
Autonomous Robust Execution of Complex Robotic
Missions

Paul Robertson, Robert Effinger, and Brian Williams
paulr@csail.mit.edu, {effinger,williams}@mit.edu

MIT CSAIL, 32 Vassar Street, Building 32-272 Cambridge, MA 02139

Introduction

 Getting robots to perform even simple tasks can be fraught with difficulty. Sending a robot to a
distant planet, such as Mars, raises a number of significant issues concerning autonomy. The intended
mission itself may be quite complex -- conceivably involving coordinated work with other robots. An
example of such an anticipated mission is to send a team of robots to Mars where they will, among
other things, construct habitat that will be used by astronauts that arrive at a later time. Quite apart
form the complexity of the mission, these robots are likely to be expensive especially when
considering the cost of transporting them to the planet surface. The loss of a robot would therefore be
a serious loss that could jeopardize the feasibility of the astronaut arrival. For this reason robotic
exploration (Figure 1) of Mars (Sojourner, Spirit, and Opportunity) have not been autonomous except
for very minor navigation capability.

Figure 1 NASA Rover Spirit

Operating rovers from earth is an excruciating process because the time delay caused by the time it
takes a signal to travel between Earth and Mars does not permit tele-operation of the rovers.
Consequently a large team of mission planners must plan and test, in excruciating detail, plans for the
next days operations. This approach will not work for more complex missions such as cooperative
robots assembling an astronaut habitat.

In our rover testbed we are attempting to perform such complex cooperative missions using a team of
iRobot ATRV robots (Figure 2) with arms mounted on them for instrument placement/collection and
construction tasks.

The hostile nature of space and the uncertainty of the Martian environment means that we must
consider repair of a mission plan as well as adapting to failed components. In modern systems these
failed systems are as likely to be software systems as hardware. Indeed many of NASA’s recent

problems have been software problems. In this paper we describe our approach to dealing with
perturbations with a particular emphasis to the software/mission planning aspect of robot autonomy.

In complex, concurrent critical systems, every component is a potential point of failure. Typical
attempts to make such systems more robust and secure are both brittle and incomplete. That is, the
security is easily broken, and there are many possible failure modes that are not handled. Techniques
that expand to handling component level failures are very expensive to apply, yet are still quite brittle
and incomplete. This is not because engineers are lazy – the sheer size and complexity of modern
information systems overwhelms the attempts of engineers, and myriad methodologies, to
systematically investigate, identify, and specify a response to all possible failures of a system.
Adding dynamic intelligent fault awareness and recovery to running systems enables the identification
of unanticipated failures and the construction of novel workarounds to these failures. Our approach is
pervasive and incremental. It is pervasive in that it applies to all components of a large, complex
system – not just the “firewall” services. It is incremental in that it coexists with existing faulty,
unsafe systems, and it is possible to incrementally increase the safety and reliability of large systems.
The approach aims to minimize the cost, in terms of hand-coded specifications with respect to how to
isolate and recover from failures.

 Figure 2: MIT MERS Rover Testbed

There are many reasons why software fails. Among the more common reasons are the following:

1. Assumptions made by the software turn out not to be true at some point. For example, if a piece of
software must open a file with a given path name it will usually succeed but if the particular disk that
corresponds to the path name fails the file will not be accessible. If the program assumed that the file
was accessible the program will fail. In highly constrained situations it is possible to enumerate all
such failures and hand code specific exception handlers – and such is the standard practice in the
industry. In many cases however, particularly in embedded applications, the number of ways that the

environment can change becomes so large that the programmer cannot realistically anticipate every
possible failure.

2. Software is attacked by a hostile agent. This form of failure is similar to the first one except that
change in the environment is done explicitly with the intent to cause the software to fail.

3. Software changes introduce incompatibilities. Most software evolves of its lifetime. When
incompatibilities are inadvertently introduced software that previously did not fail for a given
situation may now fail.

Whatever the reason for the software failure we would like the software to be able to recognize that it
has failed and to recover from the failure. There are three steps to doing this:

1. Noticing that the software has failed;
2. Diagnosing exactly what software component has failed; and
3. Finding and alternative way of achieving the intended behavior.

