
Timed Model-based Programming:
Executable Specifications for Robust Critical Sequences

Michel D. Ingham and Brian C. Williams

Space Systems and Artificial Intelligence Laboratories
Massachusetts Institute of Technology

77 Massachusetts Ave., Cambridge, MA 02139
fingham, williamsg@mit.edu

Abstract. For robotic spacecraft, robust plan execution is essential during time-
critical mission sequences, due to the very short time available for recovery from
anomalies. These sequences include hard-coded delays between certain actions,
which implicitly capture knowledge about the state of the spacecraft or its envi-
ronment. Our goal is to fold the representation of such timing constraints into the
model-based programming paradigm, which provides a language for writingexe-
cutable specificationsof desired system state trajectories. These specifications are
executed by a Timed Model-based Executive that is state-based and fault-aware.
This paper presents the semantics oftimed model-based programs, an implemen-
tation in terms oftimed hierarchical constraint automata, and an execution algo-
rithm. We demonstrate the application of our executive on a Mars atmospheric
entry scenario.

1 Introduction

There is growing demand for high-reliability embedded systems that operate robustly
and autonomously in the presence of tight real-time constraints. The ever-increasing
complexity of such systems imposes stringent requirements on our execution technol-
ogy, in the areas of software verifiability, temporal reactivity and fault management. We
look to advances in embedded software, to help mitigate the risks associated with high
levels of system complexity. Robotic space exploration provides an interesting domain
for the study of these embedded programming issues.

For robotic spacecraft, robust plan execution is essential during time-critical mis-
sion sequences, such as planetary orbital insertion and entry, descent and landing, due
to the very short time available for recovery from anomalies. Such time-critical space-
craft sequences include hard-coded delays between certain actions, which implicitly
capture knowledge about the state of the spacecraft or its environment. For example,
in the onboard sequence for atmospheric descent of a Mars lander, a delay of approxi-
mately 10 seconds between jettison of the lander’s heatshield and deployment of its legs
would be introduced, to ensure that the deploying legs would not impact the separating
heatshield. Engineers choose to encode this type of engineering knowledge implicitly
via a timing constraint, rather than explicitly including the relevant states in the plant
model, either because it simplifies the onboard reasoning, or because of system observ-
ability limitations. For example, the heatshield separation distance from the lander is

not explicitly measurable, though its expected behavior envelope has been determined
from pre-launch empirical testing and statistical simulation. Robust control programs
for time-critical sequences must allow for specification of such timing constraints.

This paper describes a novel approach to executing time-critical activities, with the
following features:

1. state-based specification– We adopt the model-based programming paradigm [14],
which allows the programmer to interact directly with “hidden” plant states, that is,
states that are not directly observable or controllable. Since engineers prefer to rea-
son about embedded systems in terms of state evolutions, state-based specifications
provide a natural means of encoding control programs for these systems.

2. timed specification– We augment the basic model-based programming paradigm
by introducing clock variables and timing constraints, allowing the execution of
control programs to be dependent on time as well as system state. In this approach,
which we calltimed model-based programming (TMBP), control programs set and
read clock variables just as they set and read plant state variables.

3. executable specification– Execution of a control program requires mapping from
the state goals, specified in the program, to actuator commands that achieve the
goals, and from the sensor observations, to the current system state. In the TMBP
approach, this mapping between states and sensors/actuators is performed automat-
ically, by a deductive controller that reasons through a common-senseplant model.
This model represents the set of possible behaviors and interactions of the system
components.

4. fault-aware execution– Model-based programs must ensure correct synthesis of
behavior in the presence of failures. The deductive controller performs model-based
diagnosis and reactive planning to enable the executive to detect and respond to
failures on-the-fly, within the state-achievement loop. These failure recoveries are
executed in a manner that is transparent to the control program.

Figure 1 presents the architecture of our Timed Model-based Executive. The control
sequencer executes a control program by issuingconfiguration goalsfor achievement
by the underlying deductive controller. Execution of the control program is conditioned
on time constraints, which are resolved based on input from thesystem clock, and state
constraints, which are resolved based onstate estimatesreturned by the deductive con-
troller. The deductive controller reasons through the plant model to generate state es-
timates and commands, given observations from sensors and configuration goals to be
achieved.

The following section identifies related work. Next, we provide a motivating exam-
ple of TMBP. We then describe the semantics of timed model-based program execu-
tion and our executive’s implementation. Finally, we illustrate its capability by stepping
through the execution of our motivating example.

2 Related Work

Our approach unifies concepts from robotic execution languages, model-based reason-
ing and formal modeling of real-time systems. Like other state-of-the-art robotic exe-
cution languages, such as RAPs [3] and TDL [10], we provide support for task-level

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Plant

Timed
Control
Program

Deductive Controller
Model

Timed Model-based
Program

Timed Model-based
Executive

System
Clock

Mode
Estimation

Mode
Reconfigurationestimates

State

Fig. 1. Architecture for the Timed Model-based Executive.

control capabilities: task decomposition, time-keeping, preemption, iteration, parallel
and sequential composition. We support both goal- and event-driven execution, where
our “goals” and “events” are represented as changes to system states. Unlike these other
execution languages, the mechanisms for specifying and commanding goal achieve-
ment methods are provided by the underlying deductive controller. The capacity for
a Timed Model-based Executive to operate at the level of system state specifications,
and to abstract away the details of how states are achieved, is considered a significant
benefit.

The design of the deductive controller is based on previous work in model-based
reasoning, diagnosis and reactive planning. In particular, we leverage algorithms for
state inference and optimal reconfiguration used in the Livingstone [11] and Burton [12]
model-based executives. By coupling deductive reasoning with the task control capabil-
ities of the control sequencer, we provide an executive that is flexible, fault-aware and
robust.

Formal approaches to real-time system modeling, e.g. Timed Automata [1] and
Timed Transition Systems [5], are characterized by their clean semantics and amenabil-
ity to verification via formal tools. We share various notions with these approaches, in-
cluding the definition of a complex system as a composition of concurrently-operating
automata, and the incorporation of clock variables and timing constraints into the se-
mantic model. Key differences include our adoption of a hierarchical computational
model, and our use of configuration goals as a mechanism for goal-driven execution.

3 Timed Model-based Programming Example

The execution of critical spacecraft sequences depends on timing conditions as well as
state knowledge. As an example, consider the entry sequence for a Mars lander space-
craft, such as the Mars Polar Lander [15] (Figure 2).

