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Introduction 

         Getting robots to perform even simple tasks can be fraught with difficulty. Sending a robot to a 
distant planet, such as Mars, raises a number of significant issues concerning autonomy.  The intended 
mission itself may be quite complex -- conceivably involving coordinated work with other robots.  An 
example of such an anticipated mission is to send a team of robots to Mars where they will, among 
other things, construct habitat that will be used by astronauts that arrive at a later time. Quite apart 
form the complexity of the mission, these robots are likely to be expensive especially when 
considering the cost of transporting them to the planet surface.  The loss of a robot would therefore be 
a serious loss that could jeopardize the feasibility of the astronaut arrival.  For this reason robotic 
exploration (Figure 1) of Mars (Sojourner, Spirit, and Opportunity) have not been autonomous except 
for very minor navigation capability. 

 

 
Figure 1 NASA Rover Spirit 

 
Operating rovers from earth is an excruciating process because the time delay caused by the time it 
takes a signal to travel between Earth and Mars does not permit tele-operation of the rovers.  
Consequently a large team of mission planners must plan and test, in excruciating detail, plans for the 
next days operations.  This approach will not work for more complex missions such as cooperative 
robots assembling an astronaut habitat.   
 
In our rover testbed we are attempting to perform such complex cooperative missions using a team of 
iRobot ATRV robots (Figure 2) with arms mounted on them for instrument placement/collection and 
construction tasks.   
 
The hostile nature of space and the uncertainty of the Martian environment means that we must 
consider repair of a mission plan as well as adapting to failed components.  In modern systems these 
failed systems are as likely to be software systems as hardware.  Indeed many of NASA’s recent 



problems have been software problems.  In this paper we describe our approach to dealing with 
perturbations with a particular emphasis to the software/mission planning aspect of robot autonomy. 
 
In complex, concurrent critical systems, every component is a potential point of failure.  Typical 
attempts to make such systems more robust and secure are both brittle and incomplete.  That is, the 
security is easily broken, and there are many possible failure modes that are not handled.  Techniques 
that expand to handling component level failures are very expensive to apply, yet are still quite brittle 
and incomplete. This is not because engineers are lazy – the sheer size and complexity of modern 
information systems overwhelms the attempts of engineers, and myriad methodologies, to 
systematically investigate, identify, and specify a response to all possible failures of a system.   
Adding dynamic intelligent fault awareness and recovery to running systems enables the identification 
of unanticipated failures and the construction of novel workarounds to these failures.  Our approach is 
pervasive and incremental.  It is pervasive in that it applies to all components of a large, complex 
system – not just the “firewall” services.  It is incremental in that it coexists with existing faulty, 
unsafe systems, and it is possible to incrementally increase the safety and reliability of large systems. 
The approach aims to minimize the cost, in terms of hand-coded specifications with respect to how to 
isolate and recover from failures. 

                                                  Figure 2: MIT MERS Rover Testbed 
 
There are many reasons why software fails.  Among the more common reasons are the following: 
 
1. Assumptions made by the software turn out not to be true at some point.  For example, if a piece of 
software must open a file with a given path name it will usually succeed but if the particular disk that 
corresponds to the path name fails the file will not be accessible.  If the program assumed that the file 
was accessible the program will fail.  In highly constrained situations it is possible to enumerate all 
such failures and hand code specific exception handlers – and such is the standard practice in the 
industry.  In many cases however, particularly in embedded applications, the number of ways that the 



environment can change becomes so large that the programmer cannot realistically anticipate every 
possible failure. 
 
2. Software is attacked by a hostile agent. This form of failure is similar to the first one except that 
change in the environment is done explicitly with the intent to cause the software to fail. 
 
3. Software changes introduce incompatibilities.  Most software evolves of its lifetime.  When 
incompatibilities are inadvertently introduced software that previously did not fail for a given 
situation may now fail.  
 
Whatever the reason for the software failure we would like the software to be able to recognize that it 
has failed and to recover from the failure.  There are three steps to doing this: 

1. Noticing that the software has failed; 
2. Diagnosing exactly what software component has failed; and 
3. Finding and alternative way of achieving the intended behavior. 

