
Bounded Search and Symbolic Inference for Constraint Optimization

Martin Sachenbacher and Brian C. Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139

{sachenba,williams}@mit.edu

Abstract

Constraint optimization underlies many problems
in AI. We present a novel algorithm for finite
domain constraint optimization that generalizes
branch-and-bound search by reasoning about sets
of assignments rather than individual assignments.
Because in many practical cases, sets of assign-
ments can be represented implicitly and com-
pactly using symbolic techniques such as deci-
sion diagrams, the set-based algorithm can com-
pute bounds faster than explicitly searching over in-
dividual assignments, while memory explosion can
be avoided by limiting the size of the sets. Varying
the size of the sets yields a family of algorithms that
includes known search and inference algorithms as
special cases. Furthermore, experiments on random
problems indicate that the approach can lead to sig-
nificant performance improvements.

1 Introduction
Many problems in AI, such as planning, diagnosis, and au-
tonomous control, can be formulated as finite domain con-
straint optimization problems[Schiexet al., 1995]. Thus, the
ability to solve large instances of optimization problems effi-
ciently is key for tackling practical applications.

Depth-first branch-and-bound finds optimal solutions by
searching through the space of possible assignments. To
prune parts of the search tree, it computes a lower bound on
the value of the current partial assignment, and compares it
with the value of the best solution found so far as an upper
bound. While branch-and-bound is memory-efficient, it can
lead to impractical run-time, because the size of the search
tree can grow exponentially as its depth increases.

An alternative approach is to infer optimal solutions by re-
peatedly combining constraints together. This approach is
search-free and thus does not suffer from the run-time com-
plexity of backtracking; however, its exponential memory re-
quirements can render this approach infeasible as well.

In practical cases, however, constraints often exhibit a
structure that can be exploited in order to reduce the memory
requirements. Decomposition[Gottlob et al., 2000] can ex-
ploit structural properties such as low induced width in order
to break down the set of variables and constraints into smaller

subproblems. Likewise, symbolic encoding using decision
diagrams[Bryant, 1986] can exploit regularities within sets of
assignments (shared prefixes and postfixes) to collapse them
into a much smaller representation. However, while these
techniques can push the border on the size of the problems
that can be handled, they still do not avoid the fundamental
problem of memory explosion.

The idea presented in this paper is to extend branch-and-
bound search to incorporate both decomposition and sym-
bolic encoding. In particular, our algorithm simultaneously
maintains sets of assignments (and thus sets of bounds) in-
stead of single assignments. Because a set can, in many cases,
be represented and manipulated efficiently using an implicit,
symbolic representation (such as a decision diagram), the set-
based search can compute bounds faster than by explicitly
searching over the individual assignments, while memory ex-
plosion can be avoided by limiting the size of the sets. In our
approach, similar to domain splitting, the size of the sets is
controlled by partitions defined for the domain of each vari-
able. By varying the granularity of the domain partitions, a
family of tree-based algorithms is obtained that includes a re-
cently introduced search algorithm called BTD (branch-and-
bound on tree decompositions)[Terrioux and J́egou, 2003]
and dynamic programming[Kask et al., 2003] as limiting
cases. We show that a trade-off exists between these two ex-
tremes, and thus for many practical cases, it is advantageous
to pick an intermediate point along our spectrum.

The paper is organized as follows. After an introduc-
tion to the valued constraint satisfaction problem framework
[Schiexet al., 1995], we present a way to exploit structure in
the constraints using tree decomposition and a data-structure
for symbolic encoding known as algebraic decision diagrams
(ADDs) [Baharet al., 1993]. We then describe the set-based
extension of the branch-and-bound algorithm, and show how
it generalizes existing algorithms. Finally, preliminary exper-
iments on random problems illustrate the trade-off between
search and inference and the benefit of a hybrid strategy.