In order for the runtime system to reason about its own behavior and intended behavior in this way
certain extra information and algorithms must be present at runtime. In our system these extra pieces
include models of the causal relationships between the software components, models of intended
behavior, and models of correct (nominal) execution of the software. Additionally models of known
failure modes can be very helpful but are not required. Finally the system needs to be able to sense, at
least partially, its state, it needs to be able to reason about the difference between the expected state
and the observed state and it need to be able to modify the running software such as by choosing
alternative runtime methods.

Building software systems in this way comes with a certain cost. Models of the software components
and their causal relationships that might otherwise have existed only in the programmers head must by
made explicit, the reasoning engine must be linked in to the running program, and the computational
cost of the monitoring, diagnosis, and recovery must be considered. In some systems the memory
footprint and processor speed prohibit this approach. More and more however memory is becoming
cheap enough for memory footprint to not be an issue and processor power is similarly becoming less
restrictive. While the modeling effort is an extra cost there are benefits to doing the modeling that
offset its cost. Making the modeling effort explicit can often cause faults to be found earlier than
would otherwise be the case. The developers can choose the fidelity of the models. More detailed
models take more time to develop but allow for greater fault identification, diagnosis, and recovery.
Finally our approach to recovery assumes that there is more than one way of achieving a task. The
developer therefore must provide a variety of ways of achieving the intended behavior.

The added costs of building robust software in this way are small when compared to the benefits.
Among the benefits it allows us to:

1. Build software systems that can operate autonomously to achieve goals in complex and
changing environments;

2. Build software that detects and works around “bugs” resulting from incompatible software
changes;Build software that detects and recovers from software attacks; and

4. Build software that automatically improves as better software components and models are

added.

Figure 3: Deep Space 1: Fight Experiment May 1999

Prior Work: Self-adaptive software has been successfully applied to a variety of tasks
ranging from robust image interpretation to automated controller synthesis [7]. Our approach,
which is described below, builds upon a successful history of hardware diagnosis and repair.
In May 1999 the spacecraft Deep Space 1 [1] ran autonomously for a period of a week.
During that week faults were introduced which were detected, diagnosed, and recovered from
by reconfiguring the (redundant) hardware of the spacecraft. Subsequently Earth Observer 1
has been flying autonomously planning and executing its own missions. Extending these
technologies to software systems involves extending the modeling language to deal with the
idiosyncrasies of software such as its inherently hierarchical structure [6].

Approach: At the heart of our system is a model-based programming language called RMPL that
provides a language for specifying correct and faulty behavior of the systems software components.
The novel ideas in our approach include method deprecation and method regeneration in tandem
with an intelligent runtime model-based executive that performs automated fault management from
engineering models, and that utilizes decision-theoretic method dispatch. Once a system has been
enhanced by abstract models of the nominal and faulty behavior of its components, the model-based
executive monitors the state of the individual components according to the models. If faults in a
system render some methods (procedures for accomplishing individual goals) inapplicable, method
deprecation removes the methods from consideration by the decision-theoretic dispatch. Method
regeneration involves repairing or reconfiguring the underlying services that are causing some method
to be inapplicable. This regeneration is achieved by reasoning about the consequences of actions
using the component models, and by exploiting functional redundancies in the specified methods. In
addition, decision-theoretic dispatch continually monitors method performance and dynamically
selects the applicable method that accomplishes the intended goals with maximum safety, timeliness,
and accuracy.
Beyond simply modeling existing software and hardware components, we allow the specification of
high-level methods. A method defines the intended state evolution of a system in terms of goals and
fundamental control constructs, such as iteration, parallelism, and conditionals. Over time, the more
that a system’s behavior is specified in terms of model-based methods, the more that the system will
be able to take full advantage of the benefits of model-based programming and the runtime model-
based executive. Implementing functionality in terms of methods enables method prognosis, which

involves proactive method deprecation and regeneration, by looking ahead in time through a temporal
plan for future method invocations.
Our approach has the benefit that every additional modeling task performed on an existing system
makes the system more robust, resulting in substantial improvements over time. As many faults and
intrusions have negative impact on system performance, our approach also improves the performance
of systems under stress.
Our approach provides a well-grounded technology for incrementally increasing the robustness of
complex, concurrent, critical applications. When applied pervasively, model-based execution will
dramatically increase the security and reliability of these systems, as well as improve overall
performance, especially when the system is under stress.