In order for the runtime system to reason about its own behavior and intended behavior in this way 
certain extra information and algorithms must be present at runtime.  In our system these extra pieces 
include models of the causal relationships between the software components, models of intended 
behavior, and models of correct (nominal) execution of the software.  Additionally models of known 
failure modes can be very helpful but are not required.  Finally the system needs to be able to sense, at 
least partially, its state, it needs to be able to reason about the difference between the expected state 
and the observed state and it need to be able to modify the running software such as by choosing 
alternative runtime methods. 
 
Building software systems in this way comes with a certain cost.  Models of the software components 
and their causal relationships that might otherwise have existed only in the programmers head must by 
made explicit, the reasoning engine must be linked in to the running program, and the computational 
cost of the monitoring, diagnosis, and recovery must be considered.  In some systems the memory 
footprint and processor speed prohibit this approach.  More and more however memory is becoming 
cheap enough for memory footprint to not be an issue and processor power is similarly becoming less 
restrictive.  While the modeling effort is an extra cost there are benefits to doing the modeling that 
offset its cost.  Making the modeling effort explicit can often cause faults to be found earlier than 
would otherwise be the case.  The developers can choose the fidelity of the models.  More detailed 
models take more time to develop but allow for greater fault identification, diagnosis, and recovery.  
Finally our approach to recovery assumes that there is more than one way of achieving a task.  The 
developer therefore must provide a variety of ways of achieving the intended behavior. 
 
The added costs of building robust software in this way are small when compared to the benefits. 
Among the benefits it allows us to: 

1. Build software systems that can operate autonomously to achieve goals in complex and 
changing environments; 

2. Build software that detects and works around “bugs” resulting from incompatible software 
changes;Build software that detects and recovers from software attacks; and 



4. Build software that automatically improves as better software components and models are 

added. 
 

Figure 3: Deep Space 1: Fight Experiment May 1999 
 
Prior Work: Self-adaptive software has been successfully applied to a variety of tasks 
ranging from robust image interpretation to automated controller synthesis [7]. Our approach, 
which is described below, builds upon a successful history of hardware diagnosis and repair.  
In May 1999 the spacecraft Deep Space 1 [1] ran autonomously for a period of a week.  
During that week faults were introduced which were detected, diagnosed, and recovered from 
by reconfiguring the (redundant) hardware of the spacecraft.  Subsequently Earth Observer 1 
has been flying autonomously planning and executing its own missions.  Extending these 
technologies to software systems involves extending the modeling language to deal with the 
idiosyncrasies of software such as its inherently hierarchical structure [6]. 
 
Approach:  At the heart of our system is a model-based programming language called RMPL that 
provides a language for specifying correct and faulty behavior of the systems software components. 
The novel ideas in our approach include method deprecation and method regeneration in tandem 
with an intelligent runtime model-based executive that performs automated fault management from 
engineering models, and that utilizes decision-theoretic method dispatch.  Once a system has been 
enhanced by abstract models of the nominal and faulty behavior of its components, the model-based 
executive monitors the state of the individual components according to the models.  If faults in a 
system render some methods (procedures for accomplishing individual goals) inapplicable, method 
deprecation removes the methods from consideration by the decision-theoretic dispatch.  Method 
regeneration involves repairing or reconfiguring the underlying services that are causing some method 
to be inapplicable.  This regeneration is achieved by reasoning about the consequences of actions 
using the component models, and by exploiting functional redundancies in the specified methods.  In 
addition, decision-theoretic dispatch continually monitors method performance and dynamically 
selects the applicable method that accomplishes the intended goals with maximum safety, timeliness, 
and accuracy.    
Beyond simply modeling existing software and hardware components, we allow the specification of 
high-level methods.  A method defines the intended state evolution of a system in terms of goals and 
fundamental control constructs, such as iteration, parallelism, and conditionals.  Over time, the more 
that a system’s behavior is specified in terms of model-based methods, the more that the system will 
be able to take full advantage of the benefits of model-based programming and the runtime model-
based executive.  Implementing functionality in terms of methods enables method prognosis, which 