2 Constraint Optimization Problems
Definition 1 (Constraint Optimization Problem) A con-
straint optimization problem(COP) consists of a tuple
(X, D, F) with variablesX = {x1, . . . , xn}, finite domains
D = {d1, . . . , dn}, constraintsF = {f1, . . . , fm}, and a
valuation structure(E,≤,⊕,⊥,>). The constraintsfj ∈ F

are functionsfj : d1× . . .×dn → E mapping assignments to
X to values inE. E is totally ordered by≤ with a minimum
element⊥ ∈ E and a maximum element> ∈ E, and⊕ is
an associative, commutative, and monotonic operation with
identity element⊥ and absorbing element>.

The set of valuationsE expresses different levels of con-
straint violation, such that⊥means satisfaction and>means
unacceptable violation. The operation⊕ is used to combine
(aggregate) several valuations. A constraint ishard, if all its
valuations are either⊥ or>. For notational convenience, we
denote byxi ← v both the assignment of valuev ∈ di to
variablexi, and also the hard constraint corresponding to this
assignment (its valuation is⊥ if the value ofxi is v, and>,
otherwise). Likewise, we regard elements ofE as values, but
also as special cases of constraints (constant functions).

Definition 2 (Combination and Projection) Let f, g ∈ F
be two constraints. Lett ∈ d1× . . .× dn, and lett↓Y denote
the restriction oft to a subsetY ⊆ X of the variables. Then,

1. Thecombinationof f andg, denotedf ⊕ g, is the con-
straint that maps eacht to the valuef(t)⊕ g(t);

2. Theprojectionof f onto a set of variablesY , denoted
f ⇓Y , is the constraint that maps eacht to the value
min{f(t1), f(t2), . . . , f(tk)}, where t1, t2, . . . , tk are
all the assignments for whichti ↓Y = t ↓Y .

Given a COP and a subsetZ ⊆ X of variables of interest,
a solution is an assignmentt with value (

⊕m
j=1 fj)(t) ⇓Z .

In particular, forZ = ∅, the solution is the valueα∗ of an
assignment with minimum constraint violation, that is,α∗ =
(
⊕m

j=1 fj) ⇓∅.
For example, the problem of diagnosing the full adder

circuit in Fig. 1 can be framed as a COP with variables
X = {u, v, w, y, a1, a2, e1, e2, o1}. Variablesu to y describe
boolean signals and have domain{0, 1}. Variablesa1 to o1

describe the mode of each gate, which can either be G (good),
S1 (shorted to input 1), S2 (shorted to input 2), or U (unknown
failure). The COP has five constraintsfa1, fa2, fe1, fe2, fo1,
one for each gate in the circuit. Each constraint expresses that
if the gate is G then it correctly performs its boolean function;
and if it is S1 (S2) then it is broken such that its output equals
its first (second) input; and if it is U then it is broken in an
unknown way and no assumption is made about its behav-
ior. The valuation structure captures the likelihood of being
in a mode, and is([0, 1],≥, ·, 1, 0) (with · being multiplica-
tion over the real numbers). We assume Or-gates have a .95
probability of being G, a .02 probability of being S1 (S2),
and a .01 probability of being U; both And-gates and Xor-
gates have a .975 probability of being G, a .01 probability of
being S1 (S2), and a .005 probability of being U. The value
of the best solution then corresponds to the most likely fault
in the circuit. For the example,α∗ is .018, corresponding to a
stuck-at-first-input (S1) fault of Or-gate 1.

We introduce four more operators that we will use later to
compare constraints and to turn them into hard constraints.
Theminimumoperation, denoted min(f, g), returns the con-
straint whose valuation is the minimum off(t) andg(t):

min(f, g)(t) =
{

f(t) if f(t) < g(t)
g(t) otherwise

Figure 1: Full adder circuit consisting of two And gates, one
Or gate, and two Xor gates. Input and output values are ob-
served as indicated.

The sinking operation, denotedsink(f, g) returns the con-
straint that forbidst if f(t) ≥ g(t):

sink(f, g)(t) =
{

f(t) if f(t) < g(t)
> otherwise

The lifting operation, denoted lift(f), turns a constraint into a
hard constraint that allowst if f(t) < >. Finally, thecomple-
mentof a hard constraintf , denoted cmpl(f), is the constraint
whose valuation is> if f(t) = ⊥, and⊥, otherwise.