Fault Aware Processes Through Model-based Programming
Recall, to achieve robustness pervasively, fault adaptive processes must be created with minimal
programming overhead. Model-based programming elevates this task to the specification of the
intended state evolutions of each process. A model-based executive automatically synthesizes fault
adaptive processes for achieving these state evolutions, by reasoning from models of correct and
faulty behavior of supporting components.
Each model-based program implements a system that provides some service, such as secure data
transmission. This is used as a component within a larger system. The model-based program in turn
builds upon a set of services, such as name space servers and data repositories, implemented through a
set of concurrently operating components, comprised of software and hardware.

Component Services Model
The service model represents the normal behavior and the known and unknown aberrant behaviors of
the program’s component services. It is used by a deductive controller to map sensed variables to
queried states. The service model is specified as a concurrent transition system, composed of
probabilistic concurrent constraint automata 1. Each component automaton is represented by a set of
component modes, a set of constraints defining the behavior within each mode, and a set of
probabilistic transitions between modes. Constraints are used to represent co-temporal interactions
between state variables and intercommunication between components. Constraints on continuous
variables operate on qualitative abstractions of the variables, comprised of the variable’s sign
(positive, negative, zero) and deviation from nominal value (high, nominal, low). Probabilistic
transitions are used to model the stochastic behavior of components, such as failure and intermittency.
Reward is used to assess the costs and benefits associated with particular component modes. The
component automata operate concurrently and synchronously.

Self Deprecation and Regeneration Through Predictive Method Dispatch
In model-based programming, the execution of a method will fail if one of the service components it
relies upon irreparably fails. This in turn can cause the failure of any method that relies upon it,
potentially cascading to a catastrophic and irrecoverable system-wide malfunction. The control
sequencer enhances robustness by continuously searching for and deprecating any requisite method
whose successful execution relies upon a component that is deemed faulty by mode estimation, and
deemed irreparable by mode reconfiguration.

Without additional action, a deprecated method will cause the deprecation of any method that relies
upon it, potentially cascading to catastrophic system-level malfunction. Model-based programmers
specify redundant methods for achieving each desired function. When a requisite method is
deprecated, the control sequencer attempts to regenerate the lost function proactively, by selecting an
applicable alternative method, while verifying overall safety of execution.

More specifically, predictive method selection will first search until it finds a set of methods that are
consistent and schedulable. It then invokes the dispatcher, which passes each activity to the deductive
controller as configuration goals, according to a schedule consistent with the timing constraints. If the

deductive controller indicates failure in the activity’s execution, or the dispatcher detects that an
activity’s duration bound is violated, then method selection is reinvoked. The control sequencer then
updates its knowledge of any new constraints and selects an alternative set of methods that safely
completes the RMPL program.

Self-Optimizing Methods Through Safe, Decision-Theoretic Dispatch
In addition to failure, component performance can degrade dramatically, reducing system
performance to unacceptable levels. To maintain optimal performance, predictive method dispatch
utilizes decision-theoretic method dispatch, which continuously monitors performance, and selects the
currently optimal available set of methods that achieve each requisite function.

A Simple Example
To describe the machinery of Predictive Method Selection and Decision-Theoretic Dispatch in more
detail, we present a simple example. In this example, shown in Figure 4, a MER rover is tasked with
performing science operations on the surface of Mars. Specifically, in this example, the MER rover is
asked to visit two Martian rocks and sample their composition. The primary goal is to scratch each
rock using a grinder (a.k.a. rock abrasion tool) and then analyze the rock’s composition. As a
secondary goal, if for some reason the primary goal is unattainable, the MER rover should take a high
resolution image of the rock.

Figure 4: MER rover performing science operations on Mars.

