1

Many problems in Al, such as planning, diagnosis, and au
tonomous control, can be formulated as finite domain con

Bounded Search and Symbolic Inference for Constraint Optimization

Martin Sachenbacher and Brian C. Williams
Massachusetts Institute of Technology
Computer Science and Atrtificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139

{sachenba,williamg@mit.edu

Abstract

Constraint optimization underlies many problems
in Al. We present a novel algorithm for finite
domain constraint optimization that generalizes
branch-and-bound search by reasoning about sets
of assignments rather than individual assignments.
Because in many practical cases, sets of assign-
ments can be represented implicitly and com-
pactly using symbolic techniques such as deci-
sion diagrams, the set-based algorithm can com-
pute bounds faster than explicitly searching over in-
dividual assignments, while memory explosion can
be avoided by limiting the size of the sets. Varying
the size of the sets yields a family of algorithms that
includes known search and inference algorithms as
special cases. Furthermore, experiments on random
problems indicate that the approach can lead to sig-
nificant performance improvements.

Introduction

straint optimization problemSchiexet al, 1999. Thus, the

ability to solve large instances of optimization problems effi-

ciently is key for tackling practical applications.

Depth-first branch-and-bound finds optimal solutions b
searching through the space of possible assignments.
prune parts of the search tree, it computes a lower bound
the value of the current partial assignment, and compares
with the value of the best solution found so far as an uppe
bound. While branch-and-bound is memory-efficient, it can
lead to impractical run-time, because the size of the searc

tree can grow exponentially as its depth increases.

An alternative approach is to infer optimal solutions by re-
peatedly combining constraints together. This approach i
search-free and thus does not suffer from the run-time co
plexity of backtracking; however, its exponential memory re-

qguirements can render this approach infeasible as well.

t
}'ll'o The paper is organized as follows.

m

subproblems. Likewise, symbolic encoding using decision
diagramgBryant, 1986 can exploit regularities within sets of
assignments (shared prefixes and postfixes) to collapse them
into a much smaller representation. However, while these
techniques can push the border on the size of the problems
that can be handled, they still do not avoid the fundamental
problem of memory explosion.

The idea presented in this paper is to extend branch-and-
bound search to incorporate both decomposition and sym-
bolic encoding. In particular, our algorithm simultaneously
maintains sets of assignments (and thus sets of bounds) in-
stead of single assignments. Because a set can, in many cases,
be represented and manipulated efficiently using an implicit,
symbolic representation (such as a decision diagram), the set-
based search can compute bounds faster than by explicitly
searching over the individual assignments, while memory ex-
plosion can be avoided by limiting the size of the sets. In our
approach, similar to domain splitting, the size of the sets is
controlled by partitions defined for the domain of each vari-
able. By varying the granularity of the domain partitions, a
family of tree-based algorithms is obtained that includes a re-
cently introduced search algorithm called BTD (branch-and-
bound on tree decompositionjerrioux and &gou, 2008
and dynamic programminfKask et al, 2003 as limiting
cases. We show that a trade-off exists between these two ex-
tremes, and thus for many practical cases, it is advantageous
o pick an intermediate point along our spectrum.

After an introduc-
on to the valued constraint satisfaction problem framework
chiexet al,, 1993, we present a way to exploit structure in

e constraints using tree decomposition and a data-structure
or symbolic encoding known as algebraic decision diagrams
{ADDs) [Baharet al, 1993. We then describe the set-based
extension of the branch-and-bound algorithm, and show how
it generalizes existing algorithms. Finally, preliminary exper-
'gnents on random problems illustrate the trade-off between
Search and inference and the benefit of a hybrid strategy.

2 Constraint Optimization Problems

In practical cases, however, constraints often exhibit &efinition 1 (Constraint Optimization Problem) A con-

structure that can be exploited in order to reduce the memorsgtraint optimization problem(COP) consists of a tuple
requirements. Decompositid@Gottlob et al, 2004 can ex-

ploit structural properties such as low induced width in orderD = {d, ..

(X, D, F) with variablesX = {1, ..
., dn}, constraintsF = {fi, ..

