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Abstract. Model-based diagnosis and mode estimation capabilities ex-
cel at diagnosing systems whose symptoms are clearly distinguished from
normal behavior. A strength of mode estimation, in particular, is its abil-
ity to track a system’s discrete dynamics as it moves between different
behavioral modes. However, often failures bury their symptoms amongst
the signal noise, until their effects become catastrophic.
We introduce a hybrid mode estimation system that extracts mode esti-
mates from subtle symptoms. First, we introduce a modeling formalism,
called concurrent probabilistic hybrid automata (cPHA), that merge hid-
den Markov models (HMM) with continuous dynamical system models.
Second, we introduce hybrid estimation as a method for tracking and di-
agnosing cPHA, by unifying traditional continuous state observers with
HMM belief update. Finally, we introduce a novel, any-time, any-space
algorithm for computing approximate hybrid estimates.

1 Introduction

The year 2000 was kicked off with two missions to Mars, following on the heals
of the highly successful Mars Pathfinder mission. Mars Climate Orbiter burned
up in the Martian atmosphere. After extensive investigation it was found that
a units error in a small forces table introduced a small, but indiscernible fault
that, over a lengthy time period, caused the loss of the orbiter. The problem
of misinterpreting a system’s dynamics was punctuated later in the year when
the Mars Polar Lander vanished without a trace. After months of analysis, the
failure investigation team concluded that the vehicle most likely crashed into
Mars, because it incorrectly shutdown its engine at 40 meters above the surface.
This failure, like the orbiter, resulted from a misinterpretation of the vehicle’s
dynamics, in this case, due to a faulty software monitor.

The above case study is a dramatic instance of a common problem – increas-
ingly complex systems are being developed, whose failure symptoms are nearly
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indiscernible, up until a catastrophic result occurs. To tackle this problem we
address two issues. First, these failures are manifest through a coupling between
a system’s continuous dynamics, and its evolution through different behavior
modes. We address this issue by developing hybrid monitoring and diagnosis
capabilities that are able to track a system’s behavior, along both its continu-
ous state evolution and its discrete mode changes. Second, failures may generate
symptoms that are initially on the same scale as sensor and actuator noise. To
discover these symptoms, we use statistical methods to separate the noise from
the true dynamics.

We address this challenge by extending the deductive mode estimation capa-
bilities of the Livingstone system[1], to reason about continuous dynamics, using
classical methods for state estimation[2]. After a motivating example, we discuss
traditional methods for separately estimating discrete and continuous behaviors.
We then introduce a modeling formalism, called concurrent probabilistic hybrid
automata (cPHA), that merges hidden Markov models (HMM) with continu-
ous dynamical system models. A cPHA provides a modeling framework that
captures probabilistic mode transitions, This is unlike most traditional hybrid
modeling frameworks, for example, [3,4,5,6], which define mode transitions to be
deterministic, or do not explicitly specify probabilities for transitions.

Next, we introduce a method, called hybrid mode estimation, that tracks and
diagnoses cPHA, by creating a hybrid HMM observer. The observer uses the
results of continuous state estimates to estimate a system’s mode changes, and
coordinates the actions of a set of continuous state observers. This approach is
similar to work pursued in multi-model estimation[7,8,9]. However, we provide
a novel any-time, any-space algorithm for computing approximate hybrid esti-
mates, which allows us to track concurrent automata that have a large number
of possible modes.

Several approaches have been recently introduced for hybrid system diag-
nosis, including approaches that bridge methods from model-based diagnosis
and multi-model filtering (e.g. [10,11,12]), and less traditional methods, such as
dynamic Bayesian networks[13] or particle filters[14]. Most of these methods,
however, do not deal with autonomous mode transitions of the system under
investigation. Our paper remedies this situation and provides one possible path
towards a unified framework for monitoring and diagnosing hybrid systems.

