instead of expanding all children of a search node at once (left), preferential
independence can be exploited to limit expansion to the next best child only (right).
Consequently, at each expansion step, it is sufficient to compute a heuristic value for
the next best child only.

Dual Problem Reformulation. However, in order to apply this incremental
expansion scheme, we need to know in advance which child of the search node
has the next best valuation g ⊕ h. Unfortunately, in a valued CSP it is not easy
to establish such an order among the search nodes a priori, because valuations
are defined for partial assignments (per constraint) rather than for assignments
to individual variables as in the search tree.

One way to solve this problem is to switch to a dual representation of the
valued CSP, which treats constraints as variables, and tuples of constraints as
their possible domain values. In the dual representation, there are only unary
soft constraints, and binary hard constraints corresponding to equality of shared
variables (see [13]). Thus, in the dual representation, the desired immediate
relationship exists between assigning a variable – corresponding to assigning a
tuple to a unary constraint – and obtaining a valuation g.

Approximating the Heuristics. However, which child has the best value
might then still be affected by the value of the heuristics h; if the heuristic value
h is better for some child than for another, then this child might become the
next best child, even if its value g is worse.

The approach that we use to solve this problem is to choose an heuristic
for A* that is the same for all children of a node. Consequently, if we sort the
tuples of the constraints (values in the dual representation) according to their
valuations, then we will know in advance the order of the children just based on
their g value. In the dual representation, we can find such an heuristic by simply
dropping the hard (equality) constraints from consideration in the heuristics;
this heuristic is clearly admissible (optimistic), and has the desired property
that it is equal for all children of a node.

Distributing the Search Tree. We make one last step that consists of avoid-
ing to maintain an explicit A* search tree for each tree node (cluster). This
will not reduce the size of the search tree, but allows for processing it in a

10

Fig. 5. Computational scheme for the tree decomposition in Fig. 3. The circled frag-
ments correspond to the nodes v1, v2 and v3 of the tree.

distributed way. It is accomplished by replicating each level in the search tree
as a constraint (the constraint consists of the current assignments at this level
of the search tree). Thus, computation can proceed independently not only for
each subtree, but also within each tree node (though this is not exploited in
our current implementation). For instance, consider again node v1 of the tree
decomposition in Fig. 3. In order to find a tuple for this node, the constraints
fa1, fa2, h(v2) and h(v3) have to be assigned a tuple. Instead of maintaining a
search tree with four levels (corresponding to the four constraints), we break
it down using an intermediate function f1 that is the result of combining fa1

and fa2, and an intermediate function f2 that is the result of combining f1 and
h(v2). The resulting scheme is illustrated in Fig. 5. In Fig. 5, the bold boxes cor-
respond to given constraints, whereas the other boxes correspond to constraints
that need to be computed. The variable order (sequence of functions in the dual
representation) is implicitly encoded in this scheme: each constraint operator
in the network operates as a “consumer” of the constraints of its children, and
“produces” a constraint for its parent. We assume two functions producer() and
consumer() that return the producing (preceding) and consuming (succeeding)
operator of a constraint, respectively. Function producer() returns nil for given
constraints at the leaves of the scheme, and function consumer() returns nil for
the constraint fvroot at the root of the tree.

6.1 The BFOB Algorithm

The resulting algorithm can then be understood as best-first, incremental vari-
ants of the constraint operators. We illustrate the algorithm by first walking
through an example. For instance, a best tuple of the function f3 in Fig. 5
is computed as follows: Consider the best tuple of the function fe2, which is
〈e2 ← G, u ← 0〉 with value .95 (first tuple of fe2 in Table 1). The projection
of this tuple on u, which is 〈u ← 0〉 with value .95, is necessarily a best tuple