., &y}, finite domains
. fm}, and a

to break down the set of variables and constraints into smalleraluation structurg £, <, &, L, T). The constrainty; € F

are functionsf; : dy x...xd, — E mapping assignments to
X tovalues inE. E is totally ordered by< with a minimum
elementl € E and a maximum elemefit € E, and& is

an associative, commutative, and monotonic operation with

identity elementl. and absorbing elemenit.

The set of valuation# expresses different levels of con-
straint violation, such that means satisfaction and means
unacceptable violation. The operatignis used to combine
(aggregate) several valuations. A constrairtiasd, if all its
valuations are eithet or T. For notational convenience, we
denote byx; < v both the assignment of value € d; to

Figure 1: Full adder circuit consisting of two And gates, one
Or gate, and two Xor gates. Input and output values are ob-

variablex;, and also the hard constraint corresponding to thiserved as indicated.

assignment (its valuation is if the value ofz; is v, and T,
otherwise). Likewise, we regard elementsfhs values, but
also as special cases of constraints (constant functions).

Definition 2 (Combination and Projection) Let f,g € F
be two constraints. Lete d; x ... x d,,, and lett |y denote
the restriction oft to a subsel” C X of the variables. Then,

1. Thecombinationof f and g, denotedf @ ¢, is the con-
straint that maps eachto the valuef(t) & g(¢);

2. Theprojectionof f onto a set of variable§”, denoted
f Uy, is the constraint that maps eac¢hto the value
min{ f(t1), f(t2),..., f(tx)}, wherety, to,... t; are
all the assignments for which |y=1¢ |y.
Given a COP and a subsBtC X of variables of interest,
a solutionis an assignment with vaIue(EB;.”:1 i) 4z
In particular, forZ = (, the solution is the value* of an
assignment with minimum constraint violation, thatds, =
(D7 f5) Yo
For example, the problem of diagnosing the full adder
circuit in Fig. 1 can be framed as a COP with variables
X ={u,v,w,y,a1,as,e1,es,01 }. Variablesu to y describe
boolean signals and have domdih 1}. Variablesa; to oy

The sinking operation, denotedink(f, g) returns the con-
straint that forbids if f(¢) > ¢(¢):

ft)
4

. if f(t) <g(t

snk(£.0)0) = { 10 fifipured”

Thelifting operation, denoted liff{), turns a constraint into a
hard constraint that allowsf f(¢) < T. Finally, thecomple-
mentof a hard constrainf, denoted cmplf), is the constraint
whose valuation i5" if f(t) = L, and_L, otherwise.

3 Structure in Constraints

Our approach is based on exploiting independence properties
of the constraint functiong’, such that they can be repre-
sented more compactly (abstractly) than explicitly listing all
assignments t&. In this section, we characterize these prop-
erties, which are often present in practical problems.

To start with, in many situations the valuation of a con-
straint will depend only on a subset of the variables. For in-
stance, for the constrairft,;, its valuation depends only on

describe the mode of each gate, which can either be G (good), , w, andy. Formally, thesupportof a constraintf is the
S1 (shorted to input 1), S2 (shorted to input 2), or U (unknownsubset of variables that it depends upon:

failure). The COP has five constraints,, fa2, fe1s fe2s fols
one for each gate in the circuit. Each constraint expresses th
if the gate is G then it correctly performs its boolean function;

Refinition 3 (Support) The supportof a constraint f, de-
noted supf), is the variable sef{x; € X | Jvi,ve € d;

and if it is S1 (S2) then it is broken such that its output equal$-t- (f @ (zi < v1)) bx\(2}7 f ® (2 — v2)) $x\ (o} }-

its first (second) input; and if it is U then it is broken in an

unknown way and no assumption is made about its behay,

ior. The valuation structure captures the likelihood of being
in a mode, and ig[0,1],>,-,1,0) (with - being multiplica-
tion over the real numbers). We assume Or-gates have a

being S1 (S2), and a .005 probability of being U. The valu

. . u
of the best solution then corresponds to the most likely fau(II

in the circuit. For the exampley* is .018, corresponding to a
stuck-at-first-input (S1) fault of Or-gate 1.