3 Structure in Constraints

Our approach is based on exploiting independence properties
of the constraint functionsF , such that they can be repre-
sented more compactly (abstractly) than explicitly listing all
assignments toX. In this section, we characterize these prop-
erties, which are often present in practical problems.

To start with, in many situations the valuation of a con-
straint will depend only on a subset of the variables. For in-
stance, for the constraintfa1, its valuation depends only on
a1, w, andy. Formally, thesupportof a constraintf is the
subset of variables that it depends upon:

Definition 3 (Support) The supportof a constraintf , de-
noted sup(f), is the variable set{xi ∈ X | ∃v1, v2 ∈ di

s.t. (f ⊕ (xi ← v1)) ⇓X\{xi} 6= f ⊕ (xi ← v2)) ⇓X\{xi}}.
For the example, sup(fa1) = {a1, w, y}, sup(fa2) =

{a2, u, v}, sup(fe1) = {e1, u, y}, sup(fe2) = {e2, u}, and
sup(fo1) = {o1, v, w}. The support structure of a constraint
problem can be abstractly represented through a hypergraph
H that associates a node with each variablexi, and a hyper-
edge with the variablessup(fj) of each constraintfj . Fig. 3
shows the hypergraph for the example.

While the notion of support captures the independence of a
function’s value from variables outside the support, there can
still exist independence within the support. For instance, in
the constraintfo1, if o1 = S1 andv = 0, then the value is.02
regardless of the value ofw; if o1 = U , then the value is .01
regardless of the values forw andy, etc. More generally, a
property that we callweak supportcan be exploited: if the
relationship between assignments and a function’s value can
be described more compactly than explicitly listing all the
assignments to the support, then it is more efficient to solve
problems on that symbolic level.

3.1 Symbolic Encoding using Decision Diagrams
In the following, we present a way to recognize support and
weak support of functions, namely through symbolic encod-
ing in the form of decision diagrams.

A decision diagram represents a function over boolean
variables to a set of values. Binary decision diagrams (BDDs)
[Bryant, 1986] represent functions with values 0 or 1; alge-
braic decision diagrams (ADDs)[Baharet al., 1993] repre-
sent functions to any set of values. A decision diagram is
a rooted, directed, acyclic graph, where each internal node
corresponds to a boolean variable, and each leaf node corre-
sponds to a value of the function. Internal nodes have two
childrenn1, n2, and are recursively interpreted as the func-
tion f = if xi then f1 elsef2, wherexi is the boolean vari-
able corresponding to the node, andf1 andf2 interpret the
sub-diagrams with root nodesn1 andn2, respectively.

The power of decision diagrams derives from their reduc-
tion rules and canonicity of representation. A decision dia-
gram can be ordered by imposing a variable orderingx1 ≺
x2 ≺ . . . ≺ xn, such that for all paths from the root to the
leaves, the sequence of variables encountered obeys the or-
dering. Ordered decision diagrams can be reduced by itera-
tively applying two graph reduction rules, which collapse as-
signments by sharing common prefixes and postfixes (to share
a common postfix, the function value must be the same): the
nodedeletion ruleeliminates nodes from the diagram whose
children are equal (n1 = n2), and the nodesharing ruleelimi-
nates one of two nodes that are root nodes of isomorphic sub-
diagrams. A reduced, ordered decision diagram is a canon-
ical representation of its function[Bryant, 1986] and con-
tains only variables from the support of the function. It is
easy to extend the technique to non-binary variables by map-
ping each non-binary variablexi to a block ofdlog2 | Di |e
boolean variables that encode the domain values logarithmi-
cally. Figure 2 shows a reduced, ordered ADD representing
the functionfo1. Operations on functions, such as projec-
tion and combination, can be directly performed on this rep-
resentation. The complexity of the operations depends on the
size of the diagram (number of nodes and arcs), rather than
on the number of possible assignments; due to the sharing
of common substructures, the number of nodes and arcs can
be orders of magnitude smaller than the number of possible
assignments. While no compaction is achieved in the worst
case, for certain types of constraints it can be shown that the
size of the decision diagram grows only logarithmically with
the number of assignments[Bryant, 1986].