(picture courtesy of NASA JPL)

In Figure 5, below, we show how this simple example can be encoded as a Temporal Plan Network
(TPN). A TPN [8] can be viewed as a generalization of a Simple Temporal Network (STN) that
supports multiple redundant methods, method deprecation and regeneration, and optimal planning.

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = ok [0,+inf]

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = ok

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = ok [0,+inf]

Figure 5: Temporal Plan Network encoding of the MER Rover Example.

In a TPN, nodes represent instantaneous time events, and arcs represent activities with duration. The
duration of an activity is constrained by a lower and upper timebound, specified in brackets, [lb,ub].
By default, a blank arc has [0,0] timebounds. Redundant methods in a TPN are denoted by a double
circle and a circle with two horizontal lines. One and only one thread of execution must be chosen
between each pair of double circle node and double line node in the TPN. This construct allows the

autonomous system to select from multiple redundant methods during runtime. Method deprecation
and regeneration is enabled through Ask and Tell operators. For example, in Figure 5, we can enforce
that the grinder must be in working condition. if we wish to sample the composition of a rock. This
condition is enforced by placing an arc over each sample(Target) activity which asks that the
condition grinder = ok holds true during the entire execution of the activity. The dispatcher enforces
that an Ask condition is satisfied by covering it with a Tell condition. For example, at the bottom of
the plan in Figure 5, we tell the plan that grinder = ok for the duration of the plan. Additionally, a cost

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

Step 1: Predictive Method Selection:
- initially select a set of methods that are consistent, schedulable, and optimal

5

10

5

10

Step 2: Deductive Controller indicates failure of an activity during execution
- the grinder fails and can’t sample target 1

Ask grinder = ok Ask grinder = ok

Tell grinder = ok

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = ok

Failure
Throw Exception:
Type: sampleTarget
Reason: grinder = broken

Catch:
Type: sampleTarget
Handler:

Rover1.retract_arm
Tell: grinder = broken

[0,+inf]

[0,+inf]

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

Step 1: Predictive Method Selection:
- initially select a set of methods that are consistent, schedulable, and optimal

5

10

5

10

Step 2: Deductive Controller indicates failure of an activity during execution
- the grinder fails and can’t sample target 1

Ask grinder = ok Ask grinder = ok

Tell grinder = ok

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = ok

FailureFailure
Throw Exception:
Type: sampleTarget
Reason: grinder = broken

Catch:
Type: sampleTarget
Handler:

Rover1.retract_arm
Tell: grinder = broken

[0,+inf]

[0,+inf]

Rover1.sample(target1) Rover1.sample(target2)

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

Step 3: Method Deprication:
- update the plan with new information (grinder = broken), sample(Targets) is now depricated

5

10

5

10

Step 4: Reinvoke Predictive Method Dispatch:
- choose the optimal set of methods, while avoiding any depricated methods

Ask grinder = ok Ask grinder = ok

Tell gripper = Broken

Rover1.goto(p1) Rover1.goto(p2) Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = Broken

[0,+inf]

[0,+inf]

Rover1.sample(target1) Rover1.sample(target2)

Rover1.goto(p1)

Rover1.sample(target1)

Rover1.goto(p2)

Rover1.sample(target2)

Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

Step 3: Method Deprication:
- update the plan with new information (grinder = broken), sample(Targets) is now depricated

5

10

5

10

Step 4: Reinvoke Predictive Method Dispatch:
- choose the optimal set of methods, while avoiding any depricated methods

Ask grinder = ok Ask grinder = ok

Tell gripper = Broken

Rover1.goto(p1) Rover1.goto(p2) Rover1.goto(p3)

Start End

Rover1.image(target1) Rover1.image(target2)
[5,10] [5,10] [5,10]

[2,5]

[2,5]

[2,5]

[2,5]

5

10

5

10

Ask grinder = ok Ask grinder = ok

Tell grinder = Broken

[0,+inf]

[0,+inf]

Figure 6: A walkthrough example.

can be associated with each activity in the TPN. This allows the planner to choose the set of available
methods that minimizes cost, or analogously, maximizes reward. The cost of an activity is denoted by
a red number, and as shown in Figure 5 we give each sample(Target) activity a cost of 5 and each
image(Target) activity a cost of 10. By giving each sample(Target) activity a lower cost than the

associated image(Target) activity, we are abiding by the plan requirement that sampling each rock is
the primary goal, and imaging each rock is just the secondary goal.