At the end of the cruise phase of its mission, as the spacecraft approaches Mars, it
turns on its descent engine, putting it into standby mode. Four and a half hours later, as
the spacecraft nears its entry point into the Martian atmosphere, it switches from Earth-

engine to standby
planetary approach switch to

inertial nav rotate to entry -orient
& hold attitude

separate
lander

Fig. 2. Mars entry sequence.

relative navigation, using a combination of a star tracker and an inertial measurement
unit (IMU), to inertial navigation using only the IMU. This navigation mode switch is
necessary because, once atmospheric entry is initiated, the spacecraft will no longer be
able to perform the reorientations necessary to track the reference stars. Four minutes
after switching its navigation mode, the spacecraft prepares for atmospheric entry by
rotating to its entry orientation. Once the entry orientation has been achieved, the lander
stage of the spacecraft separates from the cruise stage and proceeds toward entry into
the Martian atmosphere (all the while holding its attitude at the entry orientation). When
atmospheric entry is initiated (as determined by a change in the spacecraft’s acceleration
due to atmospheric drag), the entry sequence ends and the spacecraft proceeds to the
descent and landing phases of the mission.

In the above sequence, execution is conditioned on time conditions. For example,
consider the four and a half hour delay between putting the descent engine into standby
mode and switching to inertial navigation. Though it might seem more desirable to
condition the sequence execution on a state of the spacecraft, in this case the relative
distance of the spacecraft from the entry point, this is not an option: the spacecraft does
not have access to any observations that would allow it to measure this relative distance.
For this reason, the sequence must include a hard-coded delay, the length of which
has been conservatively (but fairly accurately) estimated from computations performed
by ground operations personnel based on the cruise trajectory of the spacecraft. The
onboard executive must therefore have the ability to initiate clocks that it can reference,
in order to check for satisfaction of timing conditions.

It is also important to note that this sequence specification is expressed in terms
of states of the spacecraft. Many of the states in the sequence are “hidden”; that is,
they are not directly observable, but instead must be deduced indirectly based on one
or more sensor observations and knowledge of how these observations relate to the
state of interest. For instance, the state of an engine must generally be deduced based
on various measurements of electrical power, temperature, and acceleration. Similarly,
hidden states are not necessarily directly controllable, but instead must be commanded
indirectly, sometimes through a complex communication path conditioned on states of
multiple components. For example, engine commands from the flight computer must

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270mins

t1=0
engine=
standby

1

2 3 4 5 6 7

8

9 10

11 12

Fig. 3. THCA representation of the timed control program for the Mars entry sequence.

pass through a propulsion drive electronics module, which must be powered on for the
commands to reach the engine.

This type of state-based specification is far simpler than a control program that must
turn on valve drivers, open individual valves in the propulsion subsystem, and inter-
pret readings from the various sensors in the system. Having engineers specify desired
spacecraft behavior in terms of more abstract hidden states makes the task of writing the
control program much easier and avoids the error-prone process of reasoning through
low-level system interactions. In addition, it gives the program’s execution kernel the
latitude to respond to novel failures as they arise. This is essential for achieving high
levels of robustness.

Timed Control Program – Figure 3 shows the graphical representation of the timed
control program for the entry sequence. This representation, which we call atimed hier-
archical constraint automaton, consists of a set of locations (represented as circles and
boxes in the figure). While they are marked, locations can assert configuration goals,
corresponding to states that the plant must progress toward (e.g.,engine=standbyis
asserted in location 2). Locations can also assert clock initializations (e.g., location 3
initializes clockt1 to zero). Transitions between locations (represented as arrows in the
figure) can be conditioned on time and state constraints (e.g., the transition from loca-
tion 4 to location 5 is conditioned ont1�270 mins). We formally define these automata
in a later section of the paper. Here, we make general references to the figure, to provide
an informal idea of how timed control programs are written and executed. Later, we will
revisit this example in more detail.

Plant Model – The plant model is built from a set of component automata, such
as those depicted graphically in Figure 4.1 The component automata operate concur-
rently and synchronously. Each component (e.g.,engine) is represented by a set of
modes, corresponding to the nominal (e.g.,off, standby, firing) and off-nominal (e.g.,
failed) states of the component. The behavior within each of these modes is described

1 The models shown here provide a fairly abstract representation of component behavior. How-
ever, timed plant models can also be written at lower levels of abstraction; for example, a
spacecraft engine could be modeled as a composition of more detailed component models of
tanks, valves, thrusters, etc. . .

Engine

(power = off) AND
(thrust = zero)

Connected

pyro_cmd =
fire-primary

Failed

Separated

0.0001

(primary_pyro =
not-fired) AND
(backup_pyro =

not-fired)

Unsuccessful
Attempt

(primary_pyro =
fired) OR

(backup_pyro =
fired)

(primary_pyro =
misfired) AND

(backup_pyro =
not-fired)

pyro_cmd =
fire-backup

0.001

0.0001

Lander

Off

Firing

Standby

cmd =
standby

cmd =
fire

cmd =
off

cmd =
standby

(power = on) AND
(thrust = zero)

(power = on) AND
(thrust = full)

Failed

0.001

0.001

0.001

Fig. 4. Example component automata from a simplified Mars lander spacecraft model. Nominal
modes are represented as circles, and fault modes are represented as ovals. The probabilities on
nominal transitions are omitted for clarity.

by a set of logical constraints on plant variables with finite domains, such asthrust
andpower. Stochastic component behavior is captured through a set of probabilistic
transitions between modes. For example, the engine’s transitions fromoff, standby, and
firing to failed each have a 0.1% probability. Transitions between nominal modes are
conditioned on plant variable assignments. For the engine, these transitions occur with
probability 99.9%, immediately upon assertion of their triggering commands. The full
plant model for the simplified spacecraft used in the Mars entry example would include
component models for theengine, nav, att, entryandlanderstates.

Executing the Model-Based Program– The execution of the timed control pro-
gram for Mars entry begins by asserting the configuration goalengine=standby(at the
location labeled “2” in Figure 3), which the control sequencer issues to the deduc-
tive controller for achievement. To determine how to achieve this goal, the deductive
controller considers the latest estimate of the state of the plant. Suppose the deductive
controller determines from its sensor measurements and previous commands that the
engine is off. The deductive controller deduces from the model that it should send a
command to the plant that will lead the engine to standby mode. Based on theengine
model in Figure 4, the deductive controller issues the commandcmd=standby. Based
on new sensor measurements confirming that the engine is indeed powered on and that
the thrust is still zero, the deductive controller tracks the engine’s transition into standby
mode.