11

function BFOB(s, i)
if (i ≤ length(s)) then

return s[i]
end if
op ← producer(s)
if (op 6= nil) then

case op
proj: 〈t, v〉 ← nextBestProj(op)
comb: 〈t, v〉 ← nextBestComb(op)

end case
if (〈t, v〉 6= nil) then

append(s,〈t, v〉)
return 〈t, v〉

end if
end if
return nil

Fig. 6. Function BFOB for best-first search with on-demand bound computation.

of h(v3). Similarly, a best tuple of fa1 can be combined with a best tuple of
fa2, for instance the first tuples of fa1 and fa2 in Table 1. The resulting tuple
〈u ← 0, v ← 0, w ← 0, y ← 0, a1 ← G, a2 ← G〉 is necessarily a best tuple of con-
straint f1. This tuple needs to be combined with a tuple of h(v2). A best tuple for
h(v2) is generated by combining the best tuple of fo1 with a best tuple of fe1 and
projecting the result onto u, v, w, and y, yielding 〈u ← 1, v ← 0, w ← 0, y ← 0〉
with value .90. Since this tuple does not combine with the tuple found for f1

so far, generation of a next best tuple is triggered for both h(v2) and f1. The
next best tuple of h(v2) is 〈u ← 0, v ← 0, w ← 0, y ← 1〉 with value .90. This
tuple also does not combine with any of the tuples for f1 generated so far.
The process continues until a third tuple for h(v2) is generated; for example,
by combining the third tuple of fe1 in Table 1 with the best tuple of fo1. The
resulting tuple 〈u ← 0, v ← 0, w ← 0, y ← 0〉 for hv2 combines with the first
tuple that has been generated for f1 and the tuple in h(v3) to a best tuple for
fv1 , 〈u ← 0, v ← 0, w ← 0, y ← 0, a1 ← G, a2 ← G〉 with value 0.044. Notice
that in order to compute this best tuple, large parts of the constraints fa1, fa2,
fe1, fe2, and fo1 never needed to be visited, and it is not necessary to construct
the constraints h(v2) and h(v3) completely.

Fig. 6 shows the pseudocode of BFOB (best-first search with on-demand
bound computation). BFOB(s, i) returns the i-th best tuple of a constraint s,
or generates it, if necessary, by calling the constraint operator that produces
the constraint. Each constraint is represented as a list of pairs 〈t, v〉, where t is
a tuple and v ∈ A. The tuples are listed in decreasing order according to their
value v. Function length() returns the length of the list. Function s[i] returns the
i-th tuple-value pair of a constraint s, i ≤ length(s). Function append() appends

12

function nextBestProj(op)
while (index(op) 6= 0) do
〈t, v〉 ← BFOB(input(op),index(op))
if (〈t, v〉 6= nil) then

t1 ← t ⇓var(output(op))

index(op) ← index(op) + 1
// check if result exists
for each 〈t2, v2〉 in output(op) do

if (t1 = t2) then goto while
end if

end for
// output next best result
return 〈t1, v〉

else
index(op) ← 0

end if
end while
return nil

function nextBestComb(op)
while (queue(op) 6= ∅) do
〈i, j, v〉 ← pop(queue(op))
〈t1, v1〉 ← BFOB(input1(op),i)
if (〈t1, v1〉 6= nil) then
〈t2, v2〉 ← BFOB(input2(op),j)
if (〈t2, v2〉 6= nil) then

t ← t1⊕ t2
if (var(input1(op)) 6⊇ var(input2(op))) then

// create next best sibling w.r.t. input1
〈t1′, v1′〉 ← BFOB(input1(op),i+1)
if (〈t1′, v1′〉 6= nil) then

push(queue(op),〈i + 1, j, v1′ ⊕ v2〉)
end if

end if
if (i = 1) then

// create next best sibling w.r.t. input2
〈t2′, v2′〉 ← BFOB(input2(op),j+1)
if (〈t2′, v2′〉 6= nil) then

push(queue(op),〈i, j + 1, v1⊕ v2′〉)
end if

end if
// output next best result
if (t 6= nil) then

return 〈t, v1⊕ v2〉
end if

end if
end if

end while
return nil

Fig. 7. Best-first variants of constraint projection and constraint combination.

