
Executing Reactive, Model-based Programs
through Graph-based Temporal Planning

Phil Kim, Brian C. Williams, and Mark Abramson
Massachusetts Institute of Technology, Rm. 37-381
77 Massachusetts Ave. Cambridge, MA 02139 USA

E-mail: {kim,williams}@mit.edu

Paper accepted for publication at IJCAI-01

Abstract

In the future, webs of unmanned air and space
vehicles will act together to robustly perform
elaborate missions in uncertain and sometimes
hostile environments. To achieve this robust-
ness we go beyond current embedded program-
ming languages, introducing a model-based pro-
gramming language that enables autonomous
vehicles to select and adapt coordinated mis-
sion plans on the fly. First, we present a
variant of the Reactive Model-based Program-
ming Language (RMPL), that allows for the ex-
pression of complex concurrent activites, met-
ric time constraints and multiple contingencies.
Second, we introduce the Temporal Planning
Network (TPN), a simple, compact encoding of
all possible executions of an RMPL program,
that supports a model of program interpreta-
tion as fast temporal planning. Finally, we
introduce an RMPL interpreter, called Kirk,
which uses graph search on TPNs to find tem-
porally consistent executions of RMPL pro-
grams.

1 Model-based Programming
The recent spread of advanced processing to embedded
systems has created vehicles that execute complex mis-
sions with increasing levels of autonomy, in space, on
land and in the air. These vehicles must respond to un-
certain and often unforgiving environments, both with a
fast response time and with a high assurance of first time
success. The future looks to the creation of cooperative
robotic networks. For example, giant space telescopes
are being deployed that are composed of satellites carry-
ing the telescope’s different optical components. These
satellites act in concert to image planets around other
stars, or unusual weather events on earth. A heteroge-
nous collection of vehicles, such as planes, helicopters
and boats, might work in concert to perform a search
and rescue during a hurricane or similar natural disas-
ter.

The creation of robotic networks cannot be supported
by the current programming practice alone. Recent mis-
sion failures in the air and in space have highlighted the
difficulty of creating highly capable vehicles within real-
istic budget limits. Due to cost constraints, flight soft-
ware teams have not had time to think through all the
plausible situations that might arise, encode the appro-
priate responses within their software and then validate
that software with high assurance. To break through this
barrier we need to invent a new programming paradigm.
In this paper we advocate the creation of embedded,

model-based programming languages. First, program-
mers should retain control for the overall success of a mis-
sion, by programming game plans and contingencies that
in the programmer’s experience will ensure a high degree
of success. The programmer should be able to program
these game plans using features of the best embedded
programming languages available. For example, reac-
tive synchronous languages[Halbwachs, 1993], like Es-
terel, Lustre and Signal, offer a rich set of constructs for
interacting with the sensors and actuators, for creating
complex behaviors involving concurrency and preemp-
tion, and for modularizing these behaviors using all the
standard encapsulation mechanisms. Model-based pro-
gramming extends this style of reactive language with a
minimal set of constructs neccessary to perform flexible
mission coordination, while hiding its reasoning capa-
bilities under the hood of the language’s interpreter or
compiler.
Second, we argue that model-based programming

languages should focus on elevating the programmer’s
thinking, by automating the process of reasoning about
low-level system interactions. Most recent air and space
mission failures can be isolated to human errors in rea-
soning through low-level system interactions. On the
other hand, this limited form of reasoning and book
keeping is the hallmark of computational methods. The
interpreter or compiler of a model-based program rea-
sons through these interactions using composable mod-
els of the system being controlled. We are developing a
language, called the Reactive Model-Based Programming
Language (RMPL), that supports four types of reason-
ing about system interactions: reasoning about contin-
gencies, scheduling, inferring a system’s hidden state and

controlling that state.
This paper develops RMPL in the context of contin-

gencies and scheduling. First, we introduce a subset
of RMPL that includes constructs from traditional re-
active programming plus constructs for specifying con-
tingencies and scheduling constraints. Second, we com-
pile RMPL programs to temporal plan networks (TPN),
which compactly represent all possible threads of execu-
tion of an RMPL program, and all resource constraints
and conflicts between concurrent activities. Third, we
present Kirk, an online interpreter for RMPL that
“looks” by using network search algorithms to find
threads of execution through the TPN that are tem-
porally consistent. The result is a partially ordered
temporal plan. Kirk then “leaps” by executing the
plan using plan execution methods developed for Re-
mote Agent[Tsamardinos et al., 1998]. Finally, we dis-
cuss Kirk’s application to a simulated search and rescue
mission.