With the configuration goal now achieved, the sequencer then initializes a clock
variable (at location 3) and waits for the clock to read 270 minutes (at location 4). At
this point, the control sequencer asserts the goalnav=inertial (at location 5). The deduc-
tive controller determines that the goal can be achieved by simply issuing a command
that triggers the desired change in navigation mode. After receiving confirmation that
the goal has been achieved, the sequencer initializes a new clock (at location 6), and
waits for 4 minutes to elapse (at location 7). It then starts continuously asserting the
configuration goalatt=entry-orient(at location 10, which gets continually re-marked

by the transition from location 9), which the deductive controller begins to achieve by
commanding the appropriate mode switch for the attitude control system. When the en-
try orientation is achieved (transition from location 11 to 12), the sequencer proceeds
by issuing the configuration goallander=separated(location 12), all the while contin-
uing to assertatt=entry-orient, to maintain the spacecraft’s attitude. This results in the
deductive controller triggering the firing of the lander’s primary pyro latches to separate
it from the cruise stage (as per thelandermodel in Figure 4). The sequencer continues
to hold its entry orientation until the deductive controller indicates that entry has been
initiated (entry=initiated), based on IMU sensor measurements indicating the onset of
drag due to atmospheric entry, at which point execution of the timed control program
in Figure 3 terminates.

This describes a nominal (i.e. fault-free) execution of the entry sequence. However,
the robustness provided by the TMBP approach is particularly emphasized in the case
of off-nominal execution. One of the main strengths of TMBP is its fault-awareness, i.e.
its seamless incorporation of fault diagnosis and recovery capabilities within the sense-
decide-act loop. Consider a hypothetical situation where the primary latches connecting
the lander to the cruise stage fail to release upon command (corresponding to the failure
transition into theunsuccessful-attemptmode for thelandermodel in Figure 4). Since
the timed control program for the entry sequence has specified the configuration goal
lander=separated(at location 12), the control sequencer will continue to assert this goal
to the deductive controller until it has been achieved, or until it has been determined that
the goal state cannot possibly be achieved from the current estimated state. Presuming
that the mission-critical pyro latch subsystem incorporates some redundancy, failure
of the primary latches to fire open would result in the deductive controller reasoning
through thelandermodel to deduce that it should fire the backup latch. Whereas current
approaches to spacecraft fault protection would require explicit diagnosis and recovery
actions to be built into the sequence, the Timed Model-based Executive can perform
this recovery in a manner that is transparent to the control sequencer.

4 Timed Model-based Program Semantics

In this section, we present the semantic model for TMBP. We begin by describing the
semantics for the two parts of the timed model-based program: the plant model and
the timed control program. The semantics for the control sequencer and deductive con-
troller modules of the Timed Model-based Executive are then presented. The section
concludes with a semantic definition of the execution of a timed model-based program
in terms of legal state evolutions of a physical plant.

4.1 Plant Model

A physical plant is modeled as a factoredpartially observable Markov decision process
(POMDP)P = h� , �, T, P�, PT, PO, Ri. � is a set ofvariables, each ranging
over a finite domain.� is partitioned intostate variables�s, control variables�c,
andobservable variables�o. A full assignment� is defined as a set consisting of an
assignment to each variable in� . � is the set of all possible full assignments over� .

A states is defined as an assignment to each variable in�s. The set�s, the projection
of � on variables in�s, is the set of all possible states. Anobservationof the plant,o,
is defined as an assignment to each variable in�o. A control action, �, is defined as an
assignment to each variable in�c.

T is a finite set oftransitions. Each transition� 2 T is a function� : � ! �s;
�(�) is the state obtained by applying transition� to any feasible full assignment�.
The transition�n 2 Tmodels the system’s nominal behavior, while all other transitions
model failures.PTassociates with each transition� and full assignment� a probability
P� (�). P� (�) is shorthand forP� (s

0 j s; �), wheres0 = �(�), ands and� are the
state and control variable assignments in�, respectively.P�(s0) is the probability that
the plant has initial states0. The reward for being in states is R(s). The probability of
observingo in states isPO(o j s).

The key features of the plant model are: (a) it captures nominal and various off-
nominal system behaviors, by defining multiple transition functions for each full assign-
ment; and (b) it is encoded compactly using concurrency and constraints (see example
in Figure 4).

In TMBP, aninterleavingmodel of computation is adopted,2 where execution pro-
ceeds incycles. Each cyclei consists of an instantaneous “discrete” event and a “con-
tinuous” phase in which time advances by some amountÆ(i). As far as the plant model
is concerned, the discrete events correspond to transitions between plant states, which
are assumed to occur instantaneously at absolute system timest(0), t(1), : : : The plant
maintains its state between these discrete event times; that is, states(i) is assumed to
hold in time interval[t(i); t(i+1)). The time stepÆ(i) = t(i+1) � t(i) is not necessarily
constant from one cyclei to the next; it is determined by the amount of time required
for the Timed Model-based Executive to complete one cycle of control sequencer and
deductive controller operations.

Given a sequence of control actions [�(0), �(1), : : :], a legal plant trajectoryis rep-
resented by a sequence of states [s(0), s(1), : : :], such that:

1. s(0) is a valid initial plant state, that is,P�(s
(0)) > 0;

2. each transition froms(i) to s(i+1) occurs at timet(i+1);
3. for eachi, there is a full assignment�(i) 2 � which agrees withs(i) on assignments

to variables in�s and with�(i) on assignments to variables in�c; and
4. s(i+1) = �(�(i)), for some� 2 T with P� (�

(i)) > 0.

A trajectory involving only the nominal transition�n is called anominal trajectory. A
simpletrajectory does not repeat any state.

The space of possible state trajectories for a plant can be visualized using aTrel-
lis diagram, which enumerates all possible states at each time step and all transitions
between states at adjacent times (Figure 5).

2 Real-time modeling formalisms such as Timed Automata [1] and Timed Transition Systems [5]
have previously adopted a similar interleaving model of concurrency; Henzinger, Manna and
Pnueli [5] have shown that the interleaving model is an appropriate model for capturing most
phenomena of interest occurring in the timed execution of real-time systems.

s(0) s(1) s(i-1) s(i)

prob(sm)

s(i) s(i+1) s(i+n-1) s(i+n)

trajectory leads
to goal state s g

(i)

(a)

(b)

prob(sl)

most likely state
sm chosen as s (i)^

^ ^ ^ ^

^ ^ ^ ^

Fig. 5. A Trellis diagram depicts the plant’s possible state trajectories. (a) Given the previous
belief state, the latest control action and the latest observation, ME computes the current belief
state, and selects the most likely state as its estimate; (b) MR chooses a path through the diagram
along nominal transitions, terminating at the max-reward goal state.

