
Managing Communication Limitations
in Partially Controllable Multi-Agent Plans

John Stedl and Brian Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar St. Room 32-G275, Cambridge, MA 02139

stedl@mit.edu, williams@mit.edu
Keywords: temporal reasoning, uncertainty, multi-robot systems

ID number: 694

Abstract

In most real world situations, cooperative multi-agent
plans will contain activities that are not under direct
control by the agents. In order to enable the agents to
robustly adapt to this temporal uncertainty, the agents
must be able to communicate at execution time in or-
der to dynamically schedule their plans. However, it
is often undesirable or impossible to maintain commu-
nication between all the agents, throughout the entire
duration of the plan.
This paper introduces a two-layer approach that clusters
the tightly coordinated portions of a multi-agent plan
into a set of group plans, such that each group plan only
requires loose coordination with one another. The key
contribution of this paper is a polynomial time, Hierar-
chical Reformulation (HR) algorithm that combines the
properties of strong and dynamic controllability, in or-
der to decouple the partially controllable group plans
from one another, while enabling the tightly coordi-
nated activities within each group plan to be scheduled
dynamically.

Introduction
The domain of plan scheduling and execution for multiple
robots cooperating to achieve a common goal has applica-
tions in a wide variety of fields such as cooperative obser-
vations of Earth orbiting satellites. These applications of-
ten require tight temporal coordination between the agents,
which must also be able to robustly adapt to uncontrollable
events.

Previous work on dispatching of temporally flexible
plans (Muscettola, Morris, & Tsamardinos 1998) (Morris,
Muscettola, & Vidal 2001) provided a framework for robust
execution of temporal plans. Theexecutiveconsists of are-
formulatorand adispatcher. The reformulator is an off-line
compilation algorithm that prepares the plan for efficient ex-
ecution. The dispatcher is an online dynamic scheduling al-
gorithm that exploits the temporal flexibility of the plan, by
waiting to schedule events until the last possible moment.
In this least commitment execution strategy, the dispatcher
schedules and dispatches the tasks simultaneously, rather
than scheduling the tasks prior to execution. This dynamic
execution strategy enables the agent to adapt to runtime un-
certainty, at the cost of some online constraint propagation.
Specifically, the dispatcher must propagate the execution
times of each event, through local temporal constraints, to-
wards future events, every time an event is executed. This

propagation enables the dispatcher to select consistent ex-
ecution times for these future events. This work, however,
did not tackle the case of a distributed dispatcher for multi-
robot plans, for which the challenge resides in the fact that
the agents must be cope with communication limitations at
execution time.

Previous work on execution ofSimple Temporal Networks
with Uncertainty(STNUs) (Vidal & Fargier 1999) (Morris,
Muscettola, & Vidal 2001) provided methods to achieve ro-
bust execution of plans that contain uncontrollable events.
STNUs are an extension of Simple Temporal Networks
(STNs) (Dechter, Meiri, & Pearl 1995), in which only some
of the events (ortimepoints) in the plan are fully controllable
(or executable), while othercontingenttimepoints cannot be
scheduled directly, but rather are observed during plan ex-
ecution. Links between pairs of timepoints impose flexible
temporal constraints, which express temporal coordination
in the plan (in the form ofrequirementlinks), and model the
duration of uncontrollable activities (in the case ofcontin-
gentlinks).

(Vidal & Fargier 1996) defined a set of controllability
properties for STNUs that determines under what conditions
an agent can guarantee it successful execution of the plan.
Informally, an STNU is controllable if there exists a consis-
tent strategy for scheduling the executable timepoints of the
plan, for all possible durations of the uncontrollable activi-
ties (subject to the constraints on the contingent and require-
ment links). There are three primary levels of controllabil-
ity; a network isstrongly controllableif there exists a viable
execution strategy that does not depend on the outcome of
the uncontrollable durations. In this case, it is possible to
statically schedule all executable timepoints beforehand. A
network isdynamically controllableif there exists a viable
execution strategy that only depends on the knowledge of
outcomes of past uncontrollable events. Finally, a network
is weakly controllableif there is a viable execution strat-
egy, given that we know the outcomes for all the uncontrol-
lable events beforehand. Furthermore, strong controllability
implies dynamic controllability which in turn implies weak
controllability (Vidal & Fargier 1996).