4 Set-based Branch-and-Bound with Tree
Decompositions

In this section, we describe how the independence proper-
ties of functions described in the previous section (support,
weak support) can be exploited in the framework of branch-
and-bound search. We describe an algorithm that uses a tree
decomposition of the hypergraphH to exploit the support
of functions, and set-based search to exploit the weak sup-
port of functions. Thus, the algorithm benefits from compact
representations of the functions, while memory explosion is
avoided through depth-first search.

Figure 2: Constraintfo1 for the example in Fig. 1 and its
ADD, using two binary variableso11, o12 to encodeo1, and
variable orderingo11≺ o12≺ v≺w. Assignments and paths
with value 0 are not shown.

Figure 3: Hypergraph (left) and a tree decomposition (right)
for the example in Fig. 1. The tree shows the labelsχ andλ
for each node.

4.1 Tree Decomposition
Tree decomposition[Gottlobet al., 2000; Kasket al., 2003] is
a way to exploit structural properties ofH to decompose the
original problem into independent subproblems (“clusters”):

Definition 4 (Tree Decomposition) A tree decomposition
for a problem(X, D,F) is a triple (T, χ, λ), whereT =
(V,E) is a rooted tree, andχ, λ are labeling functions that
associate with each node (cluster)vi ∈ V two setsχ(vi) ⊆
X andλ(vi) ⊆ F , such that

1. For eachfj ∈ F , there exists exactly onevi such that
fj ∈ λ(vi). For thisvi, var(fj) ⊆ χ(vi) (covering con-
dition);

2. For eachxi ∈ X, the set{vj ∈ V | xi ∈ χ(vj)} of
vertices labeled withxi induces a connected subtree of
T (connectedness condition).

In addition, we demand that the constraints appear as close to
the root of the tree as possible, that is,

3. If var(fj) ⊆ χ(vi) and var(fj) 6⊆ χ(vk) with vk the
parent ofvi, thenfj ∈ λ(vi).

Figure 3 shows a tree decomposition for the example. The
separator of a node, denoted sep(vi), is the set of variables
thatvi shares with its parent nodevj : sep(vi) = χ(vi)∩χ(vj).
For convenience, we define sep(vroot) = ∅. Intuitively, sep(vi)
is the set of variables that connects the subproblem rooted at
vi with the rest of the problem:

Definition 5 (Subproblem) For a COP and a tree decompo-
sition (T, χ, λ), thesubproblem rooted atvi is the COP that
consists of the constraints and variables invi and any de-
scendantvk of vi in T , with variables of interest sep(vi).

The subproblem rooted atvroot is identical to the problem
of finding α∗ for the original COP. The benefit of a tree de-
composition is that each subproblem needs to be solved only
once (possibly involving re-using its solutions); the optimal
solutions can be obtained from optimal solutions to the sub-
problems using dynamic programming. Thus, the complexity
of constraint solving is reduced to being exponential in the
size of the largest cluster only.

In order to exploit the decomposition during search, the
variables must be assigned in an order that is compatible with
the tree, namely by first assigning the variables in a cluster
before assigning the variables in the rest of the subproblems
rooted in the cluster. This is called acompatible orderin
[Jégou and Terrioux, 2003]. In [Terrioux and J́egou, 2003],
Jégou and Terrioux present an algorithm called BTD (back-
tracking with tree decompositions) that exploits tree decom-
positions in branch-and-bound search. BTD assigns variables
along a compatible order, beginning with the variables in
χ(vroot). Inside a clustervi, it proceeds like classical branch-
and-bound, taking into account only the constraintsλ(vi) of
this cluster. Once all variables in the cluster have been as-
signed, BTD considers its children (if there are any). Assume
vj is a child ofvi. BTD first checks if the restriction of the
current assignment to the variables in sep(vj) has previously
been computed as a solution to the subproblem rooted atvj . If
so, the value of this solution (called a “good”) is retrieved and
combined with the value of the current assignment, thus pre-
venting BTD from solving the same subproblem again (called
a “forward jump” in the search). Otherwise, BTD solves the
subproblem rooted atvj for the current assignment to sep(vj)
and the current upper bound, and records the solution as a
new good. Its value is combined with the value of the current
assignment, and if the result is below the upper bound, BTD
proceeds with the next child ofvi.