We introduce four more operators that we will use later to
compare constraints and to turn them into hard constraint:
The minimumoperation, denoted miyi(g), returns the con-
straint whose valuation is the minimum 6ft) andg(t):

min(f, g)(t) = { f@) if f(t) <g(?)

g(t) otherwise

%
probability of being G, a .02 probability of being S1 (SZ),. edge with the variablesip
and a .01 probability of being U; both And-gates and Xor-ghows the hypergraph for

gates have a .975 probability of being G, a .01 probability of

For the example, supfi) = {a1,w,y}, sSup(fa2) =
{az,u,v}, sup(fer) = {e1,u,y}, sup(fe2) = {e2,u}, and
sup(fo1) = {o1,v,w}. The support structure of a constraint
oblem can be abstractly represented through a hypergraph
that associates a node with each variahleand a hyper-
(f;) of each constrainf;. Fig. 3

the example.

While the notion of support captures the independence of a
nction’s value from variables outside the support, there can
till exist independence within the support. For instance, in
the constrain{f, i, if 0o = S1 andv = 0, then the value i)2
regardless of the value af; if o1 = U, then the value is .01
regardless of the values far andy, etc. More generally, a

$roperty that we caliveak supportan be exploited: if the

relationship between assignments and a function’s value can
be described more compactly than explicitly listing all the
assignments to the support, then it is more efficient to solve
problems on that symbolic level.

3.1 Symbolic Encoding using Decision Diagrams olvw]| X @ .
In the following, we present a way to recognize support and G 00|.95
weak support of functions, namely through symbolic encod- SL 00 .02
ing in the form of decision diagrams. S101 .02
A decision diagram represents a function over boolean 5200 |.02
variables to a set of values. Binary decision diagrams (BDDs) 5210 .02
[Bryant, 198& represent functions with values 0 or 1; alge- U 00 .01
braic decision diagrams (ADD¢$Baharet al, 1993 repre- U 01].01
sent functions to any set of values. A decision diagram is g } ? 8}

a rooted, directed, acyclic graph, where each internal node
corresponds to a boolean variable, and each leaf node corre-
sponds to a value of the function. Internal nodes have twdrigure 2: Constrainf,; for the example in Fig. 1 and its
childrenn,, ns, and are recursively interpreted as the func-ADD, using two binary variables;;, 0,2 to encodeo;, and
tion f = if z; then f; elsef,, wherez; is the boolean vari- variable ordering:; < 012 < v <w. Assignments and paths
able corresponding to the node, afidand f, interpret the ~ with value O are not shown.

sub-diagrams with root nodes andn., respectively.

The power of decision diagrams derives from their reduc-
tion rules and canonicity of representation. A decision dia-
gram can be ordered by imposing a variable ordeting<
To < ... < x,, such that for all paths from the root to the
leaves, the sequence of variables encountered obeys the
dering. Ordered decision diagrams can be reduced by iter:
tively applying two graph reduction rules, which collapse as-
signments by sharing common prefixes and postfixes (to sha
a common postfix, the function value must be the same): th_
nodedeletion ruleeliminates nodes from the diagram whose

nates one of two nodes that are root nodes of isomorphic sulior the example in Fig. 1. The tree shows the labend \
diagrams. A reduced, ordered decision diagram is a canofyr each node.

ical representation of its functiofBryant, 1986 and con-
tains only variables from the support of the function. It is .
easy to extend the technique to non-binary variables by magt-1 ~ Tree Decomposition

ping each non-binary variable, to a block offlog, | D; [| Tree decompositiofGottlobet al, 2000; Kaslet al,, 2009 is
boolean variables that encode the domain values logarithmi way to exploit structural properties &f to decompose the
cally. Figure 2 shows a reduced, ordered ADD representingriginal problem into independent subproblems (“clusters”):
the functionf,;. Operations on functions, such as projec-
tion and combination, can be directly performed on this rep ; :
resentation. The complexity of the operations depends on thg" & Problem(X, D, F') is a triple (', x,), whereT" =
size of the diagram (number of nodes and arcs), rather thafl - £) iS @ rooted tree, and, A are labeling functions that
on the number of possible assignments; due to the sharir%ssoc'ate with each node (cluster) & V' two setsy(v;) <
of common substructures, the number of nodes and arcs cah 2ndA(vi) C £, such that