2 Example: BIO-Plex

Our application is the BIO-Plex Test Complex at NASA Johnson Space Center,
a five chamber facility for evaluating biological and physiochemical life support
technologies. It is an artificial, biosphere-type, closed environment, which must
robustly provide all the air, water, and most of the food for a crew of four without
interruption. Plants are grown in plant growth chambers, where they provide
food for the crew, and convert the exhaled CO2 into O2. In order to maintain a
closed-loop system, it is necessary to control the resource exchange between the
chambers, without endangering the crew. For the scope of this paper, we restrict
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our evaluation to the sub-system dealing with CO2 control in the plant growth
chamber (PGC), shown in Fig. 1.
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Fig. 1. BIO-Plex plant growth chamber

The system is composed of several components, such as a flow regulator that
provides continuous CO2 supply, a pulse injection valve that provides a means for
increasing the CO2 concentration rapidly, a lighting system and the plant growth
chamber, itself. The control system maintains a plant growth optimal CO2 con-
centration of 1200 ppm during the day phase of the system (20 hours/day). This
CO2 level is unsuitable for humans, hence the gas concentration is lowered to
500 ppm, whenever crew members request to enter the chamber for harvesting,
re-planting or other service activities. Safety regulations require that the sys-
tem inhibit high volume gas injection via the pulse-injection path, while crew
members are in the PGC. Sensors are available to record entry and exit of crew
members. However, sensors are known to fail. In this paper we demonstrate how
hybrid estimation provides a robust backup strategy that detects the presence
of crew members, based on the slight change in the gas balance that is caused
by the exhaled CO2.

Hybrid estimation schemes are key to tracking system operational modes,
as well as, detecting subtle failures and performing diagnoses. For instance, a
partial lighting failure has impact on the gas conversion rate due to lower photo-
synthesis activity. The failure leads to behavior that is similar to crew members
entering the PGC. A hybrid estimation scheme should correctly discriminate
among different operational and failure modes of each system component, based
on the overall system operation.

3 Traditional Estimation

To model a hybrid system, we start by using a hidden Markov model (HMM) to
describe discrete stochastic changes in the system. We then fold in the continuous
dynamics, by associating a set of continuous dynamical equations with each
HMM state. To avoid confusion in terminology, we refer to the HMM state as the
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system’s mode, and reserve the term state to refer to the state of a probabilistic
hybrid automaton. We develop a hybrid estimation capability by generalizing
traditional methods for estimating HMM states and continuous state-variables.

3.1 Estimating HMMs

For an HMM, estimation is framed as a problem of belief-state update, that is,
the problem of determining the probability distribution b(k) over modes M at
time-step k. The probability of being in a mode mi at time-step k is denoted
b(k)[mi].

Definition 1. A Hidden Markov Model (HMM) can be described by a tuple
〈M,Yd,Ud, PΘ, PT , PO〉. M, Yd and Ud denote finite sets of feasible modes mi,
observations ydi and control values udi, respectively. The initial state function,
PΘ[mi], denotes the probability that mi is the initial mode. The mode transition
function, PT (mi|ud,mj), describes the probability of transitioning from mode
mj,(k−1) to mi,(k) at time-step k, given a discrete control action ud,(k−1). The
observation function PO(yd|mi) describes the probability that a discrete value
yd is observed, given the mode mi.

Standard belief update for an HMM is an incremental process that determines
the belief-state b(k) at the current time-step, given the current observations yd,(k),
and the belief-state b(k−1) and discrete control action ud,(k−1) from the previous
time-step. Belief update is a two step process. First, it uses the previous belief-
state and the probabilistic transition function to predict the belief-state, denoted
b(•k)[mi]. Then it adjusts this prediction to account for the current observations
at time-step k, resulting in the final belief-state b(k)[mi]:

b(•k)[mi] =
∑

mj∈M
PT (mi|ud,(k−1),mj)b(k−1)[mj ] (1)

b(k)[mi] =
b(•k)[mi]PO(yd,(k)|mi)∑

mj∈M b(•k)[mj ]PO(yd,(k)|mj)
, (2)

3.2 Estimating Continuous Variables

The state of a continuous dynamic system is traditionally estimated using a state
observer. In this paper we use a discrete-time model for the continuous dynamics
and estimate the behavior with discrete-time extended Kalman filters[2]. This
model selection is motivated by our overall goal: building a hybrid estimator for
a supervisory control system that operates on a discrete-time basis.