13

a tuple t with value v to the constraint. BFOB() is based on the two functions
nextBestProj() and nextBestComb() shown in Fig. 7, that implement best-first
variants of the constraint operators ⇓ and ⊕, respectively.

Function nextBestProj() in in Fig. 7 consumes an input constraint input().
It takes a next best tuple from this constraint, computes its projection, and
then checks whether the resulting tuple already exists on the output constraint
output(). If the tuple does not already exist, it is a next best tuple of the output
constraint. An index index() is used to keep track of which tuple from the input
is processed next.

Function nextBestComb() in in Fig. 7 consumes two input constraints in-
put1() and input2(). The tuples in the input constraints are combined in a
best-first manner using A* search as described above. A search queue queue()
is used to keep track of which tuples from input1() and input2() are combined
next. Each entry in queue() is a triple 〈i, j, v〉, where i is the index of a tuple
〈t1, v1〉 in input1(), j is the index of a tuple 〈t2, v2〉 in input2(), and v ∈ A is the
heuristic value v1⊕ v2 (which is optimistic because it does not take into account
the hard constraints).

Function nextBestComb() pops an entry with a best value v from the queue
and computes the respective combination of tuples from input1() and input2().
If the result is not empty (that is, the tuples match), then the combination is
a next best tuple of the output constraint. A next best sibling of the entry is
generated that points to the next entry on stream input1(). For the first tuple
of input1(), in addition a next best sibling is generated that points to the next
entry on stream input2(). An optimization is possible for the special case where
the variables of the constraint of input1() are a superset of the variables of
the constraint of input2(). In this case (it is known as semi-join), each tuple of
input2() can combine with at most one tuple of input1(). Hence, no next best
sibling needs to be generated that points to the next tuple of input1().

Initially, the tuples of the constraints are sorted according to their values.
For each constraint projection operator, index() is initially set to 1. For each
constraint combination operator, queue() is initially the singleton {〈1, 1,1〉}.
The best tuple of the function fvroot at the root of the scheme, and thus the
optimal solution of the VCSP, can then be obtained by calling BFOB(fvroot ,1).

Theorem 1 (Correctness). The algorithm BFOB is sound, complete, and ter-
minates.

Demand-driven heuristics computation is not computationally more complex
than classical dynamic programming methods for best-first search described in
Section 3:

Theorem 2 (Complexity). Let (T, χ, λ) be a tree decomposition, T = (V,E).
Let w = maxvi∈V (| χ(vi) |)− 1 be the width of the tree decomposition. Then the
algorithm BFOB computes an optimal solution in time O((| F | + | V |)·exp(w))
and space O((| V |) · exp(w)).

However, the average complexity of demand-driven function computation can
be much lower if only some best tuples of the resulting function are required.

14

Table 2. Results for random Max-CSPs, low density networks.

T C N K BFTC (% time) BFOB (% time)

4 (25%) 20 15 4 100% 1.4%

8 (50%) 20 15 4 100% 3.2%

Table 3. Results for random Max-CSPs, medium density networks.

T C N K BFTC (% time) BFOB (% time)

4 (25%) 15 10 4 100% 4.5%

8 (50%) 15 10 4 100% 14.3%

Table 4. Results for random Max-CSPs, medium to high density networks.

T C N K BFTC (% time) BFOB (% time)

4 (25%) 20 10 4 100% 9.7%

8 (50%) 20 10 4 100% 38.8%

7 Experimental Results

We evaluated the performance of BFOB on the task of generating best solutions
to random Max-CSP problems. Max-CSP can be formulated as a constraint op-
timization problem over the c-semiring (N+

0 ∪∞, min,+,∞, 0), where the tuples
of a constraint fj ∈ F have value 0 if the tuple is allowed, and value 1 if the tuple
is not allowed. To generate the constraints, we used a binary constraint model
with four parameters N , K, C, and T , where N is the number of variables, K is
the domain size, C is the number of constraints, and T is the tightness of each
constraint. The tightness of a constraint is the number of tuples having value 1.