be orders of magnitude smaller than the number of possible 1. For eachf; € F, there exists exactly ong such that
assignments. While no compaction is achieved in the worst f; € A(v;). For thisv;, var(f;) C x(v;) (covering con-
case, for certain types of constraints it can be shown that the dition);

size of the decision diagram grows only logarithmically with
the number of assignmeriBryant, 1986.

{’U,, v, w, ya Cll, a2}
{fala faZ}

U1

{u,y,el,e2}| |{v,w,ol}
{felyer} {fol}

V2 U3

Definition 4 (Tree Decomposition) A tree decomposition

2. For eachz; € X, the set{v; € V | z; € x(v;)} of
vertices labeled witkr; induces a connected subtree of

. T (connectedness condition).
4 Set-based Branch-and-Bound with Tree ,(.) ,
In addition, we demand that the constraints appear as close to

hDecomposmc;ns be h he ind g the root of the tree as possible, that is,

In this section, we describe how the independence proper- .

ties of functions described in the previous section (support, 3 'f var(f;) © x(vi) andvar(f;) & x(vx) with vy, the
weak support) can be exploited in the framework of branch- parent ofv;, thenf; € A(vi).

and-bound search. We describe an algorithm that uses a treeFigure 3 shows a tree decomposition for the example. The
decomposition of the hypergrapti to exploit the support separator of a node, denoted sep(is the set of variables

of functions, and set-based search to exploit the weak sughatv,; shares with its parent node: sepg;) = x(v;) N x(v;).

port of functions. Thus, the algorithm benefits from compactFor convenience, we define sep(:) = (. Intuitively, sep{;)
representations of the functions, while memory explosion igs the set of variables that connects the subproblem rooted at
avoided through depth-first search. v; With the rest of the problem:

Definition 5 (Subproblem) For a COP and a tree decompo- There are two limiting cases: partitions consisting of sin-

sition (T}, x, A), thesubproblem rooted at; is the COP that gleton sets, that i9,P;| = |d;|, and partitions consisting of

consists of the constraints and variablesdnand any de- a single set containing all domain values, that|ig) = 1.

scendanty, of v; in T, with variables of interest sepy). Again for notational convenience, we denoteyc p the

. . restriction of a variable; to the values in a partition element
The subproblem rooted af,., is identical to the problem 2,4 5 constraint over variabie (its valuation is L if the

of finding o* for the original COP. The benefit of a tree de- s :

composition is that each subproblem needs to be solved onl\§/alue ofz; is inp, andT_, otherwise). I -

once (possibly involving re-using its solutions); the optimal The set-base_d algorithm proceeds by assigning partition el-

solutions can be obtained from optimal solutior’ws to the Sub_emen.tSP 0 vanables:sé, and computing Iovyer bounds by

combining the constraints all of whose variables have been

problems using dynamic programming. Thus, the ComplG)(ityassigned. Since a partition element can contain more than

of constraint solving is reduced to being exponential in the, o ‘yomain value, the result is in general a function (set of
size of the largest cluster only.

assignments) rather than a single assignment. Thus, we need

In order to exploit the decomposition during search, the, generalize the basic test of the branch-and-bound algorithm
variables must be assigned in an order that is compatible with comparing a lower bound with an upper bound — to compar-
the tree, namely by first assigning the variables in a clustef'ng| two functions:

before assigning the variables in the rest of the subproblems
rooted in the cluster. This is calledampatible ordein ~ Proposition 1 Given a COP with variables of interegt C
[Jegou and Terrioux, 2003 In [Terrioux and &gou, 2008 X, let f,, be a function with sugf, C Z), and letf, be a set
Jegou and Terrioux present an algorithm called BTD (back-©Of assignments t& C X (i.e., f, is a function with supf, C
tracking with tree decompositions) that exploits tree decomY’). Then for an assignmeritto Y, its extensiort’ to all
positions in branch-and-bound search. BTD assigns variablegriablesX can improve onf, (thatis, (B, f;)(t) {z<
along a compatible order, beginning with the variables inf,(t)), if sink(fo Uz, fu 42)(t) # T.