2 Example: Cooperative Search and
Rescue

As part of a search and rescue mission, consider an ac-
tivity called Enroute, in which a group of vehicles fly
together from a rendezvous point to the target search
area. In this activity, the group selects one of two paths
for traveling to the target area, flies together along the
path through a series of waypoints to the target posi-
tion, and then transmits a message to the forward air
controller to indicate their arrival, while waiting until
the group receives authorization to engage the target.
The two paths available for travel to the target area

are each only available for a predetermined window of
time, which is important to consider when selecting one
of these paths. In addition, the timing of the Enroute
activity is bound by externally imposed requirements, for
example, the search and rescue mission must complete
in 25-30 minutes, with 20% to 30% of the time allotted
to the Enroute activity.
Codifying the Enroute activity requires most standard

features of embedded languages. There are both sequen-
tial and concurrent threads of activities, such as going to
a series of way points, and sending a message to the for-
ward air controller (FAC), while concurrently awaiting
authorization. There are maintenance conditions and
synchronizations. For example, the air corridor needs
to be maintained safe during flight, and synchronization
occurs with the FAC.
In addition to constructs found in traditional em-

bedded languages, we need constructs for expressing
timing requirements and alternative choices or con-

tingencies, in this example to use one of two corri-
dors. These constructs are common to robotic execu-
tion languages[Firby, 1995; Gat, 1996]. However, they
are only used reactively. RMPL must reason forward
through the program’s execution, identifying a course of
action that is consistent.

3 RMPL Constructs
To summarize, RMPL needs to include constructs for ex-
pressing concurrency, maintaining conditions, synchro-
nization, metric constraints and contingencies. The rel-
evant RMPL constructs are as follows. We use lower case
letters, like c, to denote activities or conditions, and up-
per case letters, like A and B, to denote well-formed
RMPL expressions:

a. Invokes primitive activity a, starting at the current
time. This is the basic construct for initiating activities.

c. Asserts that condition c is true at the current time,
where c is a literal. This is the basic construct for as-
serting conditions.
if c thennext A. Starts executing A if condition c

is currently satisfied, where c is a literal. This is the
basic construct for expressing conditional branches and
asserting preconditions.
do A maintaining c. Executes A, and ensures

throughout A that c occurs. This is the basic construct
for introducing maintenance conditions and protections.

A, B. Concurrently executes A and B. It is the basic
construct for forking processes.

A;B. Consecutively executes A and then B. It is the
basic construct for sequential processes.

A[l, u]. Constrains the duration of program A to be
at least l and at most u. This is the basic construct for
expressing timing requirements.
choose {A, B}. Reduces non-deterministically to

program A or B. This is the basic construct for ex-
pressing multiple strategies and contingencies.
Note that together, c and if c thennext A provide

the basic constructs for synchronization, by specifying
required and asserted conditions. A, B and A;B pro-
vide the neccessary constructs for building complex con-
current threads. Using these constructs we express the
Enroute activity as follows:
Group-Enroute()[l,u] = {

choose {
do {

Group-Fly-Path(PATH1_1,PATH1_2,
PATH1_3,TAI_POS)[l*90\%,u*90\%];

} maintaining PATH1_OK,
do {

Group-Fly-Path(PATH2_1,PATH2_2,
PATH2_3,TAI_POS)[l*90\%,u*90\%];

} maintaining PATH2_OK
};
{

Group-Transmit(FAC,ARRIVED_TAI)[0,2],
do {

Group-Wait(TAI_HOLD1,TAI_HOLD2)
[0,u*10\%]

} watching PROCEED_OK
}

}

The choose expression models the two options for
flight paths. 90% of the total time of the overall ma-
neuver is allocated to this group flight. Each flight has a
maintenance condition that the flight path is okay. Ar-
rival is transmitted to the forward air controller, and
receipt of a message to proceed is concurrently moni-
tored.