4.2 Timed Control Program

In this section, the semantics of the second part of the timed model-based program,
the timed control program, is discussed. A legal execution of a timed control program
is defined in terms of a timed sequence ofcontrol program locations, which repre-
sent the “state” of the control program’s execution at any given time,configuration
goals, which provide the mechanism for goal-driven execution, andclock interpreta-
tions, which provide the mechanism for conditioning goals and activities on time con-
straints. The semantics of timed control programs builds on the semantics of untimed
control programs [13, 14], by introducing the clock interpretations and conditioning the
transitions between program locations on these clock interpretations.

We assume a dense model of time, where the time domain is taken as the set of
non-negative real numbers,<+. We define a set�t of clock variables. Clocks can
be viewed as “timers,” measuring the system time elapsed since their initialization. A
clock interpretation� assigns a value to each clock in�t. We define�t as the set of all
possible clock interpretations over�t. ForÆ 2 <+, the clock interpretation that addsÆ
to the value of each clock variable in� is denoted by� + Æ. The value of a particular
clockxt in a clock interpretation� is denoted�(xt). We define a clockxt to beactive
in execution cyclei if it was initialized in some earlier cycle. Conversely, ifxt has not
been initialized prior to cyclei, we say that it isinactive. Once active, clocks cannot
become inactive.

Formally, atimed control programis a deterministic automatonT CP = hLcp, �cp,
�cp, gcp, �cp, �s, �ti. Lcp is the set of program locations, where�cp 2 Lcp is the pro-
gram’s initial location.�cp is a transition function�cp : Lcp ��s ��t ! Lcp. Transi-
tions between program locations are conditioned on plant state estimates and clock in-

terpretations. Each location has a corresponding set ofclock initializations�cp(l) � �t,
which is the set of clocks to be initialized upon transitioning to locationl 2 Lcp. Each
locationl also has a correspondingconfiguration goalgcp(l) � �s, which is the set of
plant goal states associated with locationl.

Similar to the plant model, the timed control program changes locations instanta-
neously at absolute system timest(0), t(1), : : :, and maintains its location between these
discrete event times. Given a sequence of most-likely state estimates [ŝ(0), ŝ(1), . . .]
of a plantP , a legal executionof a timed control programT CP is represented by a
sequence of locations [l(0), l(1), . . .], clock interpretations [�(0), �(1), . . .], and config-
uration goals [g(0), g(1), . . .], such that:

1. l(0) is the initial program location�cp;
2. �(0) is a valid initial clock interpretation, that is,�(0)(xt) = 0 for all clocksxt 2

�t, and all clocks are initially inactive;
3. h�(i); �(i+1)i represents a legal clock interpretation sequence, that is:

– for each clockxt that is inactive in cyclei, �(i)(xt) = 0,
– for eachxt that is active in cyclei, �(i)(xt) = �(i�1)(xt) + Æ(i�1), where
Æ(i�1) = t(i) � t(i�1) is the same for all active clocks,

– for eachxt that is initialized in cyclei (i.e.,xt 2 �cp(l
(i))), xt is active for all

cyclesj > i;
4. hl(i); l(i+1)i represents a legal control program transition, that is,l(i+1) = �cp(l

(i),
ŝ(i), �(i) + Æ(i)); and

5. g(i) represents a valid configuration goal, that is,g(i) = gcp(l
(i)).

The semantics of a timed control program can thus be considered a variant of De-
terministic Timed Automata [1], with two key distinctions: first, its execution is condi-
tioned on the hidden state of a physical plant; and second, its locations assert configu-
ration goals intended to operate on the hidden state of a physical plant.

4.3 Control Sequencer

The control sequencer’s role is to direct the closed-loop goal-driven execution, by is-
suing the configuration goals specified in the timed control program. In each execution
cycle, it takes as input a timed control programT CP, the plant state estimate and the
time step from the system clock, and it issues a configuration goal to the deductive
controller. More precisely, the control sequencer advances the control program from its
current locationl(i) to a new locationl(i+1), by taking the transition enabled by the
state estimatês(i) and the clock interpretation�(i). It generates the configuration goal
g(i+1) associated with the new program locationl(i+1).

Formally, the semantics of the control sequencer can be described by the function
CS(see Figure 6), which operates on the control programT CP defined in Section 4.2.
Given an initial program locationl(0), an initial clock interpretation�(0), and sequences
of state estimates[ŝ(0); ŝ(1); : : :] and cycle time intervals[Æ(0); Æ(1); : : :], CScan be used
to generate a legal execution ofT CP, i.e., it outputs legal sequences of program loca-
tions, clock interpretations and configuration goals (as defined in Section 4.2).

CS(T CP; l(i); ŝ(i); �(i); Æ(i)) ! hl(i+1); �(i+1); g(i+1)i ::

1. Advance to new program location.

l
(i+1) = �cp(l

(i)
; ŝ

(i)
; �

(i) + Æ
(i)):

2. Update clock interpretations.
For each clockxt 2 �t :

�
(i+1)(xt) =

�
0 if xt is inactive;
�(i)(xt) + Æ(i) if xt is active:

x
t becomes active ifxt 2 �cp(l

(i+1)):

3. Issue configuration goal.

g
(i+1) = gcp(l

(i+1)):

Fig. 6.Control sequencer functionCS.

4.4 Deductive Controller

The deductive controller’s dual role is to (a) infer the system state based on observations
from the sensors, and (b) issue control actions that achieve the configuration goals. In
each execution cycle, it takes as input the plant modelP , the configuration goal from
the control sequencer, and the observation from the physical plant. It generates the most
likely plant state estimate and an appropriate control action. This section presents the
semantics of the deductive controller by defining semantics for its two distinct capabil-
ities,mode estimationandmode reconfiguration.

Mode Estimation - The sequence of state estimates is generated by the deductive
controller’s mode estimation (ME) capability. ME is an online algorithm for tracking
the likelihood of each possible plant state, given the plant model, the control actions,
and the observations. In each cycle, ME returns the most likely plant state as the current
state estimate.