;‘r(]szgg)ur:gsgiiﬁ Clil:]st;[)egi(,;(l:t()%rnotc(?r?ld%[fl:Iéect(:)lr?st?gal pragfch- Hence, the sinking operation generalizes the comparison
' 9 y ixs;) of a lower bound to an upper bound by “filtering out” assign-

this cluster. Once all variables in the cluster have been as;, . .
; -) . X ents that cannot improve on a bounding functfgn
signed, BTD considers its children (if there are any). Assume Algorithm 1 shows ?he pseudo-code fo% the rggulting algo-

v; is a child ofv;. BTD first checks if the restriction of the rithm SBBTD ;

: . : . set-based branch-and-bound with tree decom-
current assignment to the variables in @gp has previously osition) SBéTD is given a constrairft, (corresponding to
been computed as a solution to the subproblem rooted Ht g set of .current assi%nments and their valuesr; a clg§ter
so, the value of this solution (called a “good”) is retrieved and "> <ot of variabled’, that remain to be assigﬁed and an
combined with the value of the current assignment, thus pre—pper bound functior Whose support is a subset of the vari-
venting BTD from solving the same subproblem again (calleolu Y : _

a “forward jump” in the search). Otherwise, BTD solves theablessep(vi) (fu Is a constant in the case Where= vroot).

sub robler:] rogted for the current assignment to dep) SBBTD returns a constraint corresponding to the extension
P af, 9 P of assignmentg;, to solutions of the subproblem rootecuat

and the current upper bound, and records the solution as ’

: . : gain, the result is a constant in the case where v,ot)-
new good. lts value is combined with the value of the Currentyy .\ avion of this constraint is the value of best solution of
assignment, and if the result is below the upper bound, BT

X o I%he subproblem rooted at, or a value greater than or equal
proceeds with the next child of. to f.(t), if this best value is greater than or equalftgt).
5 Setb ds h SBBTD uses two function&’,,, R,, to record the goods (so-
4. et-based Searc lutions to the subproblem rooted &) for eachv;. G,, is a

In the following, we generalize BTD from single assignmentsSoft constraint that contains the actual goods, while is a

(and thus Sing|e bounds) to sets Of assignment (and thus séi_grd constraint that contains the |nf0rmat|on Whether an as-
of bounds), in order to exploit symbolic representations ofSignment has been recorded as a good or not (the use of two
functions. functions is necessary because a good can have any value in

The method that we use to extend the search from singlg’ thus function’z,,, alone cannot give sufficient information

assignments to sets of assignments is to replace the step §Pether the good has been stored or nof). That is, an assign-

assigning a value to a variable by the more general step of rdl€ntt is recorded as a good for the separatdiif (¢) = T,
stricting a variable to a subset of its domain. This generaliza@nd not recorded i?,, (¢) = L; in case the good is recorded,
tion is similar to domain splitting; however, whereas domain'ts Value isG., (). Initially, Ry, = G, = L.

splitting might further split up the subsets at subsequent levels SBBTD starts by filtering out the assignments whose value
of the search tree, we consider the case where each variatff&c€eds the bounding function (line 1). Inside a cluster (lines
occurs only once in each path of the search tree. That is, wk9-28), SBBTD operates like branch-and-bound, except that

assume that for each variahlg a static, predefined partition it restricts variables to subsets of their domains (partition el-
of its domain into subsets is given: ements) instead of single values. Once all variables in the

cluster have been assigned, SBBTD turns to its children (lines
Definition 6 (Domain Partition) A partition of a finite do- 3-17). SBBTD chooses a chitg and first computes the sub-
maind; is a setP; of disjoint subsets af; whose union ig/;, set of assignment§, of f, that are not previously recorded
thatis,p;Npr = O forp;,pr € P, j # k, andUpePi p=d,. as goods of sep() (line 7). If there are any assignments