4.2 Set-based Search

In the following, we generalize BTD from single assignments
(and thus single bounds) to sets of assignment (and thus sets
of bounds), in order to exploit symbolic representations of
functions.

The method that we use to extend the search from single
assignments to sets of assignments is to replace the step of
assigning a value to a variable by the more general step of re-
stricting a variable to a subset of its domain. This generaliza-
tion is similar to domain splitting; however, whereas domain
splitting might further split up the subsets at subsequent levels
of the search tree, we consider the case where each variable
occurs only once in each path of the search tree. That is, we
assume that for each variablexi, a static, predefined partition
of its domain into subsets is given:

Definition 6 (Domain Partition) A partition of a finite do-
maindi is a setPi of disjoint subsets ofdi whose union isdi,
that is,pj∩pk = ∅ for pj , pk ∈ Pi, j 6= k, and

⋃
p∈Pi

p = di.

There are two limiting cases: partitions consisting of sin-
gleton sets, that is,|Pi| = |di|, and partitions consisting of
a single set containing all domain values, that is,|Pi| = 1.
Again for notational convenience, we denote byxi ∈ p the
restriction of a variablexi to the values in a partition element
p, and a constraint over variablexi (its valuation is⊥ if the
value ofxi is in p, and>, otherwise).

The set-based algorithm proceeds by assigning partition el-
ementsp to variablesxi, and computing lower bounds by
combining the constraints all of whose variables have been
assigned. Since a partition element can contain more than
one domain value, the result is in general a function (set of
assignments) rather than a single assignment. Thus, we need
to generalize the basic test of the branch-and-bound algorithm
– comparing a lower bound with an upper bound – to compar-
ing two functions:

Proposition 1 Given a COP with variables of interestZ ⊆
X, let fu be a function with sup(fu ⊆ Z), and letfa be a set
of assignments toY ⊆ X (i.e.,fa is a function with sup(fa ⊆
Y). Then for an assignmentt to Y , its extensiont′ to all
variablesX can improve onfu (that is,(

⊕m
j=1 fj)(t) ⇓Z<

fu(t)), if sink(fa ⇓Z , fu ⇓Z)(t) 6= >.

Hence, the sinking operation generalizes the comparison
of a lower bound to an upper bound by “filtering out” assign-
ments that cannot improve on a bounding functionfu.

Algorithm 1 shows the pseudo-code for the resulting algo-
rithm SBBTD (set-based branch-and-bound with tree decom-
position). SBBTD is given a constraintfa (corresponding to
a set of current assignments and their values), a clustervi

with a set of variablesYvi that remain to be assigned, and an
upper bound functionfu whose support is a subset of the vari-
ablessep(vi) (fu is a constant in the case wherevi = vroot).
SBBTD returns a constraint corresponding to the extension
of assignmentsfa to solutions of the subproblem rooted atvi

(again, the result is a constant in the case wherevi = vroot).
The valuation of this constraint is the value of best solution of
the subproblem rooted atvi, or a value greater than or equal
to fu(t), if this best value is greater than or equal tofu(t).
SBBTD uses two functionsGvi , Rvi to record the goods (so-
lutions to the subproblem rooted atvi) for eachvi. Gvi is a
soft constraint that contains the actual goods, whileRvi is a
hard constraint that contains the information whether an as-
signment has been recorded as a good or not (the use of two
functions is necessary because a good can have any value in
E, thus functionGvi alone cannot give sufficient information
whether the good has been stored or not). That is, an assign-
mentt is recorded as a good for the separator ifRvi(t) = >,
and not recorded ifRvi(t) = ⊥; in case the good is recorded,
its value isGvi(t). Initially, Rvi = Gvi =⊥.