4 Temporal Plan Networks
Executing an RMPL program involves choosing a set
of threads of execution (Plans), checking to ensure that
the execution is consistent and schedulable, and then
scheduling events on the fly. It is essential that we gener-
ate these plans quickly. This suggests compiling RMPL
programs to a plan graph, along the lines of Graph-
plan or Satplan,[Weld, 1999], and then search the pre-
compiled graph. However, it is also important for the
plan to have the temporal flexibility offered by a par-
tially ordered, temporal plan. Least committment leaves
slack to adapt to execution uncertainties and to recover
from faults. This partial committment is expressed in
temporal planning through a Simple Temporal Network
(STN)[Dechter et al.,]. Hence, a key observation of
our approach is that to build in temporal flexibility we
should build our graph-based plan representation, called
a Temporal Plan Network (TPN), as a generalization of
an STN.
The TPN corresponding to the above Enroute pro-

gram is shown below. Activity name labels are omitted
to keep the figure clear, but the node pairs 4,5 and 6,7
represent the two Group-Fly-Path activities, and node
pairs 9,10 and 11,12 correspond to the Group-Wait and
Group-Transmit activities, respectively. Node 3 is a de-
cision node that represents a choice between two meth-
ods for flying to the search area. The TPN represents
the consequences of the constraint that the mission last
between 25 and 30 minutes. It also models the decision
between the two paths to the target area, and it models
the restrictions that each of the paths can only be used
if they are available.

3

6

4 5[0,0] [405,486]

[0,0]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[0,0]

[0,0]

[0,0] [0,0]

[450,540]

Tell(ENGAGE=OK)

11

9 10[0,0]
[0,54]

[0,0]
12

13

[0,2]

[0,0]

[0,]

A TPN encodes all feasible executions of an activity.
It does this by augmenting an STN with two types of
constraints: temporal constraints restrict the behavior
of an activity by bounding the duration of an activity,
time between activities, or more generally the tempo-
ral distance between two events. Symbolic constraints
restrict the behavior of an activity by expressing the as-
sertion or requirement of certain conditions by activities
that all valid executions must satisfy.
For example, consider some of the possible executions

of the Enroute activity. One possible execution is that
the group flies along path one to the target area in 420
time units (seconds in this case), transmits an arrival
message to the forward air controller in one second, then
waits for another 40 seconds to receive authorization to
proceed. Another possible execution is that the group
selects the second path, flies to the target area in 500
seconds, takes 2 seconds to transmit the arrival message,
and is authorized to proceed immediately. If it were the
case that path one was available from the time at which
the Enroute activity started to at least the time that the
group arrived at the target area, then the first execution
is valid. This is because it satisfies both the temporal
constraints on the Enroute activity, and the requirement
that path one is available for the duration of the flight
along it. The planning algorithm presented in the next
section performs the identification of consistent activity
executions.
A Temporal Planning Network is a Simple Temporal

Network, augmented with symbolic constraints and de-
cision nodes. These additions are sufficent to capture
all RMPL constructs given earlier. Like a simple tem-
poral network, the nodes of a TPN represent temporal
events, and the arcs represent temporal relations that
constrain the temporal distance between events. An arc
of a TPN may be labeled with a symbolic constraint
Tell(c) or Ask(c), as well as a duration. A Tell(c) label
on an arc (i,j) asserts that the condition represented by
c is true over the interval between the temporal events
modeled by the nodes i and j. Similarly, an Ask(c) label
on an arc (i,j) requires that the condition represented by
c is true over the interval represented by this arc. For
example, in the Enroute TPN, the Ask(PATH1=OK) la-
bel on the arc (3,4) represents the requirement for path
one to be available for the interval of time corresponding
to the interval of time between the temporal event mod-
eled by node 3 and node 4. These Ask-type symbolic
constraints allow for the encoding of conditions in the
network.
Decision nodes are used to explicitly introduce choices

in activity execution that the planner must make. For
example, in the Enroute activity there are two choices of
paths for the group to use for flying to the target area,
path one and path two. The activity model captures the
two choices as out-arcs of node 3 of the enroute TPN.
This decision node is designated by a double outline and
dashed out-arcs. All other nodes in the Enroute TPN
are non-decision nodes.
The addition of Tell and Ask constraints and decision

nodes offer a simple but poweful extension to STNs that
is sufficient to capture the rich set o RMPL constructs
listed earlier.