SBBTD(fa, vi, Yu,, fu) Theorem 1 For a COP (X, D, F) with a tree decomposi-

1: fo < sink(fa, fu) tion (T, x,) and any domain partition®;, P, ..., P, for

2: if Y,, = 0 then variablesz1, zs, . . ., z,,, the algorithm SBBTD is sound and
3: F « children(v;) complete, that iSSBBTD(L, Vyo0t, X (Vroot)s T) = .

g: Whéfofsﬁ,ggr}gf“ # Tdo For instance, consider the full adder example with the do-
6 FeF < v; main partitionsP,,, P, = {{0}.{1}}, P.,, P, = {{0,1}}, and

7: ' — R, @ f Po1, ..., Por = {{G},{S1,S3,{U}}. Thatis, the search

8 ifaf’ ” T then simultaneously explores the valu¢6,1} for w andy and

9: h“a —186(f2) Ysepo,) the values{S1,S3 for the mode variables. SBBTD starts
10° ey SBBTD(ha,v;,x(vj)\sep(vj),fu Veep(o)) by assigning the varlablegu_,v,w,y,al,ag} in the clus-
1 Gy Gy @ (c0® ha) i ter vy, which gives two aSS|gnment$u,v,w.,y,a17a2> =
12: Rm = RU] o Coam 1(%) (0,0,0,0,G, G) and (0,0,1, 1_,G, G), bgth with value_ .95.
13: endvh]" Vi Pl la SBBTD next considers a child of, f_or instancep,. Since

: there are no goods recorded for this cluster so far, the solu-

14: Jo—Ta® ij

15: o Sink(fa, fu) tions are computed for this subproblem for the assignments
16- endawhile w o (u,y) = (0,0) and (0,1). The value of these solutions are
17- return £, 1l .0097 (corresponding to a S2 failure of Xor-gate 1) and .95,
18: else a Vsep(vi) respecuvely_. These solutu_)ns are recorded and combined with
19j chooser, € Y. the two assignments, which now have the values .0092 and
ro g .90, respecttn:jely_. Nleixt, the ?ol;Jtlotnhs for the suglpp;ol)al%m
: R) are computed simultaneously for the assignméntsy) =
gi \{vrme{g’ié/\(gva%d? is%l-pég)’sw(f) Csup(fa) Ui} (0,1) and (0,1). The values are .95 and .01 (correspond-
23 choosey € S ¢ ing to a S1 failure of the Or-gate), respectively. After com-
241 S S\ bining these solutions with the two aSS|gn.ments;1|n'the|r
o5 e é(gj‘ e D,/ value becomes .0088 and .018, respectively. Since there
' a “ i S P)Der are no children left, SBBTD updates the bound for the best

26: fu < min(f,, SBBTD(fz, vi, Yo, \ {zi}, fu)) solution found to .018. This bound prunes all subsequent
27: end while assignments to variables in except(u,v,w,y, a1, as) =

28: returnf, (1,1,0,0,G, G) and(1,1,1,1, G, G). Since the assignments
29: end if (u,y) = (1,0) and(1, 1) for the subproblem lead to values
Algorithm 1: Set-based branch-and-bound with tree decom?/°'>¢ than the bound, .018 is returned as optimal solution.
positions In comparison, observe that BTD (obtained as a special-

ization of SBBTD for the casgP;| = |d;|) suffers from the
problem that it would explicitly iterate through all possible

not recorded as goods, SBBTD solves the subproblem rootegPMPinations of values fow andy until encountering the

atv; for these assignments (line 10), and records the solu2eSt assignment (which is obtained fo, y) = (1,1)); in
tions as new goods (lines 11 and 12). It updates the valcontrast, SBBTD handles those combinations implicitly. Dy-

ues of the current assignments (lower bounds) (line 14), namic programming (obtained as a speciqlization of SBBTD
and compares it with the current upper bounds (line 15). for |7l = 1) suffers from the problem that it would consider
continues with the next child (if any) or returns the solu- MOre @ssignments than necessary (for example, it would com-

tions to the subproblem. The initial call to the algorithm is Pute the value for assignments involvirg, , az) = (U, U),
SBBTD(L, Uroot, X (Vroot), T)- which is very low because it corresponds to a double fault).