involves proactive method deprecation and regeneration, by looking ahead in time through a temporal 
plan for future method invocations. 
Our approach has the benefit that every additional modeling task performed on an existing system 
makes the system more robust, resulting in substantial improvements over time.  As many faults and 
intrusions have negative impact on system performance, our approach also improves the performance 
of systems under stress.   
Our approach provides a well-grounded technology for incrementally increasing the robustness of 
complex, concurrent, critical applications.  When applied pervasively, model-based execution will 
dramatically increase the security and reliability of these systems, as well as improve overall 
performance, especially when the system is under stress.  

 

Fault Aware Processes Through Model-based Programming 
Recall, to achieve robustness pervasively, fault adaptive processes must be created with minimal 
programming overhead.  Model-based programming elevates this task to the specification of the 
intended state evolutions of each process. A model-based executive automatically synthesizes fault 
adaptive processes for achieving these state evolutions, by reasoning from models of correct and 
faulty behavior of supporting components.   
Each model-based program implements a system that provides some service, such as secure data 
transmission.  This is used as a component within a larger system.  The model-based program in turn 
builds upon a set of services, such as name space servers and data repositories, implemented through a 
set of concurrently operating components, comprised of software and hardware.   

Component Services Model 
The service model represents the normal behavior and the known and unknown aberrant behaviors of 
the program’s component services. It is used by a deductive controller to map sensed variables to 
queried states. The service model is specified as a concurrent transition system, composed of 
probabilistic concurrent constraint automata 1. Each component automaton is represented by a set of 
component modes, a set of constraints defining the behavior within each mode, and a set of 
probabilistic transitions between modes. Constraints are used to represent co-temporal interactions 
between state variables and intercommunication between components. Constraints on continuous 
variables operate on qualitative abstractions of the variables, comprised of the variable’s sign 
(positive, negative, zero) and deviation from nominal value (high, nominal, low). Probabilistic 
transitions are used to model the stochastic behavior of components, such as failure and intermittency. 
Reward is used to assess the costs and benefits associated with particular component modes. The 
component automata operate concurrently and synchronously. 

Self Deprecation and Regeneration Through Predictive Method Dispatch 
In model-based programming, the execution of a method will fail if one of the service components it 
relies upon irreparably fails.  This in turn can cause the failure of any method that relies upon it, 
potentially cascading to a catastrophic and irrecoverable system-wide malfunction.  The control 
sequencer enhances robustness by continuously searching for and deprecating any requisite method 
whose successful execution relies upon a component that is deemed faulty by mode estimation, and 
deemed irreparable by mode reconfiguration.   
 
Without additional action, a deprecated method will cause the deprecation of any method that relies 
upon it, potentially cascading to catastrophic system-level malfunction.  Model-based programmers 
specify redundant methods for achieving each desired function.  When a requisite method is 
deprecated, the control sequencer attempts to regenerate the lost function proactively, by selecting an 
applicable alternative method, while verifying overall safety of execution.   
 
More specifically, predictive method selection will first search until it finds a set of methods that are 
consistent and schedulable.  It then invokes the dispatcher, which passes each activity to the deductive 
controller as configuration goals, according to a schedule consistent with the timing constraints.  If the 



deductive controller indicates failure in the activity’s execution, or the dispatcher detects that an 
activity’s duration bound is violated, then method selection is reinvoked.  The control sequencer then 
updates its knowledge of any new constraints and selects an alternative set of methods that safely 
completes the RMPL program. 

Self-Optimizing Methods Through Safe, Decision-Theoretic Dispatch 
In addition to failure, component performance can degrade dramatically, reducing system 
performance to unacceptable levels.  To maintain optimal performance, predictive method dispatch 
utilizes decision-theoretic method dispatch, which continuously monitors performance, and selects the 
currently optimal available set of methods that achieve each requisite function.   