Definition 2. We describe a discrete-time model (DTM) as a tuple 〈x,y,u,vs,
vo, f ,g, Ts,Q,R〉. x, y, u denote the vectors of independent state-variables x1,
. . . , xn, observed variables y1, . . . , ymi and control variables u1, . . . , umo respec-
tively. The function f specifies the dynamic evolution x(k) = f(x(k−1),u(k−1)) +
vs,(k−1) and the function g determines the observed variables y(k) = g(x(k),
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u(k)) + vo,(k). The exogenous inputs vs and vo represent additive state dis-
turbances and measurement noise. We assume that these disturbances can be
modeled as a random, uncorrelated sequence with zero-mean and Gaussian dis-
tribution, and specify them by the covariance matrices E[vs,(k)vs,(k)

T ] =: Q
and E[vo,(k)vo,(k)

T ] =: R. Ts denotes the sampling-rate, so that the time-step,
k, denotes the time point, tk = kTs, assuming the initial time point t0 = 0.

The disturbances and imprecise knowledge about the initial state x(0) make
it necessary to estimate the state1 by its mean x̂(k) and covariance matrix P(k).
We use an extended Kalman filter for this purpose, which updates its current
state, like an HMM observer, in two steps. The first step uses the model to
predict the state x̂(•k) and its covariance P(•k), based on the previous estimate
〈x̂(k−1),P(k−1)〉, and the control input u(k−1):

x̂(•k) = f(x̂(k−1),u(k−1)) (3)

A(k−1) =
∂f
∂x

∣∣∣∣
x̂(k−1),u(k−1)

(4)

P(•k) = A(k−1)P(k−1)A
T
(k−1) +Q. (5)

This one-step ahead prediction leads to a prediction residual r(k) with covariance
matrix S(k)

r(k) = y(k) − g(x̂(•k),u(k)) (6)

C(k) =
∂g
∂x

∣∣∣∣
x̂(•k),u(k)

(7)

S(k) = C(k)P(•k)CT
(k) +R. (8)

The second filter step calculates the Kalman filter gain K(k), and refines the
prediction as follows:

K(k) = P(•k)CT
(k)S

−1
(k) (9)

x̂(k) = x̂(•k) +K(k)r(k) (10)

P(k) =
[
I − K(k)C(k)

]
P(•k). (11)

The output of the extended Kalman filter is a sequence of mean/covariance pairs
〈x̂(k),P(k)〉 for x(k).

4 Concurrent Probabilistic Hybrid Automata

We extend hidden Markov models by incorporating discrete-time difference equa-
tions and algebraic equations for each mode to capture the dynamic evolution
of the system. This leads to a hybrid model with probabilistic transitions. More
specifically, we define our automaton model as:
1 Throughout this paper we assume that the discrete-time models under investigation
are observable in the sense of control theory.
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Definition 3. A discrete-time probabilistic hybrid automaton (PHA) A can be
described as a tuple 〈x,w, F, T,Xd,Ud, Ts〉:

– x denotes the hybrid state variables of the automaton,2 composed of x =
{xd} ∪ xc. The discrete variable xd denotes the mode of the automaton and
has finite domain Xd. The continuous state variables xc = {xc1, . . . , xcn}
capture the dynamic evolution of the automaton with domain IRn. x denotes
the hybrid state of the automaton, while xc denotes the continuous state.

– The set of I/O variables w = ud∪uc∪yc of the automaton is composed of dis-
joint sets of discrete input variables ud = {ud1, . . . , udmd

} (called command
variables), continuous input variables uc = {uc1, . . . , ucmi}, and continuous
output variables yc = {yc1, . . . , ycmo}. The I/O variables have domain Ud,
IRmi and IRmo , respectively.

– F : Xd → FDE ∪FAE specifies the continuous evolution of the automaton in
terms of discrete-time difference equations FDE and algebraic equations FAE

for each mode xd ∈ Xd. Ts denotes the sampling period of the discrete-time
difference equations.

– The finite set, T , of transitions specifies the probabilistic discrete evolution
of the automaton in terms of tuples 〈τi, ci〉 ∈ T . Each transition function τi
has an associated Boolean guard condition ci : IRn × Ud → {true, false} and
specifies the probability mass function over target modes xd ∈ Xd.