5 Compiling RMPL to TPN
Given a well formed RMPL expression, we compile it
to a TPN by mapping each RMPL primitive to a TPN
as defined below. RMPL sub-expressions, denoted by
upper case letters, are recursively mapped to equivalent

TPN:
A[l, u]. Invoke activity A between l and u time units.

[l,u]
A.start A.end

c[l, u]. Assert that condition c is true now until [l, u].

[l,u]

Tell(c)

if c thennext A[l, u]. Execute A for [l, u], if condition
c is currently satisfied.

[0,0]

Ask(c)

[l,u]
A.start A.end

do A[l, u] maintaining c. Execute A for [l, u], and
ensure throughout A that c occurs.

[l,u]

Ask(c)

A.start A.end

A[l1, u1], B[l2, u2]. Concurrently execute A for [l1, u1]
and B for [l2, u2].

[l1,u1]
A.start A.end

[l2,u2]
B.start B.end

[0,0]

[0,0]
[0,0]

[0,0]

A[l1, u1];B[l2, u2]. Execute A for [l1, u1], then B for
[l2, u2].

[l1,u1]
A.start A.end

[l2,u2]
B.start B.end

[0,0]

choose {A[l1, u1], B[l2, u2]}. Reduces to A[l1, u1] or
B[l2, u2], non-deterministically.

[l1,u1]
A.start A.end

[l2,u2]
B.start B.end

[0,0]

[0,0]
[0,0]

[0,0]

6 Planning using TPNs
Given an RMPL program, the Kirk planner uses its
compiled TPN to search for an execution that is both
complete and consistent. The execution corresponds to
an unconditional, temporal plan. A plan is complete if
choices have been made for each relevant decision point,
it contains only primitive-level activities, and all activ-
ities labeled Ask(c) have been linked to a Tell(c). A

plan is consistent if it does not violate any of its tem-
poral constraints or symbolic constraints. The resulting
plan is then executed using the plan runner described in
[Tsamardinos et al., 1998].
The input to Kirk is a TPN describing an activity sce-

nario. A scenario consists of the TPN for the top-level
activity invoked and any constraints on its invocation.
The following TPN invokes Enroute (nodes 1-13). It de-
fines time ranges over which path one is available (nodes
14-15), and over which the vehicles are available to per-
form search (nodes 16-17).

3

6

4 5
[405,450]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[450,540]

Tell(ENGAGE=OK)

11

9 10
[0,45]

12

13

[0,2]

[0,]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(ENGAGE=OK)

[200,200]

s

1
e

[500,800]

[10,10] [0,]

[10,] [40,385]

[1,]

[0,]

[0,]

The output of the planner consists of a set of paths
through the input network from the start-node to the
end-node of the top-level activity. In the example the
paths s-1-3-4-5-8-9-10-13-2-e and s-14-15-16-17-e define
a consistent execution. The first path defines the execu-
tion of the group of vehicles, and the second path defines
the “execution” of the rest of the world in terms of the
assertion or requirement of relevant conditions over the
duration of the scenario. The portion of the TPN not
selected for execution is shown in gray.
Planning is performed in two phases. The first phase

resembles a network search that discovers the sub-
network ,that constitute a feasible plan, while incre-
mentally checking for temporal consistency. The sec-
ond phase is analogous to the repair step of a causal
link planner, in which threats are detected and resolved,
and open conditions are closed[Weld, 1994]. These two
phases repeat until to completion.