Given the semantic model of the plant as a factored POMDP, ME is framed as an
instance ofbelief state update. Belief state update computes the currentbelief state, that
is, the probability associated with being in each state, conditioned on the control actions
performed up to thelast cycle, and the observations received up to thecurrent cycle.
Exploiting the Markov property, the belief stateb(i+1�)[s] at execution cyclei + 1 is
computed from the belief state and control actions at cyclei and observations at cycle
i+ 1 using the following belief state update equations:

b(�i+1)[sk] =

NX
j=1

b(i�)[sj]PT(sk j sj ; �
(i));

b(i+1�)[sk] = b(�i+1)[sk]
PO(o

(i+1) j sk)PN
j=1 b

(�i+1)[sj]PO(o(i+1) j sj)
;

whereb(�i+1)[sk] � p(s
(i+1)
k j o(0); : : : ; o(i); �(0); : : : ; �(i)) andb(i+1�)[sk] � p(s

(i+1)
k j

o(0); : : : ; o(i+1); �(0); : : : ; �(i)). PT(sk j sj ; �(i)) is the probability thatP transitions
from statesj to statesk, given control actions�(i). PO(o(i+1) j sk) is the probability

that observationo(i+1) is received in states(i+1)
k . The initial belief stateb(0�)[sk] is

computed based onb(�0)[sk] = P�(sk).
Belief state update associates a probability to each state in the Trellis diagram. For

ME, the tracked state with the highest belief state probability is selected as the most
likely state ŝ(i) (Figure 5a). Note that the sizeN of the state space of the factored
POMDP is very large, on the order ofmn, wheren is the number of components in
the system, andm is the average number of modes for each component. Given the
high level of reactivity required for the Timed Model-based Executive, it is necessary to
approximate the belief state update process, such that only a limited number of the most
likely state estimates are computed in each execution cycle. Various implementations
of the ME capability have been developed, which provide tractable approximations to
the belief state update computation [8, 11, 14].

Mode Reconfiguration - The sequence of control actions is generated by the deductive
controller’s mode reconfiguration (MR) capability. MR provides an online algorithm for
finding an optimal policy that achieves the configuration goal, given the plant model and
the current belief state from ME (a policy� is a state-action mapping that specifies, for
each state, an action to be taken). In each execution cycle, MR returns the first control
action from the optimal policy.

Given a plant model expressed as a POMDP, the semantics of MR maps to agoal-
directed decision theoretic planningproblem. In decision theoretic planning, the ob-
jective is to choose actions such that some measure of reward is maximized [7]. More
precisely, decision theoretic planning computes an optimal policy�� for the POMDP
that maximizes the expected (possibly discounted by a factor) sum of reward over the
finite discrete-time horizon of interest.

The MR problem is described as goal-directed, because the specific objective of
the planning problem is to find a policy that leads to a state that satisfies the given
configuration goal. As such, the reward metricR(s) for the MR planning problem is
defined as a sum of a goal-specific reward function, which biases the solution toward
states that achieve the specified configuration goal, and the state reward functionR(s)
built into the plant model POMDP, which biases the solution toward lower-cost policies
among the set of policies that achieve the configuration goal.

Assuming the system is a Markov decision process (MDP) with fully-observable
states, the solution of the basic decision-theoretic planning problem is obtained by solv-
ing the Bellman optimality equations [9]:

V �
i (s) = max

�

"
R(s) +

X
s02�

PT(s
0 j s; �)V �

i�1(s
0)

#
;

��i (s) = argmax
�

"
R(s) +

X
s02�

PT(s
0 j s; �)V �

i�1(s
0)

#
:

In these equations, the optimal value function in theith cycle,V �
i , is defined induc-

tively as the maximum of the sum of the immediate rewardR and the discounted ex-
pected value of the remaining(i� 1) steps. The optimal policy for theith cycle,��i , is
defined in terms of the optimal value functionV �

i�1 for the (i � 1)th cycle. Common
approaches for solving the Bellman equations for a MDP includevalue iterationand
policy iteration[9].

For a plant modeled as a POMDP, the solution to the planning problem is obtained
by solving the Bellman equations associated with the “belief MDP,” which defines as
its state space the set of all possible belief states [7]. Note that the solution of the deci-
sion theoretic planning problem associated with the belief MDP is generally intractable
via exact dynamic programming algorithms, due to the continuous nature of the belief
state space. Thus, numerous approaches have been developed for finding approximate
solutions [7]. These algorithms take the approach of computing approximations to the
optimal value function, by exploiting properties of the belief state space. For the huge
factored state spaces (exponential in the number of components) of interest in TMBP,
this approach does not scale well. Instead, our executive implementation, which is based
on the Burton reactive planner [12], makes key assumptions that allow MR to be per-
formed reactively by dividing the planning problem into two steps: first, find a reach-
able goal state that satisfies the configuration goal and maximizes reward; second, find a
(possibly suboptimal) sequence of control actions that lead from the current most-likely
state to the maximum-reward goal state. Thus, MR can be viewed as picking a simple
path through the Trellis diagram along nominal transitions leading to the goal state, as
shown in Figure 5b.

4.5 Timed Model-based Program Execution

Now that the semantics of the timed model-based program and the modules of the
Timed Model-based Executive have been introduced, this section combines these se-
mantic descriptions into an overall execution semantics for the timed model-based pro-
gram.

Given a timed model-based program consisting of a timed plant modelP and a
timed control programT CP, a sequence of cycle time intervals [Æ(0), Æ(1), . . .], and a
sequence of observations [o(0), o(1), . . .], a legal executionof the timed model-based
program is represented by sequences of state estimates [ŝ(0), ŝ(1), . . .] of P , program
locations [l(0), l(1), . . .] of T CP , clock interpretations [�(0), �(1), . . .] of T CP, config-
uration goals [g(0), g(1), . . .] of T CP, and control actions [�(0), �(1), . . .], such that:

1. The initial conditions are valid, that is:
– P�(ŝ

(0)) > 0;
– l(0) is the initial program location�cp; and
– �(0)(xt) = 0 for all program clocksxt.

2. The sequences of program locations, clock interpretations, and configuration goals
correspond to a legal execution ofT CP, which is consistent with the semantics of
the control sequencer (presented in Section 4.3).

3. If plant statês(i+1) is the result of a nominal plant transition from̂s(i), thenŝ(i+1)

is the state resulting from taking�(i), the first action in an optimal policy that

achieves configuration goalg(i), consistent with the semantics of MR (presented in
Section 4.4).

4. Given the sequence of control actions, the sequence of state estimates corresponds
to a legal trajectory ofP , which is consistent with the semantics of ME (presented
in Section 4.4).

As discussed above, the implementation of the deductive controller has been pre-
viously described in [11, 12]. In the remainder of this paper, we focus on the technical
details of the control sequencer.

5 Control Sequencer Implementation

Engineers generally prefer to use visual representations of system specifications over
textual encodings. For this reason, StateCharts [4] and similar formalisms have become
standard tools in the design and analysis of embedded systems. We adopt a graphical
language, calledtimed hierarchical constraint automata (THCA), to encode our timed
control programs (Figure 3). In this section, we define THCA as a specific instance of
theT CP automaton presented in Section 4.2, and we present the execution algorithm
used by our control sequencer.