We compared the performance of BFOB relative to the alternative approach
of pre-computing all functions hvi using dynamic programming pre-processing
as described in Sec. 3. We call this alternative algorithm BFTC (for best-first
search with tree clustering). BFTC is analogous to the algorithm BFMB de-
scribed in [10]. Tables 2, 3 and 4 show the results of experiments with three
classes of Max-CSP problems, N=15, K=4, C=20 (low density), N=10, K=4,
C=15, (medium density), and N=10, K=4, C=20 (medium to high density). In
each class, 10 instances where generated for 4 ≤ T ≤ 8 and we compared the
relative mean runtime of BFOB and BFTC. The comparison does not include
the time for computing the tree decomposition of the problem. All experiments
were performed using a Pentium 4 CPU and 1 GB of RAM.

Tables 2 to 4 indicate that BFOB leads to significant savings especially when
computing best solutions to problems with low constraint tightness and sparse to
medium constraint networks. This is consistent with experiments in [10], showing
that pre-computing bounding functions is inefficient especially for problems that
have many solutions. We are working on a comparison of BFOB with BTD and
other algorithms for Max-CSPs to study time and space requirements of dynamic
programming with A* search versus branch-and-bound.

15

8 Related Work and Discussion

Our algorithm is an adaption of the algorithm BTD by Terrioux and Jégou [15]
to the case of A* search. The view in [15] is to improve backtracking by record-
ing information (goods) during search; we illustrated how this hybrid approach
can be understood as demand-driven computation of a heuristic using dynamic
programming. One benefit of this new perspective is that techniques to approx-
imate heuristics (bounding functions) become applicable in this framework. For
instance, Dechter and Rish [4] present a method to decrease the complexity of
bound computation by defining an approximate version of dynamic program-
ming called mini-bucket elimination (called mini-clustering in [4] for the more
general case of tree decompositions). The idea of mini-bucket elimination is to
limit the size of the computed functions by restricting their maximum arity to a
fixed value z. This is accomplished by partitioning functions f1, . . . , fk that need
to be combined into sets P1, . . . , Pm called mini-clusters, each having a combined
number of variables less than or equal to z. Then the function (

⊗k
i=1 fi) ⇓Y is

bounded by the function f =
⊗m

i=1(
⊗

fj∈Pi
⇓Y) that applies projection early at

the level of mini-clusters. The accuracy of the approximation can be controlled
by varying the parameter z. The algorithm BFMB(z) in [9, 10] combines mini-
clustering and best-first search. Lower values for z lead to loose bounds that are
easy to compute, but will guide the search less and therefore necessitate more
backtracking in order to find optimal solutions. Kask and Dechter [10] empir-
ically observe an U-shaped performance curve when varying the parameter z,
that is, a trade-off between bound accuracy and search. It would be interesting
to combine BFOB with approximate bound computation using mini-buckets.
This can be accomplished by replacing the scheme of operators and functions
(Fig. 5) with an approximate mini-clustering scheme.