6.1 Phase One: Select Plan Execution
The first phase selects a set of paths from the start-node
to the end-node of the top-level activity. The planner
handles this execution selection problem as a variant of
a network search[Ahuja et al., 1993] rooted at the start-
node of the TPN encoding of the top-level activity.

Searching the Network
Recall that each node of a TPN is either a decision node
or a non-decision node. If a plan includes a non-decision
node with multiple out-arcs, then all of these arcs and
their tail nodes must be included in the plan. If a plan
includes a decision node with multiple out-arcs, then the
arcs represent alternate choices, and the planning algo-
rithm selects exactly one to be included in the plan.
Network search completes only when all paths reach

the end-node of the top-level activity, and the subnet-
work of the TPN, defined by these paths, is temporally

consistent. This corresponds to testing consistency of an
STN[Dechter et al.,], as discussed in the next section.
The first phase of planning is summarized by theMod-

ified Network Search algorithm, shown below. The set A,
is the set of active nodes, which are those nodes whose
paths have not yet been fully extended. The sets SN
and SA are the sets of selected nodes and selected arcs,
respectively:
1 Modified-Network-Search(N)
2 A = { start-node of N };
3 SN = { start-node of N };
4 SA = { };
5 While (A is not empty)
6 Node = Select and remove a member of A;
7 If (Node is a decision-node)
8 Arc = Select any unmarked out-arc of Node and
9 Mark Arc and
10 Add Arc to SA;
11 If (tail of Arc is not in SN)
12 Add tail of Arc to A and SN;
13 End-If
14 Else
15 For each Arc that is an out-arc of Node
16 Add Arc to SA;
17 If (tail of Arc is not in SN)
18 Add tail of Arc to A and SN;
19 End-If
20 End-For
21 End-If
22
23 If (Cycle-Induced(SN, SA))
24 If (Not(Temporally-Consistent(SN, SA)))
25 Backtrack(SN, SA, A);
26 End-If
27 End-If
28 End-While
29 End-Function

The algorithm extends an active node at each itera-
tion. Decision nodes are treated by extending the path
along one out arc (lines 8-13), while non-decision nodes
are treated by branching the path and extending along
all out arcs (lines 15-20). At the end of each iteration of
the main While-loop, the modified network search tests
for temporal consistency (lines 24-26). If the test fails,
then the search calls Backtrack(..) in line 25, which re-
verts SN, SA, and A to their states before the most re-
cent decision that has unmarked choices remaining, and
selects a different out-arc. While for simplicity this ex-
planation uses chronological backtracking, a wealth of
more efficient search algorithms can be applied.
Note that it is not necessary to check temporal con-

sistency after every iteration of the While-loop, since as
long as no cycles are induced in the network, there is no
way for a temporal inconsistency to be induced. Deter-
mining whether a cycle has been created can be done for
each arc that is selected by checking whether the arc’s
tail node has already been selected. Since this can be
done in constant time, it is significantly more efficient
in practice than testing temporal consistency after every
iteration, although it doesn’t impact worst case complex-
ity.
Also note that the algorithm stops extending a path

when it encounters a node that is already in SN. The
fact that this node is already in SN implies that two
concurrent threads of execution have merged.
Finally, after the modified network search completes,

the selected nodes and arcs define a set of paths from
the start-node to the end-node of the top activity.

Example:Searching the Enroute Network
To illustrate the modified network search, we return to
the Enroute input network, where node 1 is the start-
node and node 2 is the end-node:

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

Initially, node 1 is selected, which is indicated by its
darker shade, and it is active, which is indicated by its
dashed outline. In the first iteration, Kirk chooses node
1 from the set of active nodes, and since node 1 is not a
decision node, it selects all out-arcs and adds their tails
to the selected and active set. This continues until both
node 5 and node 15 are selected:

At this point, the modified network search chooses
node 5 from the active set. Since node 5 is a decision
node, the algorithm must choose either arc (5,7) or arc
(5,10). It selects arc (5,7) and continues extending until
it reaches the following:

Note that arc (14,2) is selected, forming the cycle, 1-
3-4-5-7-8-9-6-13-14-2-1, so the algorithm checks for tem-
poral consistency. In this example, this selected sub-
network is temporally inconsistent, so the algorithm
backtracks to the most recent decision with open options,
which is Node 5. Out-arc (5,10) has not yet been tried,
so it is selected and the path extend to the end-node. Fi-
nally a path through arc (15,16) is found to the end-node,
resulting in the temporally consistent sub-network:

Checking Temporal Consistency
To check temporal consistency we note that any sub-
net of a Plan Network, minus its symbolic constraint la-
bels, forms a Simple Temporal Network. Hence temporal
consistency can be checked using standard methods for

Simple Temporal Networks [Dechter et al.,]. Recall that
an STN is consistent if and only if its encoding as a dis-
tance graph contains no negative cycles [Dechter et al.,].
There exist several well known algorithms for detecting
negative cycles in polynomial time. The Bellman-Ford
algorithm [Cormen et al., 1990] can be used to check for
negative cycle in O(nm) time, where m is the number
of arcs in the distance graph. This algorithm only needs
to maintain one distance label at each node, which takes
only Q(n) space. A variant of this algorithm is used
by HSTS [Muscettola et al., 1998] for fast inconsistency
detection.
The algorithm we use in the Kirk planner is a vari-

ant of the generic label-correcting single-source shortest-
path algorithm [Ahuja et al., 1993], which takes O(nm)
worst-case asymptotic running time, but performs faster
in many situations. This algorithm also requires only
O(n) space. Space precludes a more detailed develop-
ment.

6.2 Phase Two: Threats and Open
Conditions

Symbolic constraints– Ask(c) and Tell(c) – are handled
analogous to threats and open conditions in causal link
planning[Weld, 1994]. Two symbolic constraints conflict
if one is either asserting (by using Tell) or requesting
(by using Ask) that a condition is true, and the second
is asserting or requesting that the same condition is false.
For example, Tell(Not(c)) and Ask(c) conflict. An open
condition in a TPN appears as Ask constraints, which
represent the need for some condition to be true over the
interval of time represented by the arc labeled with the
Ask constraint.

Resolving Threats
To detect threats the planner computes the feasible
time bounds for each temporal event (node) in the net-
work, and then uses these bounds to identify poten-
tially overlapping intervals that are labeled with incon-
sistent constraints. These bounds can be computed by
solving an all-pairs shortest-path problem over the dis-
tance graph representation of the partially completed
plan [Dechter et al.,]. Kirk used the Floyd-Warshall al-
gorithm for computing all-pairs shortest paths because
of ease of implementation. We are currently evaluating
Johnson’s algorithm which runs in O(n2 log(n) + mn),
or O(n2 log(n)) if m = O(n).
Once these feasible time ranges are determined, the

planner detects which arcs may overlap in time. If there
are two arcs that may overlap and that are labeled with
conflicting symbolic constraints, then they are resolved
by ordering the intervals, if possible.
These interval pairs need to be identified efficiently.

Kirk maintains an interval set data structure for each
proposition p that keeps track of all intervals that assert
or require p or its negation. In order to identify threats,
the planner need only check each interval set for threats.
This takes O(si2) asymptotic running time, where i is
the maximum cardinality over all interval sets, and per-

forms much better in practice because the interval sets
typically have few elements. More sophisticated index-
ing schemes may improve performance, such as interval
trees structures [Cormen et al., 1990].
A threat is resolved by introducing temporal con-

straints. Each threat consists of two arcs that represent
intervals of time that may overlap. To resolve threats we
introduce a constraint that forces an ordering between
the two activites, similar to promotion and demotion in
classical planning[Weld, 1994]:

Ask(Not(c))

A.star t A.end

Tell(c)

B.star t B.end

<2,3>

<4,5> <6,7>

<7,8> <12,15>

<14,18>
[1,]