SBBTD starts by filtering out the assignments whose value
exceeds the bounding function (line 1). Inside a cluster (lines
19-28), SBBTD operates like branch-and-bound, except that
it restricts variables to subsets of their domains (partition el-
ements) instead of single values. Once all variables in the
cluster have been assigned, SBBTD turns to its children (lines
3-17). SBBTD chooses a childvj and first computes the sub-
set of assignmentsf ′a of fa that are not previously recorded
as goods of sep(vj) (line 7). If there are any assignments

SBBTD(fa, vi, Yvi
, fu)

1: fa ← sink(fa, fu)
2: if Yvi = ∅ then
3: F ← children(vi)
4: while F 6= ∅ andfa 6= > do
5: choosevj ∈ F
6: F ← F \ vj

7: f ′a ← Rvj ⊕ fa

8: if f ′a 6= > then
9: ha ← lift(f ′a) ⇓sep(vj)

10: ea← SBBTD(ha, vj ,χ(vj)\sep(vj),fu⇓sep(vj))
11: Gvj

← Gvj
⊕ (ea ⊕ ha)

12: Rvj
← Rvj

⊕ compl(ha)
13: end if
14: fa ← fa ⊕Gvj

15: fa ← sink(fa, fu)
16: end while
17: returnfa ⇓sep(vi)

18: else
19: choosexi ∈ Yvi

20: S ← Pi

21: I ← {f ∈λ(vi) : xi ∈ sup(f), sup(f)⊆sup(fa)∪xi}
22: while S 6= ∅ andfa 6= > do
23: choosep ∈ S
24: S ← S \ p
25: f ′a ← fa ⊕ (xi ∈ p)

⊕
f∈I f

26: fu ← min(fu, SBBTD(f ′a, vi, Yvi \ {xi}, fu))
27: end while
28: returnfu

29: end if

Algorithm 1: Set-based branch-and-bound with tree decom-
positions

not recorded as goods, SBBTD solves the subproblem rooted
at vj for these assignments (line 10), and records the solu-
tions as new goods (lines 11 and 12). It updates the val-
ues of the current assignmentsfa (lower bounds) (line 14),
and compares it with the current upper bounds (line 15). It
continues with the next child (if any) or returns the solu-
tions to the subproblem. The initial call to the algorithm is
SBBTD(⊥, vroot, χ(vroot),>).

Since the formulation of the algorithm is independent of
how the domain partitions are defined, Fig. 1 actually defines
a spectrum of algorithms that is parameterized by the domain
partitionsPi for each variable. The limiting cases of the spec-
trum are|Pi| = |di| and|Pi| = 1, corresponding to finest and
coarsest granularity of the domain partitions, respectively. In
the first case, the set of assignmentsfa actually consists of a
single assignment with value smaller than>, and thus Alg. 1
becomes identical to branch-and-bound on tree decomposi-
tions (BTD). In the second case, the restrictionsxi ∈ p yield
constraints identical to⊥, and thus the search tree degener-
ates to a list. Hence, in this case the algorithm is backtrack-
free and becomes identical to dynamic programming on the
tree (called cluster-tree elimination (CTE) in[Kask et al.,
2003]). For the cases in between, that is,1 < |Pi| < |di|,
hybrids of search and dynamic programming are obtained.

Theorem 1 For a COP (X,D, F) with a tree decomposi-
tion (T, χ, λ) and any domain partitionsP1, P2, . . . , Pn for
variablesx1, x2, . . . , xn, the algorithm SBBTD is sound and
complete, that is,SBBTD(⊥, vroot, χ(vroot),>) = α∗.

For instance, consider the full adder example with the do-
main partitionsPu, Pv = {{0},{1}}, Pw, Py = {{0,1}}, and
Pa1, . . . , Po1 = {{G},{S1,S2},{U}}. That is, the search
simultaneously explores the values{0,1} for w and y and
the values{S1,S2} for the mode variables. SBBTD starts
by assigning the variables{u, v, w, y, a1, a2} in the clus-
ter v1, which gives two assignments,〈u, v, w, y, a1, a2〉 =
〈0, 0, 0, 0,G,G〉 and 〈0, 0, 1, 1, G,G〉, both with value .95.
SBBTD next considers a child ofv1, for instance,v2. Since
there are no goods recorded for this cluster so far, the solu-
tions are computed for this subproblem for the assignments
〈u, y〉 = 〈0, 0〉 and 〈0, 1〉. The value of these solutions are
.0097 (corresponding to a S2 failure of Xor-gate 1) and .95,
respectively. These solutions are recorded and combined with
the two assignments, which now have the values .0092 and
.90, respectively. Next, the solutions for the subproblemv3