A Simple Example 
To describe the machinery of Predictive Method Selection and Decision-Theoretic Dispatch in more 
detail, we present a simple example.  In this example, shown in Figure 4, a MER rover is tasked with 
performing science operations on the surface of Mars.  Specifically, in this example, the MER rover is 
asked to visit two Martian rocks and sample their composition.  The primary goal is to scratch each 
rock using a grinder (a.k.a. rock abrasion tool) and then analyze the rock’s composition.  As a 
secondary goal, if for some reason the primary goal is unattainable, the MER rover should take a high 
resolution image of the rock.   
 

 
Figure 4:  MER rover performing science operations on Mars.  

(picture courtesy of NASA JPL) 
 
In Figure 5, below, we show how this simple example can be encoded as a Temporal Plan Network 
(TPN).  A TPN [8] can be viewed as a generalization of a Simple Temporal Network (STN) that 
supports multiple redundant methods, method deprecation and regeneration, and optimal planning.   
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Figure 5:  Temporal Plan Network encoding of the MER Rover Example. 
 

In a TPN, nodes represent instantaneous time events, and arcs represent activities with duration.  The 
duration of an activity is constrained by a lower and upper timebound, specified in brackets, [lb,ub].  
By default, a blank arc has [0,0] timebounds.  Redundant methods in a TPN are denoted by a double 
circle and a circle with two horizontal lines.  One and only one thread of execution must be chosen 
between each pair of double circle node and double line node in the TPN.  This construct allows the 



autonomous system to select from multiple redundant methods during runtime.  Method deprecation 
and regeneration is enabled through Ask and Tell operators.  For example, in Figure 5, we can enforce 
that the grinder must be in working condition. if we wish to sample the composition of a rock.  This 
condition is enforced by placing an arc over each sample(Target) activity which asks that the 
condition grinder = ok holds true during the entire execution of the activity.  The dispatcher enforces 
that an Ask condition is satisfied by covering it with a Tell condition.  For example, at the bottom of 
the plan in Figure 5, we tell the plan that grinder = ok for the duration of the plan.  Additionally, a cost  
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Figure 6:  A walkthrough example. 
 

can be associated with each activity in the TPN.  This allows the planner to choose the set of available 
methods that minimizes cost, or analogously, maximizes reward.  The cost of an activity is denoted by 
a red number, and as shown in Figure 5 we give each sample(Target) activity a cost of 5 and each 
image(Target) activity a cost of 10.  By giving each sample(Target) activity a lower cost than the 



associated image(Target) activity, we are abiding by the plan requirement that sampling each rock is 
the primary goal, and imaging each rock is just the secondary goal.   

 
Next, we walk through each step of the MER rover example depicted above in Figure 6.  Initially, in 
step 1 of Figure 6, Predictive Method Selection is invoked and an optimal consistent and schedulable 
plan is selected.  We see that among the redundant methods of sampling and imaging each rock, the 
planner correctly chooses to sample each rock (since this is the option with the least cost).  Now that a 
plan is selected, it is sent to the dispatcher.  In step 2, we assume that the grinder breaks, causing a 
failure exception to be thrown.  When the failure occurs, the plan is updated with any new information 
(grinder = broken) and then method selection is re-invoked.   However, as shown in step 3, we see 
that since the grinder is now broken, the Ask condition associated with each sample(Target) activity is 
no longer satisfied, thus the activities must be deprecated.  In step 4, predictive method selection is re-
invoked, and the optimal consistent and schedulable plan is selected.  As is shown, with a broken 
grinder, the only consistent alternative for the MER rover is to take high-resolution images of the two 
targets. 
 

Results 
 
Initial testing of the described system has been performed by augmenting the MIT MERS rover test 
bed.  The rover test bed consists of a fleet of ATRV robots within a simulated Martian terrain.  By 
way of example we describe one mission whose robustness has been enhanced by the system.  
 