Fig. 2 visualizes the probabilistic transitions T = {〈τ1, c1〉, 〈τ2, c2〉} for a PHA
with 4 modes Xd = {m1,m2,m3,m4}, wherem2 andm4 represent failure modes.
The transition function τ2 specifies a transition from mode m1 to mode m3 with
probability p3 or to mode m4 with probability p4, whenever its associated guard
c2 is satisfied.
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Fig. 2. Probabilistic mode transition

Complex systems are modeled as a composition of concurrently operating
PHA that represent the individual system components. A concurrent probabilis-
tic hybrid automata (cPHA) specifies this composition as well as its intercon-
nection to the outside world:

2 When clear from context, we use lowercase bold symbols, such as v, to denote a set
of variables {v1, . . . , vl}, as well as a vector [v1, . . . , vl]

T with components vi.
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Definition 4. A concurrent probabilistic hybrid automaton (cPHA) CA can be
described as a tuple 〈A,u,yc,vs,vo, Nx, Ny〉:
– A = {A1,A2, . . . ,Al} denotes the finite set of PHAs that represent the
components Ai of the cPHA (we denote the components of a PHA Ai by
xdi,xci,udi,uci,yci, Fi, etc.).

– The input variables u = ud ∪uc of the automaton consists of the sets of dis-
crete input variables ud = ud1∪. . .∪udl (command variables) and continuous
input variables uc ⊆ uc1 ∪ . . . ∪ ucl.

– The output variables yc ⊆ yc1∪. . .∪ycl specify the observed output variables
of the cPHA.

– The observation process is subject to (mode dependent3) additive Gaussian
sensor noise. Ny : Xd → IRm×m specifies the disturbance vo in terms of the
covariance matrix R.

– Nx specifies (mode dependent) additive Gaussian disturbances that act upon
the continuous state variables xc = xc1∪ . . .∪xcl. Nx : Xd → IRn×n specifies
the disturbance vs in terms of the covariance matrix Q.

Definition 5. The hybrid state x(k) of a cPHA at time-step k specifies the mode
assignment xd,(k) of the mode variables xd = {xd1, . . . , xdl} and the continuous
state assignment xc,(k) of the continuous state variables xc = xc1 ∪ . . . ∪ xcl.

Interconnection among the cPHA components Ai is achieved via shared con-
tinuous I/O variables wc ∈ uci ∪ yci only. Fig. 3 illustrates a simple example
composed of 2 PHAs.

A1 A2

uc
yc

ud1

ud2
CA

wc

Fig. 3. Example cPHA composed of two PHAs

A cPHA specifies a mode dependent discrete-time model for a plant with
command inputs ud, continuous inputs uc, continuous outputs yc, mode xd,
continuous state variables xc and disturbances vs, vo. The continuous evolution
of xc and yc can be described by

xc,(k) = f(k)(xc,(k−1),uc,(k−1)) + vs,(k−1) (12)
yc,(k) = g(k)(xc,(k),uc,(k)) + vo,(k). (13)

The functions f(k) and g(k) are obtained by symbolically solving the set of equa-
tions F1(xd1,(k)) ∪ . . . ∪ Fl(xdl,(k)) given mode xd,(k) = [xd1,(k), . . . , xdl,(k)]T .

3 E.g. sensors can experience different magnitudes of disturbances for different modes.
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Consider the cPHA in Fig. 3 with A1 = 〈{xd1, xc1}, {ud1, uc, wc}, F1, T1,
{m11,m12}, . . . 〉 and A2 = 〈{xd2}, {ud2, wc, yc}, F2, T2, {m21,m22}, . . . 〉, where
F1 and F2 provide for a cPHA mode xd,(k) = [m11,m21]T the equations
F1(m11) = {xc1,(k) = −0.5xc1,(k−1) + uc,(k−1), wc = xc1} and F2(m21) = {wc =
4yc}. This leads to the discrete-time model

xc1,(k) = −0.5xc1,(k−1) + uc,(k−1) + vs,(k−1) (14)
yc,(k) = 0.25xc1,(k) + vo,(k). (15)

Definition 6. A trajectory of a cPHA CA for a given input sequence {u(0),u(1),
. . . ,u(k)} is represented by a sequence of hybrid states {x(0),x(1), . . . ,x(k)} and
can be observed in terms of the sequence of observations {yc,(0),yc,(1), . . . ,yc,(k)}.

5 Hybrid Estimation

To detect the onset of subtle failures, it is essential that a monitoring and di-
agnosis system be able to accurately extract the hybrid state of a system from
a signal that may be hidden among disturbances, such as measurement noise.
This is the role of a hybrid observer. More precisely:

Hybrid Estimation Problem: Given a cPHA CA, a sequences of ob-
servations {yc,(0),yc,(1), . . . ,yc,(k)} and control inputs {u(0),u(1), . . . ,u(k)},
estimate the most likely hybrid state x̂(k) at time-step k.