Next, we walk through each step of the MER rover example depicted above in Figure 6. Initially, in
step 1 of Figure 6, Predictive Method Selection is invoked and an optimal consistent and schedulable
plan is selected. We see that among the redundant methods of sampling and imaging each rock, the
planner correctly chooses to sample each rock (since this is the option with the least cost). Now that a
plan is selected, it is sent to the dispatcher. In step 2, we assume that the grinder breaks, causing a
failure exception to be thrown. When the failure occurs, the plan is updated with any new information
(grinder = broken) and then method selection is re-invoked. However, as shown in step 3, we see
that since the grinder is now broken, the Ask condition associated with each sample(Target) activity is
no longer satisfied, thus the activities must be deprecated. In step 4, predictive method selection is re-
invoked, and the optimal consistent and schedulable plan is selected. As is shown, with a broken
grinder, the only consistent alternative for the MER rover is to take high-resolution images of the two
targets.

Results

Initial testing of the described system has been performed by augmenting the MIT MERS rover test
bed. The rover test bed consists of a fleet of ATRV robots within a simulated Martian terrain. By
way of example we describe one mission whose robustness has been enhanced by the system.

Two rovers must cooperatively search for science targets in the simulated Martian terrain. This is
done by having the rovers go to the selected vantage points looking for science targets using the
rover’s stereo cameras. The rovers divide up the space so that they can minimize the time taken in
mapping the available science targets in the area. The paths of the rovers are planned in advance
given existing terrain maps. The plan runs without fail. Between them the rovers successfully find all
of the science targets that we have placed for them to find. The scenario is shown below in Figure 4.

p1

p2
p3

p4

p5
1

2

p1

p2
p3

p4

p5
1

2

p1

p2
p3

p4

p5
11

22

Figure 4: Rover test bed experimental platform

In the test scenario two faults are introduced by placing a large rock that blocks rover #1’s view of
one of the designated areas. When rover #1 gets into its initial position to look for science targets its
stereo cameras detect the unexpected rock obscuring its view. This results in an exception that
disqualifies the current software component from looking for targets. Since the failure is external to
the rover software the plan itself is invalidated. The exception is resolved by replanning which allows
the both rovers to modify their plans so that the second rover observes the obscured site from a
different vantage point. The rovers continue with the new plan but when rover #2 attempts to scan the

area for science targets the selected vision algorithm fails due to the deep shadow being cast by the
large rock. Again an exception is generated but in this case a redundant method is found – a vision
algorithm that works well in low light conditions. With this algorithm the rover successfully scans the
site for science targets. Both rovers continue to execute their plan without further failure.

Figure 5: The TPN for the two-rover exploration plan. Failure due to an obscuration (rock)
results in automatic online replanning so that the mission can continue.

Comparison with Current Technology
Model-based Programming of Hidden States
The reactive model-based programming language (RMPL) is similar to reactive embedded
synchronous programming languages like Esterel. In particular, both languages support conditional
execution, concurrency, preemption and parameter less recursion. The key difference is that in
embedded synchronous languages, programs only read sensed variables and write to controlled
variables. In contrast, RMPL specifies goals by allowing the programmer to read or write ``hidden''
state variables. It is then the responsibility of the language's model-based execution kernel to map
between hidden states and the underlying system’s sensors and control variables.

Predictive and Decision-theoretic Dispatch
RMPL supports nondeterministic or decision theoretic choice, plus flexible timing constraints.
Robotic execution languages, such as RAPS, [2], ESL[4] and TDL[3], offer a form of decision
theoretic choice between methods and timing constraints. In RAPS, for example, each method is
assigned a priority. A method is then dispatched, which satisfies a set of applicability constraints
while maximizing priority. In contrast, RMPL dispatches on a cost that is associated with a
dynamically changing performance measure. In RAPS timing is specified as fixed, numerical values.
In contrast, RMPL specifies timing in terms of upper and lower bound on valid execution times. The
set of timing constraints of an RMPL program constitutes a Simple Temporal Network (STN). RMPL
execution is unique in that it predictively selects a set of future methods whose execution are
temporally feasible.