5.1 Timed Hierarchical Constraint Automata

In this section, we define the THCA encodings of timed control programs. In the follow-
ing we call the “states” of a THCAlocations, to avoid confusion with the physical plant
state. Aprogram location, as defined in Section 4, corresponds to a set of “marked”
THCA locations.

A THCA has seven main attributes. First, it composes sets of concurrently oper-
ating automata. Second, each location is labeled with a state constraint, called agoal
constraint, which the physical plant must progress towards, whenever that location is
marked. This allows the hidden state of the plant to be controlled directly. Third, each
location is labeled with a set ofclock initializations, which initialize clock variables
upon transition into the location. Fourth, each location is labeled with a constraint on
clock and state variables, called amaintenance constraint, which must hold for that lo-
cation to remain marked. Fifth, transitions between locations are conditioned on time
and hidden state. Sixth, automata are arranged in a hierarchy – a location of an au-
tomaton may itself be an automaton, which is invoked when marked by its parent. This
enables the initiation and termination of complex concurrent and sequential behaviors.
Finally, multiple outgoing transitions can be taken from a single location, allowing an
automaton to have several locations marked simultaneously. This enables a compact
representation for iterative behaviors, as illustrated in Figure 3.

A THCA A is a tupleh�;�;�; G ; I;M ;Ti. � is a set of locations, partitioned
into primitive locations�p andcomposite locations�c. Each composite location cor-
responds to another THCA. We recursively define thesubautomataof A as the set of
locations ofA, and locations that are subautomata of the composite locations ofA.
Graphically, primitive locations are represented as circles (locations 2-7 and 9-12 in

Figure 3), while composite locations are represented as rectangles (locations 1 and 8 in
Figure 3).� � � is the set ofstart locationsof A, identified by short diagonal arrows
in Figure 3. At cyclei the state of a THCA is the set of marked locationsm(i) � �,
called amarking. A marking represents the current state of multiple concurrent threads
of execution.

� is a set of variables, partitioned into plant state variables�s and clock variables
�t. Eachxs 2 �s ranges over a finite domainD [xs], and eachxt 2 �t ranges over
<+. We use propositional state logic for our constraint system, where propositions are
composed into formulae using the standard logical connectives, and (^), or (_) and
not (:). In the case of state constraints, propositions take the form(xs = v), where
xs 2 �s andv 2 D [xs]; in the case of clock constraints, propositions take the form
(xt ineqt), wherext 2 �t, ineq 2 f<;>;�;�g andt 2 <+. In addition, constraints
can be of the formj= c (“entailsc”) or 6j= c (“does not entailc”). In our diagrams, we
usec to denote the constraintj= c, andc to denote the constraint6j= c. When a constraint
is not specified, it is taken to be implicitlyTrue.

G associates with each primitive location�p 2 �p a state constraintG (�p), called
a goal constraint, that the plant progresses towards whenever�p is marked.I asso-
ciates with each primitive location�p 2 �p a set ofclock initializationsI(�p) that are
performed when�p is initially marked.M associates with each location� 2 � amain-
tenance constraintM (�) = (M s(�);M t(�)) consisting of a state constraint and a clock
constraint that must both hold at the current instant for� to be marked. Maintenance
constraints associated with composite locations are assumed to apply to all subautomata
within the composite location. In our diagrams, maintenance constraints are preceded
by the keyword “MAINTAIN”. For example, in Figure 3, the assignmentt1=0 in lo-
cation 3 is a clock initialization, the assignmentnav=inertial in location 5 is a goal
constraint, andMAINTAINentry=initiatedin location 8 is a maintenance constraint.

T associates with each location� 2 � a transition functionT(�). EachT(�) spec-
ifies asetof locations to be marked at cyclei+ 1, given appropriate assignments to�
at cyclei. Transitions are conditioned onguard conditionsthat must be satisfied by the
conjunction of the plant model, the estimated plant state, and the current clock inter-
pretation. In Figure 3, the guard on the transition from location 4 to itself is the clock
constraintt1<270 mins, and the guard on the transition between locations 11 and 12 is
the state constraintatt=entry-orient.

5.2 Executing THCA

To execute a THCAA, the control sequencer starts with an estimate of the initial state
of the plant,̂s(0), and an empty clock interpretation,�(0) = ;. It initializesA by mark-
ing the start locations ofA and all their starting subautomata. It then repeatedly steps
automatonA using the functionStepTHCA (Figure 7), which maps the current state
estimate, clock interpretation and marking to a next state estimate, clock interpretation,
marking and configuration goal. Execution completes when no marks remain.

Our model of time is implemented via a set of active clocks. Clock assignments in
�(i) are updated at the beginning of each execution cycle, and remain constant through-
out. The assignment to each active clockxtj is computed as the difference between the

StepTHCA(A,m(i) ,ŝ(i) ,tinit(i),tabs) ! hg(i) ,m(i+1) ,ŝ(i+1) ,tinit(i+ 1)i::

1. Update active clocks.Update each active clock variable(xtj = tabs � tinitj). Add these new clock variable

assignments to�(i) .
2. Check maintenance constraints for marked composites.Unmark all subautomata of any marked composite location

in m(i) whose maintenance constraint is violated byŝ(i) ^ �(i) .
3. Assert clock initializations. For any clock initialization(xtj = 0) asserted by currently marked primitive locations,

unlesstinitj is already specified intinit(i), settinitj (i + 1) = tabs.

4. Setup configuration goal.Output, as the configuration goalg(i) , the conjunction of goal constraints from currently
marked primitive locations inm(i) whose maintenance constraints are satisfied byŝ(i) ^ �(i) .

5. Take action.Request that MR issue a command that progresses the plant towards a state that achieves the goalg(i) .
6. Read next state estimate.Once the command has been issued, obtain from ME the plant’s new most likely state

ŝ(i+1) .
7. Await incomplete goals.If the goal constraint of a primitive location marked inm(i) is not entailed bŷs(i+1) , and

its maintenance constraint was not violated byŝ(i) ^ �(i) , then include that location as marked inm(i+1) .
8. Identify enabled transitions. A transition from a marked primitive location�p in m(i) is enabled if both of the

following conditions hold true:
(a) �p ’s goal constraint is entailed bŷs(i+1) , or its maintenance constraint was violated byŝ(i) ^ �(i) ;
(b) the transition’s guard condition is satisfied byŝ(i+1) ^ �(i) .