A hybrid state estimate x̂(k) consists of a continuous state estimate, together
with the associatedmode. We denote this by the tuple x̂(k) := 〈xd,(k), x̂c,(k),P(k)〉,
where x̂c,(k) specifies the mean and P(k) the covariance for the continuous state
variables xc. The likelihood of an estimate x̂(k) is denoted by the hybrid belief-
state h(k)[x̂].

The hybrid observer is composed of two components. The first component,
an extended Kalman filter bank, maintains several continuous state estimates.
The second component, a hybrid Markov observer, controls the filter bank by
selecting trajectory candidates for estimation and ranking the estimated trajec-
tories according to their belief-state. In the following we specify this operation in
more detail and show (a) how the filter bank uses information from the hybrid
Markov observer to guide continuous state estimation, and (b) how results from
the filter bank guide the hybrid Markov observer.

5.1 Continuous State Estimation

Continuous state estimation is performed by a bank of extended Kalman filters
which track the set of trajectories under consideration and provides an estimate
〈x̂i,(k),Pi,(k)〉 and residual 〈r̂i,(k),Si,(k)〉 for each trajectory. The filter bank is
controlled by the hybrid Markov observer that performs the mode estimation.
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5.2 Mode Estimation - Hybrid Markov Observer

To extend HMM-style belief update to hybrid estimation, we must account for
two ways in which the continuous dynamics influences the system’s discrete
modes. First, mode transitions depend on changes in continuous state variables
(autonomous transitions), as well as discrete events injected via ud. To account
for this influence we specify the hybrid probabilistic transition function PT to
depend on continuous state xc. Second, the observation of the output variables
yc,(k) offers important evidence that can significantly shape the hybrid state
probabilities. To account for this influence we specify the hybrid probabilistic
observation function PO to depend on x̂ and uc.

A major difference between hybrid estimation and an HMM-style belief-state
update, as well as multi-model estimation, is, however, that hybrid estimation
tracks a set of trajectories, whereas standard belief-state update and multi-model
estimation aggregate trajectories which share the same mode. This difference is
reflected in the first of the following two recursive functions which define our
hybrid estimation scheme:

h(•k)[x̂i] = PT (mi|x̂j,(k−1),ud,(k−1))h(k−1)[x̂j ] (16)

h(k)[x̂i] =
h(•k)[x̂i]PO(yc,(k)|x̂i,(k),uc,(k))∑
j h(•k)[x̂j ]PO(yc,(k)|x̂j,(k),uc,(k))

(17)

h(•k)[x̂i] denotes an intermediate hybrid belief-state, based on transition
probabilities only. Hybrid estimation determines for each x̂j,(k−1) at the previous
time-step k − 1 the possible transitions, thus specifying candidate trajectories
to be tracked by the filter bank. Filtering provides the new hybrid state x̂i,(k)

and adjusts the hybrid belief-state h(k)[x̂i] based on the hybrid probabilistic
observation function PO(yc,(k)|x̂i,(k),uc,(k)).

The next three subsections complete the story by outlining techniques for
calculating the hybrid probabilistic transition function PT and the hybrid prob-
abilistic observation function PO, as well as providing a tractable algorithmic
formulation for hybrid estimation.

5.3 Hybrid Probabilistic Transition Function

A mode transition mj → mi involves transitions 〈τlη, clη〉 ∈ Tl for each com-
ponent Al of the cPHA4. Given that the automaton component is in mode
xdl,(k−1) = mj , the probability PT lη that it will take a transition to x′dl,(k−1) =
mi is the probability that its guard clη is satisfied times the probability of tran-
sition τlη(mi), given that the guard clη is satisfied. We assume independence
of component transitions, therefore, we obtain PT by taking the product of all
components’ PT lη.