Probabilistic Concurrent Constraint Automata
Probabilistic Concurrent Constraint Automata (PCCA) extend Hidden Markov Models (HMMs) by
introducing four essential attributes. First, the HMM is factored into a set of concurrently operating
automata. Second, probabilistic transitions are treated as conditionally independent. Third, each state

Start End
Rover1.goto(p1)

Rover2.goto(p5)

Rover1.findTargetsRover1.goto(p2) Rover1.goto(p3)

Rover2.goto(p6)Rover2.findEggs Rover2.goto(p3)

Rover2.goto(p6) Rover2.goto(p3) Rover2.findTargets

Rover1.findTargets Rover1.goto(p2) Rover1.goto(p3)

Failure

Start End
Rover1.goto(p1)

Rover2.goto(p5)

Rover1.findTargetsRover1.goto(p2) Rover1.goto(p3)

Rover2.goto(p6)Rover2.findEggs Rover2.goto(p3)

Rover1.findTargetsRover1.goto(p2) Rover1.goto(p3)

Rover2.goto(p6)Rover2.findEggs Rover2.goto(p3)

Rover2.goto(p6) Rover2.goto(p3) Rover2.findTargets

Rover1.findTargets Rover1.goto(p2) Rover1.goto(p3)

Failure Failure

is labeled with a logical constraint that holds whenever the automaton marks that state. This allows an
efficient encoding of co-temporal processes, which interrelate states and map states to observables.
Finally, a reward function is associated with each automaton, and is treated as additive.

Constraint-based Trellis Diagram
Mode estimation encodes PHCA as a constraint-based trellis diagram, and searches this diagram in
order to estimate the most likely system diagnoses. This encoding is similar in spirit to a
SatPlan/Graphplan encoding in planning.

Conclusions
We have extended a system capable of diagnosing and reconfiguring redundant hardware systems so
that instrumented software systems can likewise be made robust. Software systems are more complex
than hardware systems and modeling software components and their interconnections poses a higher
modeling burden. Results of our early experiments are encouraging but much work remains to extend
the current experimental system to cover the full range of software practice.

Acknowledgements
The work described in this article was supported in part by DARPA and NASA.

References

1. D. Bernard, G. Dorais, E. Gamble, B. Kanefsky, J. Kurien, G. Man, W. Millar, N. Muscettola,
P. Nayak, K. Rajan, N. Rouquette, B. Smith, W. Taylor, Y. Tung, Spacecraft Autonomy
Flight Experience: The DS1 Remote Agent Experiment, Proceedings of the AIAA Space
Technology Conference & Exposition, Albuquerque, NM, Sept. 28-30, 1999. AIAA-99-4512.

2. R. Firby, “The RAP language manual,” Working Note AAP-6. University of Chicago, 1995.
3. R. Simmons, “Structured Control for Autonomous Robots,” IEEE Transactions on Robotics

and Automation, 10(1), 94.
4. E Gat, “ESL: A Language for Supporting Robust Plan Execution in Embedded Autonomous

Agents,” In Proceedings of the AAAI Fall Symposium on Plan Execution, 1996.
5. B. Williams and P. Nayak. A Reactive Planner for a Model-based Execution. In Proceedings

15th International Joint Conference AI, Nagoya, Japan, August 1997. IJCAI-97.
6. T. Mikaelian & M. Sachenbacher. Diagnosing Mixed Hardware/Software Systems Using Constraint

Optimization. In Proceedings DX-05.
7. Robert Laddaga, Paul Robertson, Howard E. Shrobe. Introduction to Self-adaptive Software:

Applications. Springer Verlag LNCS 261
8. Phil Kim, Brian C. Williams and Mark Abramson. 2001. "Executing Reactive, Model-based

Programs through Graph-based Temporal Planning." Proceedings of the International Joint
Conference on Artificial Intelligence, Seattle, Wa.