Closing Open Conditions
An open condition is represented by an arc labeled with
an Ask constraint, which represents the request for a
condition to be satisfied over the interval of time repre-
sented by the arc. If this interval of time is contained
by another interval over which the condition is asserted
by a Tell constraint, then the open condition is satis-
fied (i.e., closed), and a causal link is drawn from the
Tell to the Ask. Open conditions are detected simply
by scanning through all activites and checking any Ask
constraints. Finding potentially overlapping intervals is
performed using the same method described above for
detecting threats. Once a Tell is found that can sat-
isfy an open condition, temporal constraints are added
so that the duration of the open condition is contained
within the Tell. This method of closing open asks is also
closely related to the way that the HSTS planner satisfies
compatibilities [Muscettola et al., 1998]:

Tell(c)

A.start A.end

Ask(c)

B.start B.end

<0,0>

<1,3> <7,9>

<1,2> <8,10>

<9,12 >

[0,] [0,]

7 Implementation and Results
The RMPL Compiler generates TPN specification files,
and is written in Lisp. Kirk, written in C++, gener-
ates a plan from the TPN and checks consistency. The
Plan Runner [Tsamardinos et al., 1998], takes the re-
sulting partially ordered temporal plan and executes it
on the multi-air vehicle simulator. The results is visu-
alized using world tool kit (as shown earlier). The fol-
lowing table summarizes Kirk’s performance on nominal
plans for several activities within the search and rescue
scenario. The fully expanded TPN generated from the
Group-Search-and-Rescue activity included 273 nodes.
The testing platform was an IBM Aptiva E6U with an

Intel 400Mhz Pentium II processor and 128MB of RAM,
running Redhat Linux version 6.1:

Top Activity Nodes Activities Plan Time
Follow(..) 4 1 4 ms
Group-Rescue(..) 27 8 235 ms
Group-Enroute() 112 19 16 s
Group-SR-Mission() 273 47 404 s
“Top Activity” refers to the top-level activity that was

being planned. “Nodes” is the size of the expanded TPN
after planning. Usually, about half of these were included
in the final plan, with the rest corresponding to unse-
lected executions. “Activities” indicates the number of
primitive activities included in the final plan. Finally,
the “Plan Time” gives the time that it took for Kirk to
generate a plan corresponding to each of these activities.
Temporal planners, such as the DS1 remote agent

planner, can take many hours to generate a plan of simi-
lar size, unless hand coded search heuristics are provided.
Kirk does well with no search guidance up to about 100
nodes. At this point the time becomes dominated by the
time required to compute feasible time bounds for events.
This is due to the use of Bellman-Ford and chronologi-
cal search in the first prototype, summarized above. Our
reimplementation is based on Johnson’s algorithm and a
more sophisticated search strategy. Preliminary results
suggest a significant performance increase. We are cur-
rently extending Kirk to support both decision theoretic
planning and agile path planning.

Acknowledgments
This research is supported in part by the Office of Naval
Research under contract N00014-99-1-1080.

References
[Ahuja et al., 1993] R. Ahuja, T. Magnanti, and J. Or-
lin. Network Flows: Theory, Algorithms, and Appli-
cations. Prentice Hall, 1993.

[Cormen et al., 1990] T. Cormen, C Leiserson, and
R. Rivest. Introduction to Algorithms. MIT Press,
Camb., MA, 1990.

[Dechter et al.,] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks.

[Firby, 1995] R. James Firby. The RAP language man-
ual. Technical report, Univ. Chicago, 1995.

[Gat, 1996] Erann Gat. Esl: A language for support-
ing robust plan execution in embedded autonomous
agents. In AAAI Fall Symposium on Plan Execution,
1996.

[Halbwachs, 1993] N. Halbwachs. Synchronous program-
ming of reactive systems. Kluwer Academic, 1993.

[Muscettola et al., 1998] N. Muscettola, P. Morris,
B. Pell, and B. Smith. Issues in temporal reasoning for
autonomous control systems. In Autonomous Agents,
1998.

[Tsamardinos et al., 1998] I. Tsamardinos, N. Muscet-
tola, and P. Morris. Fast transformation of temporal
plans for efficient execution. In Proceedings of AAAI-
98, 1998.

[Weld, 1994] D. Weld. An introduction to least commit-
ment planning. In AI Magazine, 1994.

[Weld, 1999] D. Weld. Recent advances in ai planning.
In AI Magazine, 1999.