A transition from a marked composite location�c in m(i) is enabled if both of the following conditions hold true:
(a) none of�c ’s subautomata are marked inm(i+1) and none of�c ’s subautomata have enabled outgoing transi-

tions;
(b) the transition’s guard condition is satisfied byŝ(i+1) ^ �(i) .

9. Take transitions. Mark and initialize inm(i+1) the target of each enabled transition. Re-mark inm(i+1) all com-
posite locations with subautomata that are marked inm(i+1) .

10. Update list of clock references.Add the contents oftinit(i) to tinit(i+ 1).

Fig. 7.StepTHCA algorithm.

current absolute system time,tabs(i), and the absolute time when the clock was initial-
ized,tinitj (i).

The StepTHCA algorithm provides a correct implementation of the control se-
quencer semantics presented in Section 4.3; that is, given a correct implementation of
a deductive controller, it satisfies all conditions of a legal execution of a timed model-
based program in Section 4.5. The proof is omitted here. Key features of the algorithm
are as follows.Reactive preemptionis implemented in Step 2: we unmark all subau-
tomata of composite locations whose maintenance constraints have been violated by
the latest state estimate, preventing the assertion of any goal constraints by these sub-
automata.Clock persistenceis ensured in Step 3: we avoid resetting an already-active
clock to zero when the primitive location gets re-marked, for example due to incom-
plete achievement of its goal constraint.Goal-driven executionis provided by Steps 4
and 5, via assertion of the configuration goal for achievement by the deductive con-
troller. Closed-loop executionis implemented in Steps 6 and 7, based on plant state
feedback: we continue to assert a goal until it is determined to have been achieved by
the deductive controller. Finally,progress due to goal achievement or preemptionis
ensured in Step 8, by enabling transitions out of locations whose goal constraints are
satisfied or whose maintenance constraints have been violated.

6 THCA Execution Example

We illustrate the interaction between the control sequencer and the deductive controller,
by stepping through a fault-free execution of the Mars entry sequence discussed previ-
ously.3

Initial State – Initially, the start locations are marked (locations 1 and 2 in Fig-
ure 3). We assume ME provides the following initial plant state estimate:fengine=off,
nav=Earth-relative, att=cruise-orient, lander=connected, entry=not-initiatedg. Exe-
cution will continue as long as outermost composite location 1 remains marked.

Cycle 1,tabs = 0:0 sec– The firstStepTHCA cycle proceeds as follows. (Step 1)
No clocks are active, so no clock variables are updated. (Step 2) Since no maintenance
constraints are specified for marked composite location 1, it remains marked. (Step 3)
No clocks are initialized by the start locations. (Step 4) The only goal constraint asserted
is engine=standby. This state assignment is passed to MR as the configuration goal.
(Step 5) MR issues the first command in a sequence that achieves the configuration goal.
Based on the simple plant model shown in Figure 4, this command iscmd=standby.
(Step 6) ME confirms thatengine=standbyis achieved. (Step 7) The goal constraint
has been achieved, so location 2 will not remain marked. (Step 8) Since location 2’s
outgoing transition is labeledTrue, it is enabled. (Step 9) After taking this transition,
locations 1 and 3 are marked. (Step 10) There are no active clocks, so no initialization
times to update.

Cycle 2, tabs = 0:5 sec– Location 3 asserts the clock initializationt1=0, so we
note 0.5 sec as the initialization time fort1. No goal constraints are asserted, and ME’s
state estimate remains unchanged. Location 3’s outgoing transition is labeledTrue, so
it is enabled. After taking this transition, locations 1 and 4 are marked.

Cycle 3,tabs = 1:1 sec– We update clock variablet1 = 1.1 - 0.5 = 0.6 sec. No clock
initializations or goal constraints are asserted, and ME’s state estimate is unchanged.
Sincet1 is less than 270 minutes, only the transition from location 4 to itself is enabled.
Thus, locations 1 and 4 remain marked.

Since this behavior will be repeated for multiple cycles, we skip to the next “in-
teresting” execution cycle,N1, which occurs 16199.5 seconds later. State estimate
fengine=standby, nav=Earth-relative, att=cruise-orient, lander=connected, entry=not-
initiatedg is unchanged, and locations 1 and 4 remain marked in cycles 4 toN1.

Cycle N1, tabs = 16200:6 sec– We update clock variablet1 = 16200.6 - 0.5 =
16200.1 sec. No clock initializations or goal constraints are asserted and the new state
estimate remains unchanged. Since the value oft1 is greater than 270 minutes, only the
transition from location 4 to location 5 is enabled. After taking the enabled transition,
locations 1 and 5 are marked.

Cycle (N1+1), tabs = 16201:2 sec– We update clock variablet1 = 16201.2 - 0.5 =
16200.7 sec. Location 5 asserts the goal constraintnav=inertial. This state assignment
is passed to MR as the configuration goal. MR issues the first command in a sequence
that achieves the configuration goal. ME confirms thatnav=inertial is achieved as a
result of this command. The goal constraint for location 5 has been achieved, so it will

3 System time values associated with each cycle are for illustrative purposes only, and do not
reflect the actual rate of execution of the control sequencer.

not remain marked in the next cycle. Since location 5’s outgoing transition is labeled
True, it is enabled. After taking the enabled transition, the marked locations are 1 and
6.

Cycle (N1 + 2), tabs = 16201:8 sec– We update clock variablet1 = 16201.8 - 0.5
= 16201.3 sec. Location 6 asserts the clock initializationt2=0, so the current system
time of 16201.8 sec is stored as the initialization time fort2. ME’s new state estimate
remains unchanged from the previous cycle. Since location 6’s outgoing transition is
labeledTrue, it is enabled. After taking the enabled transition, the marked locations are
1 and 7.

Cycle (N1 + 3), tabs = 16202:3 sec– Both clock variablest1 = 16202.3 - 0.5 =
16201.8 secandt2 = 16202.3 - 16201.8 = 0.5 secare updated. Since the value oft2 is
less than 4 minutes, only the transition from location 7 to itself is enabled. Thus, in the
next cycle, locations 1 and 7 remain marked.

Again skipping to the next “interesting” execution cycle,N2, which occurs 239.9
seconds later, the state estimatefengine=standby, nav=inertial, att=cruise-orient, lan-
der=connected, entry=not-initiatedg is unchanged. Locations 1 and 7 remain marked
from cycles (N1 + 3) toN2.