For a PHA Al, the guard clη is a constraint over continuous variables xcl and
the discrete command inputs udl. The guard clη is of the form [b− ≤ qclη(xcl) <

4 For symmetry, we also treat the non-transition mj → mj of a PHAAl as a transition.
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b+]∧qdlη(udl), where qclη(·) is a nonlinear function, b− and b+ denote two bound-
ary values, and qdlη(·) is a propositional logic formula. Assuming independence of
xcl,(k) and udl,(k) allows us to determine both constraints separately as follows:
The probability P (cclη) that the guard inequality b− ≤ qclη(xcl) < b+ is satis-
fied, can be expressed by the volume integral over the multi-variable Gaussian
distribution of the continuous state estimate {x̂cl,Pl} for component Al

P (cclη) =
|Pl|−1/2

(2π)n/2

∫
· · ·

∫
Q

e−(z−x̂cl)
T P−1

l (z−x̂cl)/2dz1 . . . dzn (18)

where Q ⊂ IRn denotes the domain of states that satisfy the guard inequal-
ity. Our current implementation calculates this cumulative distribution using a
Monte Carlo[15] approach that checks the guard inequality on a sufficiently large
set of normally distributed state samples with mean x̂cl and covariance matrix
Pl. An open research issue is to compute P (cclη) more efficiently, through a
combination of restricting and approximating the function qclη.

The discrete constraint qdlη(ud) has probability P (cdlη) = 1 or P (cdlη) = 0,
according to its truth value. The assumed independence of the continuous state
and the discrete input leads to

PT lη = P (cclη)P (cdlη)τlη(mi) (19)

5.4 Hybrid Probabilistic Observation Function

The extended Kalman filters calculate state estimates for the continuous state
x̂c,(k). This involves calculating the measurement residual r(k) (Eq. 6) and its
associated covariance matrix S(k) (Eq. 8). From this estimate we can calculate
PO(y(k)|x̂(k),uc,(k)) using the standard relation for the multi-variable Gaussian
probability density function without normalization5:

PO(y(k)|x̂(k),uc,(k)) = e−rT
(k)S

−1
(k)r(k)/2 (20)

5.5 Tracking the Most Likely Trajectories

Tracking all possible trajectories of a system is almost always intractable because
the number of trajectories becomes too large after only a few time steps. As an
example consider a cPHA with 10 components. The components have on average
5 modes and each mode has on average 3 successor states. This cPHA represents
an automaton with 510 ≈ 10000000 modes and hybrid estimation, as formulated
above, lead to (310)k trajectories to be tracked at time-step k. Fig. 4 visualizes
this blowup for a single hybrid estimation step.

5 We omit the normalization term
|S(k)|−1/2

(2π)n/2 as our any-time any-space estimation algo-

rithm requires 0 ≤ PO ≤ 1. Normalization is already ensured by Eq. 17. Furthermore,
[7] explicitely suggest this change based on the observation that the normalization
term has nothing to do with the identification of the correct mode.
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Fig. 4. Hybrid Estimation at time-step k with single estimate x̂(k−1).

The problem of exponential growth is a well known drawback of full hy-
pothesis multi-model estimation and lead to the development of approximative
schemes, such as the generalized pseudo-Bayesian and the interacting multiple
model algorithm[8] and adaptive extensions[9,16]. These algorithms slow the ef-
fect of the exponential growth by merging the estimates. However, in general
they are not effective enough to cope with many hybrid estimation problems
as the number of hypotheses at each time-step is still beyond their scope (e.g.
310 ≈ 60000 in the “small” example above).

We address this problem with an any-time, any-space solution that dynami-
cally adjusts the number of trajectories tracked in order to fit within the proces-
sor’s computational and memory limits. The Livingston system[1] successfully
utilized such a focusing scheme for model-based diagnosis and configuration man-
agement. This approach succeeds because a small subset of the set of possible
modes of a system is typically sufficient to cover most of the probability space.
For hybrid estimation we adopt an analogous scheme that enumerates a focused
subset of the possible trajectories by framing hybrid estimation as beam search
that maintains the fringe X(k) = {x̂1,(k), . . . , x̂m,(k)} of the m most likely tra-
jectories. Key to this approach is an any-time, any-space enumeration scheme
that provides, at each time-step k, the focussed subset of most likely states
{x̂1,(k), . . . , x̂m,(k)}, without having to calculate a prohibitively large number of
hybrid state estimates x̂i,(k).