Since the formulation of the algorithm is independent of4 3 Trade-off between Search and Symbolic
how the domain partitions are defined, Fig. 1 actually defines” Inference

a spectrum of algorithms that is parameterized by the domain
partitionsP; for each variable. The limiting cases of the spec-SBBTD unifies search with good recording (BTD) and dy-
trum are| P;| = |d;| and|P;| = 1, corresponding to finest and namic programming (CTE). In fact, the goods that the BTD
coarsest granularity of the domain partitions, respectively. Iralgorithm computes can be understood as partial construc-
the first case, the set of assignmefitsactually consists of a tion of the messages sent between clusters by the dynamic
single assignment with value smaller thanand thus Alg. 1 programming algorithm CTHKasket al, 2003. Thus, the
becomes identical to branch-and-bound on tree decomposdiwo limiting cases can be understood as lazy and eager forms
tions (BTD). In the second case, the restrictianss p yield of dynamic programming, respectively: BTD computes solu-
constraints identical ta_, and thus the search tree degener-tions to subproblems only as far as required to compute the
ates to a list. Hence, in this case the algorithm is backtrackeptimal solution, whereas CTE computes them completely.
free and becomes identical to dynamic programming on the It has been previously showidégou and Terrioux, 2003
tree (called cluster-tree elimination (CTE) [Kask et al, that BTD (i.e., lazy dynamic programming) outperforms CTE
2003). For the cases in between, thatis< |P;| < |d,], (i.e., eager dynamic programming). This is because search on
hybrids of search and dynamic programming are obtained. single assignments exploits the upper bounds as rigorously as

possible, and therefore the least number of assignments wis Conclusion

be explored. However, this argument is based on countingye presented an algorithm for solving soft constraint prob-
assignments and holds only if assignments are representgt,q by generalizing branch-and-bound to search on sets of
explicitly. The picture changes when using techniques suc ssignments and perform inference (dynamic programming)

as ADDs that can manipulate sets of assignments implicitlyyiihin those sets of assignments. This hybrid approach can
Hence, a tension is created between making the partition efs, it regularities in the constraints, while it can avoid mem-
ements in SBBTD smaller or larger: in the former case, th%

; . . ory explosion by controlling the size of the sets. In contrast to
advantage is that as few assignments are explored as possikfek in [Hoeyet al, 1999; Jenseat al, 2003, our approach

but the disadvantage is that less possibilities exist for exploitg mqre general in that it addresses valued constraint satisfac-
ing commonalities between assignments. In the latter casg,, problems[Schiexet al, 1994, and incorporates a de-
the disadvantage is that more assignments might be exploregdy,mnosition of the problem into several subproblems. Future
oy T Rk includes ways to automatically determine domain par-
a more compact description and handled implicitly. Thus iniqns (appropriate points in the spectrum), and augmenting
many practical cases, the optimal granularity will lie in an,e gigorithm with symbolic versions of constraint propaga-

intermediate pointi(< || < |d;|) along the spectrum; yion technique§Cooper and Schiex, 20D# order to further
SBBTD allows us to adapt to this trade-off. improve th(j:‘ b(fundsr.) 20D

5 Implementation and Experiments References

We implemented SBBTD using the CUDD (Colorado Uni- [Baharet al, 1993 Iris Bahar, Erica Frohm, Charles Gaona,

versity Decision Diagram) packag8omenzi, 2004 which Gary Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
provides a library of routines for manipulating ADDs. Somenzi. Algebraic decision diagrams and their applica-