are computed simultaneously for the assignments〈v, w〉 =
〈0, 1〉 and 〈0, 1〉. The values are .95 and .01 (correspond-
ing to a S1 failure of the Or-gate), respectively. After com-
bining these solutions with the two assignments inv1, their
value becomes .0088 and .018, respectively. Since there
are no children left, SBBTD updates the bound for the best
solution found to .018. This bound prunes all subsequent
assignments to variables inv1 except〈u, v, w, y, a1, a2〉 =
〈1, 1, 0, 0,G,G〉 and〈1, 1, 1, 1, G, G〉. Since the assignments
〈u, y〉 = 〈1, 0〉 and〈1, 1〉 for the subproblemv2 lead to values
worse than the bound, .018 is returned as optimal solution.

In comparison, observe that BTD (obtained as a special-
ization of SBBTD for the case|Pi| = |di|) suffers from the
problem that it would explicitly iterate through all possible
combinations of values forw and y until encountering the
best assignment (which is obtained for〈w, y〉 = 〈1, 1〉); in
contrast, SBBTD handles those combinations implicitly. Dy-
namic programming (obtained as a specialization of SBBTD
for |Pi| = 1) suffers from the problem that it would consider
more assignments than necessary (for example, it would com-
pute the value for assignments involving〈a1, a2〉 = 〈U,U〉,
which is very low because it corresponds to a double fault).

4.3 Trade-off between Search and Symbolic
Inference

SBBTD unifies search with good recording (BTD) and dy-
namic programming (CTE). In fact, the goods that the BTD
algorithm computes can be understood as partial construc-
tion of the messages sent between clusters by the dynamic
programming algorithm CTE[Kask et al., 2003]. Thus, the
two limiting cases can be understood as lazy and eager forms
of dynamic programming, respectively: BTD computes solu-
tions to subproblems only as far as required to compute the
optimal solution, whereas CTE computes them completely.

It has been previously shown[Jégou and Terrioux, 2003]
that BTD (i.e., lazy dynamic programming) outperforms CTE
(i.e., eager dynamic programming). This is because search on
single assignments exploits the upper bounds as rigorously as

possible, and therefore the least number of assignments will
be explored. However, this argument is based on counting
assignments and holds only if assignments are represented
explicitly. The picture changes when using techniques such
as ADDs that can manipulate sets of assignments implicitly.
Hence, a tension is created between making the partition el-
ements in SBBTD smaller or larger: in the former case, the
advantage is that as few assignments are explored as possible,
but the disadvantage is that less possibilities exist for exploit-
ing commonalities between assignments. In the latter case,
the disadvantage is that more assignments might be explored,
but the advantage is that assignments can be abstracted into
a more compact description and handled implicitly. Thus in
many practical cases, the optimal granularity will lie in an
intermediate point (1 ≤ |Pi| < |di|) along the spectrum;
SBBTD allows us to adapt to this trade-off.

5 Implementation and Experiments

We implemented SBBTD using the CUDD (Colorado Uni-
versity Decision Diagram) package[Somenzi, 2004], which
provides a library of routines for manipulating ADDs.

We evaluated the performance of this prototype on ran-
dom, binary Max-CSP problems. Max-CSP is a constraint
optimization problem where the tuples of a constraint have
cost 0 if the tuple is allowed, and cost 1 if the tuple is not
allowed; the optimal solution corresponds to an assignment
that violates a minimum number of constraints. For each in-
stance, the support of the constraints was determined in or-
der to derive the hypergraph (a graph in this case). Then,
a tree decomposition of the hypergraph was computed using
the min-fill heuristics. We choose random domain partitions,
whose granularity we varied by setting a certain percentageP
of (random) variables to the partition|Pi| = 1, and the other
variables to the partition|Pi| = |di|. We ran the experiments
on a Pentium 4 Windows PC with 1 GB of RAM; due space
restrictions we give only summarized results here.