Two rovers must cooperatively search for science targets in the simulated Martian terrain.  This is 
done by having the rovers go to the selected vantage points looking for science targets using the 
rover’s stereo cameras.  The rovers divide up the space so that they can minimize the time taken in 
mapping the available science targets in the area.  The paths of the rovers are planned in advance 
given existing terrain maps.  The plan runs without fail.  Between them the rovers successfully find all 
of the science targets that we have placed for them to find.  The scenario is shown below in Figure 4. 
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Figure 4: Rover test bed experimental platform 

 
In the test scenario two faults are introduced by placing a large rock that blocks rover #1’s view of 
one of the designated areas.  When rover #1 gets into its initial position to look for science targets its 
stereo cameras detect the unexpected rock obscuring its view.  This results in an exception that 
disqualifies the current software component from looking for targets.  Since the failure is external to 
the rover software the plan itself is invalidated. The exception is resolved by replanning which allows 
the both rovers to modify their plans so that the second rover observes the obscured site from a 
different vantage point.  The rovers continue with the new plan but when rover #2 attempts to scan the 



area for science targets the selected vision algorithm fails due to the deep shadow being cast by the 
large rock.  Again an exception is generated but in this case a redundant method is found – a vision 
algorithm that works well in low light conditions.  With this algorithm the rover successfully scans the 
site for science targets.  Both rovers continue to execute their plan without further failure. 
 

Figure 5: The TPN for the two-rover exploration plan.  Failure due to an obscuration (rock) 
results in automatic online replanning so that the mission can continue. 

 
 

Comparison with Current Technology  
Model-based Programming of Hidden States  
The reactive model-based programming language (RMPL) is similar to reactive embedded 
synchronous programming languages like Esterel.  In particular, both languages support conditional 
execution, concurrency, preemption and parameter less recursion. The key difference is that in 
embedded synchronous languages, programs only read sensed variables and write to controlled 
variables. In contrast, RMPL specifies goals by allowing the programmer to read or write ``hidden'' 
state variables. It is then the responsibility of the language's model-based execution kernel to map 
between hidden states and the underlying system’s sensors and control variables.     

Predictive and Decision-theoretic Dispatch 
RMPL supports nondeterministic or decision theoretic choice, plus flexible timing constraints.  
Robotic execution languages, such as RAPS, [2], ESL[4] and TDL[3], offer a form of decision 
theoretic choice between methods and timing constraints.  In RAPS, for example, each method is 
assigned a priority.  A method is then dispatched, which satisfies a set of applicability constraints 
while maximizing priority.  In contrast, RMPL dispatches on a cost that is associated with a 
dynamically changing performance measure.  In RAPS timing is specified as fixed, numerical values.  
In contrast, RMPL specifies timing in terms of upper and lower bound on valid execution times.  The 
set of timing constraints of an RMPL program constitutes a Simple Temporal Network (STN).  RMPL 
execution is unique in that it predictively selects a set of future methods whose execution are 
temporally feasible. 

Probabilistic Concurrent Constraint Automata  
Probabilistic Concurrent Constraint Automata (PCCA) extend Hidden Markov Models (HMMs) by 
introducing four essential attributes. First, the HMM is factored into a set of concurrently operating 
automata. Second, probabilistic transitions are treated as conditionally independent. Third, each state 
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is labeled with a logical constraint that holds whenever the automaton marks that state. This allows an 
efficient encoding of co-temporal processes, which interrelate states and map states to observables. 
Finally, a reward function is associated with each automaton, and is treated as additive.   

Constraint-based Trellis Diagram  
Mode estimation encodes PHCA as a constraint-based trellis diagram, and searches this diagram in 
order to estimate the most likely system diagnoses.  This encoding is similar in spirit to a 
SatPlan/Graphplan encoding in planning.  
 

Conclusions 
We have extended a system capable of diagnosing and reconfiguring redundant hardware systems so 
that instrumented software systems can likewise be made robust.  Software systems are more complex 
than hardware systems and modeling software components and their interconnections poses a higher 
modeling burden. Results of our early experiments are encouraging but much work remains to extend 
the current experimental system to cover the full range of software practice. 
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