In our modeling framework, we assume that the mode transitions of the sys-
tem’s components are independent of each other. Therefore, we consider possible
mode transitions for a hybrid estimate x̂i,(k−1) and the discrete (command) in-
put u(k−1) componentwise. This allows us to formulate enumeration as best-first
search, using A* (Fig. 5 shows the corresponding search tree for a fringe size of
1). Best-first search expands search tree nodes in increasing order of their utility
f(n). We define the utility of a node n as f(n) = f1(n) + f2(n), where

f1(n) = − ln(h(k−1)[x̂j ])−
ν∑

i=1

ln(Pi), Pi =
{
PT i i = 1, . . . , l
PO i = l + 1 (21)
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Fig. 5. Search Tree for Hybrid Estimation at time-step k

denotes the cost of the path from a root node (state estimate x̂j,(k−1) with
initial cost − ln(h(k−1)[x̂j ])) to a node within the search tree (e.g. considering
transitions in components 1, . . . , ν, whenever ν ≤ l). f2(n) estimates the cost
for the best path from node n to a goal node by considering the best transitions
for the remaining components, more specifically6

f2(n) =
l∑

i=ν+1

− ln(max
η

PT iη). (22)

The search is optimal and complete, as f2(n) never overestimates the cost to
reach a goal (i.e. f2 is a admissible heuristic). It provides, at each time-step k,
the most likely successor states {x̂1,(k), x̂2,(k), . . . } of the fringe X(k−1) together
with the un-normalized hybrid belief h̄i,(k) = h(•k)[x̂i]PO(yc,(k)|x̂i,(k),uc,(k)) in
consecutive order.

6 Example Continued

We demonstrate hybrid mode estimation for two operational conditions of the
BIO-Plex system: (1) detection of crew entry into the PGC (mp4 → mp5) and
(2) a failure of the lighting system that reduces the light intensity in the PGC
by 20% (ml2 → ml4). The dynamic behavior of the CO2 concentration (in ppm)
at the modes mp4 and mp5 with operational lighting system (ml2), for instance,
is governed by (Ts = 1 [min]):

xc1,(k) = uc,(k−1)

xc2,(k) = xc2,(k−1) + 11.8373[f(xc,(k−1)) + xc1,(k−1) + hc,(k−1)]
yc1,(k) = xc1,(k)

yc2,(k) = xc2,(k)

f(xc,(k)) = −1.4461 · 10−2
[
72.0− 78.89e−

xc,(k)
400.0

]
,

6 The maximum value for the probabilistic observation function (PO = 1) can be
omitted as ln(1) = 0.
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where hc accounts for the exhaled CO2 (mp4 : hc = 0,mp5 : hc = 0.3). The noisy
measurement of the controlled CO2 concentration (black) and its estimation
(red/gray) are given in the left graph of Fig. 6. The crew enters the PGC at time
step 900 and cause an adaption of the gas injection. Hybrid mode estimation
filters this noisy measurement and detects the mode change immediately at
k = 901. The light fault is then injected at time-step 1100 and diagnosed 17
time-steps later. The graphs to the right in Fig. 6 show the mode of the leading
trajectory estimate for the plant growth chamber and the lighting system.
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Fig. 6. Estimation results for BIO-Plex scenarios

7 Implementation and Discussion

The implementation of our hybrid estimation scheme is written in Common
LISP. The hybrid estimator uses a cPHA description and performs estimation,
as outlined above. Although designed to operate online, we used the estimator
to determine the hybrid state of the PGC based on input data gathered from
simulating a subset of NASA JSC’s CONFIG model for the BIO-Plex system.

Optimized model-based estimation schemes, such as Livingstone[1], utilize
conflicts to focus the search operation. A conflict is a (partial) mode assign-
ment that makes a hypothesis very unlikely. The decompositional model-based
learning system, Moriarty[17], introduced an algebraic version of conflicts, called
dissents. We are currently reformulating dissents for hybrid systems and inves-
tigate their incorporation in the search scheme. This will lead to an overall
framework for hybrid estimation that unifies our previous work on Livingstone
and Moriarty.

A novel capability of discrete model-based diagnosis methods is the ability
to handle unknown modes where no assumption is made about the behavior of
one or several components of the system. We are in the process of incorporating
this novel capability of model-based diagnosis into our estimation scheme by



266 Michael W. Hofbaur and Brian C. Williams

calculating partial filters. The filters are based on causal analysis of the specified
components and their interconnection within the cPHA model. Incorporating
unknown modes provides a robust estimation scheme that can cope with un-
modeled situations and partial information.
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