Consistent with results in[Jégou and Terrioux, 2003], we
found the number of assignments explored forP=0% (BTD)
to be in most cases several times smaller than the number
of assignments explored forP=100% (dynamic program-
ming). E.g., in an example class withN=40 variables,C=80
constraints, domain sizeK=4 and tightnessT=9, the mean
number of goods recorded forP=0% was 50,00 to 100,000,
whereas forP=100% it was 250,000 to 1,000,000. However,
the ADD representation of constraints typically achieved a
compaction of around one to two orders of magnitude (con-
sistent with observations in[Hoey et al., 1999]). Therefore,
and also because larger partition elements reduce the num-
ber of recursive calls, SBBTD ran faster for larger values
of P in almost all cases. E.g., for N=40, K=4, C=80 and
T=9, the mean runtime forP=0% was around 100 sec, but
around 0.5 to 1 sec forP=100%. Given that forP=100%
the computation required up to one order of magnitude more
memory thanP=0%, selecting an intermediate granularity
(0% < P < 100%) allowed significant runtime improve-
ments over BTD within still acceptable memory bounds. We
are currently working on structured examples (like in[Jégou
and Terrioux, 2003]) and real-world examples.

6 Conclusion
We presented an algorithm for solving soft constraint prob-
lems by generalizing branch-and-bound to search on sets of
assignments and perform inference (dynamic programming)
within those sets of assignments. This hybrid approach can
exploit regularities in the constraints, while it can avoid mem-
ory explosion by controlling the size of the sets. In contrast to
work in [Hoeyet al., 1999; Jensenet al., 2002], our approach
is more general in that it addresses valued constraint satisfac-
tion problems[Schiexet al., 1995], and incorporates a de-
composition of the problem into several subproblems. Future
work includes ways to automatically determine domain par-
titions (appropriate points in the spectrum), and augmenting
the algorithm with symbolic versions of constraint propaga-
tion techniques[Cooper and Schiex, 2004] in order to further
improve the bounds.

References
[Baharet al., 1993] Iris Bahar, Erica Frohm, Charles Gaona,

Gary Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
Somenzi. Algebraic decision diagrams and their applica-
tions. InProc. ICCAD-93, pages 188–191, 1993.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for Boolean function manipulation.IEEE Transactions on
Computers, C-35(8):677–691, 1986.

[Cooper and Schiex, 2004] Martin Cooper and Thomas
Schiex. Arc consistency for soft constraints.Artificial
Intelligence, 154:199–227, 2004.

[Gottlobet al., 2000] Georg Gottlob, Nicola Leone, and
Francesco Scarcello. A comparison of structural CSP de-
composition methods.Artificial Intelligence, 124(2):243–
282, 2000.

[Hoeyet al., 1999] Jesse Hoey, Robert St-Aubin, Alan Hu,
and Craig Boutilier. SPUDD: Stochastic planning using
decision diagrams. InProc. UAI-99, pages 279–288, 1999.

[Jégou and Terrioux, 2003] Philippe J́egou and Cyril
Terrioux. Hybrid backtracking bounded by tree-
decomposition of constraint networks.Artificial Intelli-
gence, 146:43–75, 2003.

[Jensenet al., 2002] Rune Jensen, Randy Bryant, and
Manuela Veloso. SetA*: An efficient BDD-based heuristic
search algorithm. InProceedings AAAI-02, 2002.

[Kasket al., 2003] Kalev Kask, Rina Dechter, and Javier
Larrosa. Unifying cluster-tree decompositions for auto-
mated reasoning. Technical report, University of Califor-
nia at Irvine, 2003.

[Schiexet al., 1995] Thomas Schiex, H́elène Fargier, and
Gerard Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. InProceedings IJCAI-95, 1995.

[Somenzi, 2004] Fabio Somenzi. CUDD release 2.4.0, 2004.
http://vlsi.colorado.edu/˜fabio .

[Terrioux and J́egou, 2003] Cyril Terrioux and Philippe
Jégou. Bounded backtracking for the valued constraint
satisfaction problems. InProceedings CP-03, 2003.