A major difference of our approach to the algorithm in [15] is that we use
best-first (A*) search instead of branch-and-bound. A* search is faster than
branch-and-bound, but it requires more memory. BBMB(z) [10] is a variant
of BFMB(z) for branch-and-bound based on bucket trees. BBBT(z) [5] extends
BBMB(z) to tree decompositions. Each time a variable needs to be assigned dur-
ing search, BBBT(z) solves the single-variable optimization problem (Z = {xi})
for all unassigned variables. That is, like BFOB and BTDval, BBBT(z) inter-
leaves dynamic programming and search. Unlike BFOB and BTD, BBBT(z) can
dynamically change the variable order and prune domains during search. How-
ever, BBBT(z) does not compute bounds incrementally on-demand, but instead
starts a fresh dynamic programming phase at each search node. This can lead
to redundant computations, and therefore BBBT(z) and BBMB(z)/BFMB(z)
do not dominate each other [5]. Since the algorithm presented in this paper
is essentially an improvement of BFMB(z), we expect that BBBT(z) does not
dominate BFOB, either. However, variable reordering based on smallest domain
size as in BBBT(z) is not possible in BFOB because the values of variables are
only partially known. An interesting direction for future work would be to ex-
tend BFOB such that dynamic programming is not performed on the level of
individual tuples, but on sets (blocks) of tuples that have the same valuation.

16

9 Summary and Conclusion

Focusing on a few best solutions is an important requirement in many applica-
tions. A* search can generate solutions to soft constraints in best-first order, and
faster than branch-and-bound search as it expands a minimal number of search
nodes. However, its memory requirements can make A* search infeasible. We
presented an algorithm called BFOB that guides A* search for valued CSPs by
bounds computed using tree decompositions and dynamic programming. BFOB
interleaves A* search and dynamic programming to compute bounds on-demand,
and only to an extent that is necessary in order to generate a next best solu-
tion. It thus combines the benefits of A* search with a space complexity that is
bounded by structural parameters of the constraint graph, and is even lower in
the average case.

References

[1] Debreu, C.: Topological methods in cardinal utility theory. In: Mathematical Meth-
ods in the Social Sciences, Stanford University Press (1959)

[2] Dechter, R., Pearl, J.: Generalized Best-First Search Strategies and the Optimality
of A*. Journal of the ACM 32 (3) (1985) 505–536

[3] Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
38 (1989) 353–366

[4] Dechter, R., Rish, I.: A scheme for approximating probabilistic inference. Proc.
UAI-97 (1997) 132–141

[5] Dechter, R., Kask, K., Larrosa, J.: A General Scheme for Multiple Lower Bound
Computation in Constraint Optimization. Proc. CP-01 (2001)

[6] Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence 124 (2) (2000) 243–282

[7] Hart, P. E., Nilsson, N. J., and Raphael, B.: A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Trans. Sys. Sci. Cybern. SSC-4 (2) (1968)
100–107.

[8] Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence 146 (2003) 43–75

[9] Kask, K., and Dechter, R.: Mini-Bucket Heuristics for Improved Search. Proceed-
ings of Uncertainty in AI (UAI-99) (1999)

[10] Kask, K., Dechter, R.: A General Scheme for Automatic Generation of Search
Heuristics from Specification Dependencies. Artificial Intelligence 129 (2001) 91–131

[11] Kask, K., et al.: Unifying Tree-Decomposition Schemes for Automated Reasoning.
Technical Report, University of California, Irvine (2001)

[12] de Kleer, J.: Focusing on Probable Diagnoses. Proc. AAAI-91 (1991) 842–848

[13] Larrosa, J., Dechter, R.: On the Dual Representation of Non-binary Semiring-
based CSPs. Working papers of the Soft Constraints Workshop (SOFT-00), Singapore
(2000)

[14] Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:
hard and easy problems. Proc. IJCAI-95 (1995) 631–637

[15] Terrioux, C., Jégou, P.: Bounded Backtracking for the Valued Constraint Satis-
faction Problems. Proc. CP-03 (2003)

17

[16] Verfaillie, G., Lemaitre, M., and Schiex, T.: Russian Doll Search for Solving Con-
straint Optimization Problems. In Proc. of the 13th National Conference on Artificial
Intelligence (AAAI-96) (1996) 181–187

[17] Williams, B., Ragno, R.: Conflict-directed A* and its Role in Model-based Em-
bedded Systems. Journal of Discrete Applied Mathematics, to appear.