We evaluated the performance of this prototype on ran- tions. InProc. ICCAD-93 pages 188-191, 1993.
dom, binary Max-CSP problems. Max-CSP is a constrain{Bryant, 198¢ Randal E. Bryant. Graph-based algorithms
optimization problem where the tuples of a constraint have for Boolean function manipulatiodEEE Transactions on
cost 0 if the tuple is allowed, and cost 1 if the tuple is not ComputersC-35(8):677—691, 1986.
allowed; the optimal solution corresponds to an as&gnm_erttCOOper and Schiex, 20DMartin Cooper and Thomas
that violates a minimum number of constraints. For each in- ; : . gy

: : . Schiex. Arc consistency for soft constraintértificial

stance, the support of the constraints was determined in or- Intelligence 154:199-227 2004
der to derive the hypergraph (a graph in this case). Then, ntetligence : ' '
a tree decomposition of the hypergraph was computed usinig>ottlobet al, 200§ Georg Gottlob, Nicola Leone, and
the min-fill heuristics. We choose random domain partitions, Francesco Scarcello. A comparison of structural CSP de-
whose granularity we varied by setting a certain percenfage ~ composition methodsAvrtificial Intelligence 124(2):243—
of (random) variables to the partitidi®;| = 1, and the other 282, 2000.
variables to the partitionP;| = |d;|. We ran the experiments [Hoeyet al, 1999 Jesse Hoey, Robert St-Aubin, Alan Hu,
on a Pentium 4 Windows PC with 1 GB of RAM; due space and Craig Boutilier. SPUDD: Stochastic planning using
restrictions we glr\:e 0”'?’ suhTemanzeddresults here.) decision diagrams. IRroc. UAI-99 pages 279-288, 1999.

Consistent with results ipdegou and Terrioux, 2003we , . - .
found the number of assignments explored #510% (BTD) [JeggrL:igSg Terr'&uﬁréoogzg'(lt'fapcim bgt?ouun dir('jd b C)gge-
to be in most cases several times smaller than the number decom bsition }é)f constraint netw%rksArtificial In%lelli-
of assignments explored faP=100% (dynamic program- f46'43 75 2003 i
ming). E.g., in an example class wifti=40 variables(C'=80 gence T :
constraints, domain siz&=4 and tightnes§'=9, the mean [Jenseretal, 2004 Rune Jensen, Randy Bryant, and
number of goods recorded fét=0% was 50,00 to 100,000, Manuela Veloso. SetA*: An efficient BDD-based heuristic
whereas forlP=100% it was 250,000 to 1,000,000. However, ~search algorithm. IiProceedings AAAI-Q2002.

the ADD representation of constraints typically achieved gkasket al, 2003 Kalev Kask, Rina Dechter, and Javier
compaction of around one to two orders of magnitude (con- | arrosa. Unifying cluster-tree decompositions for auto-

sistent with observations iiHoey et al, 1999). Therefore, mated reasoning. Technical report, University of Califor-
and also because larger partition elements reduce the num- pjg at Irvine, 2003.

b f i lls, SBBTD faster for | I . . \ .
0? rpoinrzfrlrj]fs“t/eaffiasse& E.g. r]%r; ,\?54% Erzfr%irfg\éaaun%s[Sch|exet al, 1999 Thomas Schiex, Elene Fargier, and

— ; _ Gerard Verfaillie. Valued constraint satisfaction problems:
T=9, the mean runtime foP=0% was around 100 sec, but -
around 0.5 to 1 sec foP=100%. Given that foP=100% Hard and easy problems. Rroceedings IJCAI-951995.

the computation required up to one order of magnitude moréSomenzi, 2004 Fabio Somenzi. CUDD release 2.4.0, 2004.
memory thanP=0%, selecting an intermediate granularity http://visi.colorado.edu/ fabio .

(0% < P < 100%) allowed significant runtime improve- [Terrioux and dgou, 2008 Cyril Terrioux and Philippe
ments over BTD within still acceptable memory bounds. We Jegou. Bounded backtracking for the valued constraint

are curre_:ntly working on structured examples (likdJagou satisfaction problems. IRroceedings CP-Q2003.
and Terrioux, 2008 and real-world examples.