CycleN2, tabs = 16442:2 sec– Clock variablest1 = 16442.2 - 0.5 = 16441.7 sec
and t2 = 16442.2 - 16201.8 = 240.4 secare updated. Since the value oft2 is greater
than 4 minutes, only the transition from location 7 to composite location 8 is enabled.
After taking the enabled transition and marking location 8’s starting subautomata, the
marked locations for the next cycle are 1, 8, 9, 10, and 11.

Cycle (N2 + 1), tabs = 16442:7 sec– We update the two clocks. The maintenance
constraint corresponding to non-entailment ofentry=initiatedon location 8 holds for
the current state estimate, so all its subautomata remain marked. The only goal con-
straint asserted isatt=entry-orient. After MR issues the first command that progresses
toward the goal, ME indicates thatatt=entry-orientis not yet achieved. Consequently,
location 10 remains marked in the next cycle. The transitions from locations 9 to 9, 9 to
10, and 11 to 11 are enabled by the current state. After taking these transitions, locations
1, 8, 9, 10 and 11 remain marked.

It takes 10 seconds for the spacecraft to turn to the entry orientation, so again we
skip to the next “interesting” cycle,N3, which occurs 10.2 seconds later.

CycleN3, tabs = 16452:9 sec– We update the two clocks. The maintenance con-
straint on location 8 still holds, and the only goal constraint asserted isatt=entry-orient.
This time, ME confirms achievement of this goal. Taking the enabled transitions leads
to a new set of marked locations: 1, 8, 9, 10 and 12. Note that location 10 remains
marked despite achievement of its goal constraint, due to re-marking by the transition
from 9 to 10. This reflects a desire to hold the spacecraft at the entry orientation.

Cycle (N3 + 1), tabs = 16453:3 sec– We update the two clocks. The maintenance
constraint on location 8 still holds. The configuration goal passed to MR now consists
of att=entry-orientandlander=separated. The following ME update confirms achieve-
ment of both goal states. Since location 12 has no outgoing transitions, its thread of
execution dies, leading to marked locations 1, 8, 9, and 10.

Remaining Cycles– Execution continues with locations 1, 8, 9, and 10 remaining
marked (andatt=entry-orientcontinuing to be asserted as a goal) until ME indicates that

entry=initiated. At this point, location 8’s maintenance constraint becomes violated. It
has no outgoing transitions, so its thread of execution dies. Since none of location 1’s
subautomata remain marked, it also becomes unmarked, and execution of the Mars
entry THCA terminates.

7 Discussion

Our Timed Model-based Executive has been implemented in C++, as an extension of
the Titan model-based executive [14]. The current implementation of our deductive
controller is based on the OpSat system, which was flown on NASA’s Deep Space One
mission as the core of the Livingstone executive. The performance of the deductive
controller is documented in [11, 12].

In this paper, we have presented the semantics for a Timed Model-based Executive
that operates on a plant model represented as a factored POMDP. A more general speci-
fication of TMBP is provided in [6], where the semantics of a physical plant is modeled
as a factored partially observablesemi-Markovdecision process. This leads to a more
powerful Timed Model-based Executive, capable of reasoning about time-dependent
plant behaviors, such as non-deterministic transition latencies (e.g., the engine takes
between 30 and 60 seconds to heat up before it reaches standby mode). Reference [6]
also discusses a demonstration of the Timed Model-based Executive performed in the
context of a full Mars entry, descent and landing scenario.

Ongoing work in TMBP is directed toward applying and adapting our executive to
other aerospace applications and scenarios, such as surface rover operations. In partic-
ular, we are in the process of integrating our TMBP technology into the Mission Data
System [2], a multi-mission information and control architecture for the next generation
of robotic exploration spacecraft, currently under development at NASA JPL. This in-
fusion effort is being carried out in the context of the Mars Science Laboratory, a rover
mission scheduled for launch in 2009.

8 Acknowledgments

We would like to thank Paul Elliott and Seung Chung for their contributions to the
implementation of the Timed Model-based Executive. We also extend thanks to Greg
Sullivan for his feedback on drafts of this paper. Finally, we would like to acknowledge
the rest of the Model-based Embedded and Robotic Systems group at MIT and JHU
Applied Physics Lab, for their past and ongoing efforts in the development of model-
based programming. This work was supported by NASA’s Cross Enterprise Technology
Development Program under contract NAG2-1466.

References

1. R. Alur and D.L. Dill. A theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software architecture themes in JPL’s
Mission Data System. InProceedings of the AIAA Guidance, Navigation, and Control Confer-
ence, Portland, OR, 1999.

3. R.J. Firby. The RAP language manual. Animate Agent Project Working Note AAP-6, Uni-
versity of Chicago, March 1995.

4. D. Harel. Statecharts: A visual formulation for complex systems.Science of Computer Pro-
gramming, 8(3):231–274, 1987.

5. T.A. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. InProceedings of the
REX Workshop on Real-Time: Theory in Practice, volume 600 ofLecture Notes in Computer
Science, pages 226–251. Springer-Verlag, 1992.

6. M.D. Ingham. Timed model-based programming: Executable specifications for robust
mission-critical sequences. Doctoral Thesis, Massachusetts Institute of Technology, Depart-
ment of Aeronautics and Astronautics, Cambridge, MA, June 2003.

7. L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable
stochastic domains.Artificial Intelligence, 101(1-2):99–134, 1998.

8. J. Kurien and P. Nayak. Back to the future for consistency-based trajectory tracking. In
Proceedings of AAAI-00, pages 370–377, 2000.

9. M.L. Puterman.Markov Decision Processes. Wiley Interscience, New York, 1994.
10. R. Simmons and D. Apfelbaum. A Task Description Language for robot control. InPro-

ceedings of the Conference on Intelligent Robotics and Systems, Vancouver, Canada, October
1998.

11. B.C. Williams and P. Nayak. A model-based approach to reactive self-configuring systems.
In Proceedings of AAAI-96, pages 971–978, 1996.

12. B.C. Williams and P. Nayak. A reactive planner for a model-based executive. InProceedings
of IJCAI-97, pages 1178–1185, 1997.

13. B.C. Williams and M.D. Ingham. Model-based programming: Controlling embedded sys-
tems by reasoning about hidden state. InProceedings of the 8th International Conference on
Principles and Practice of Constraint Programming (CP-02), volume 2470 ofLecture Notes in
Computer Science, pages 508–524. Springer-Verlag, 2002.

14. B.C. Williams, M. Ingham, S. Chung, and P. Elliott. Model-based programming of intelligent
embedded systems and robotic space explorers.Proceedings of the IEEE, 91(1):212–237, 2003.

15. T. Young et al. Report of the Mars Program Independent Assessment Team. Technical report,
NASA, March 2000.