(Morris, Muscettola, & Vidal 2001) presented a polyno-
mial time dynamic controllability algorithm that both checks
if a plan is dynamically controllable and reformulates the
plan for efficient dynamic execution. (Vidal & Fargier
1999) introduced a polynomial time algorithm to check for
strong controllability. Waypoint controllability, introduced

by (Morris & Muscettola 1999), combines the properties of
strong and weak controllability. In this framework, a sub-
set of the timepoints, designated as waypoints, are sched-
uled prior to knowing the uncertain durations; the remaining
timepoints are scheduled once all of the uncertainty in the
plan has been resolved. This provides a means to partition
a partially controllable plan; however, it does not enable the
agents to adapt to the uncertainty at execution time.

In the area of collaborative multi-agent planning and
scheduling, (?) presented a Temporal Decoupling Algorithm
that provides a means to decouple a Simple Temporal Net-
work by adding additional constraints to the network

This paper presents a novel hierarchical reformulation al-
gorithm that mitigates the need for communication at exe-
cution time between loosely coupled agents, while enabling
tightly coupled agents to dynamically adapt to uncertainty.
In particular, the algorithm preserves the flexibility in places
where tight coordination is required and fixes the schedule
in places where the agents only require loose coordination.

Our two layer approach is similar to waypoint controlla-
bility; however, in this paper we seek a property that com-
bines strong controllability with dynamic controllability in-
stead of weak controllability. Specifically, in this paper we
show a subset of the plan, i.e. the start of each group plan,
can be scheduled off-line without knowing the uncertain du-
rations, while the remaining portions (the rest of the group
plans) can be scheduled dynamically.

Overall Approach
In this paper, we divide the full multi-agent plan into a set of
tightly coordinated group plans. We assume that the agents
that participate in these group plans are free to communicate
with one another. These group plans are loosely coupled via
a higher level mission plan. The mission plan uses a simpli-
fied abstraction for each group plan that hides the details of
the group plan. This encapsulation enables the reformula-
tion algorithm to reason about the overall mission, without
getting into the internal details of the group plans.

Our overall approach is presented in Figure 1.The multi-
agent plan is formulated as a two-layer Figure 1a. The HR
algorithm, converts the two-layer plan into a set of decou-
pled, minimal dispatchable group plans. The HR algorithm
decouples each group plan by applying to the a variant of the
strong controllability algorithm (Vidal 2000)(Figure 1b), in
the mission plan and applies the dynamic controllability al-
gorithm (Morris, Muscettola, & Vidal 2001) to each group
plan (Figure 1c). Finally, we apply an edge trimming al-
gorithm (Tsamardinos, Muscettola, & Morris 1998) to each
dispatchable group plan (Figure 1d), in order to remove the
redundant constraints from the dispatchable plan.

First we introduce our two-layer plans. Then, we present
the HR reformulation algorithm for two-layer plans. We end
with a discussion of the HR algorithm.

Formal Definition of Two-Layer Plans
In this section we introduce a two-layer multi-agent plan that
consists of a high level mission plan, and a set of lower level
group plans, and a mapping between the group activities in
the mission plan and group plans.

The mission plan,M , specifies the coordination require-
ments between a set of group activitiesA, where each group

Scheduled dynamically

to adapt to uncertainty

z

Two-Layer Multi-Agent Plan Decoupled Group Plans

at Mission Layer
group1-act

group-act2

group-act3

group-act1

group-act2

group-act3

Multi-Agent Plan

(b) Decoupling via

Strong

Controllablity

(c
) R
ef
or
m
ul
at
io
n
via

Dy
na
m
ic
C
on
tro
lla
bi
lit
y

Al
go
rit
hm

(a) Group

Modeling

Scheduled statically to

remove the need for

communication

Dispatchable Plan at

Group Layer

(d) Edge Trimming

Minimal Dispatchable Group Plan

group plan1 group plan2 group plan3

z

mission plan

group plans

Figure 1: Hierarchical Reformulation Algorithm Overview

activity, ai ∈ A, is mapped to a unique group plan,gi ∈ G,
via the mapping function,B. The contingent group activity,
ai contains of a start time,si, and end timeei. The mis-
sion plan describes the high level structure of the mission.
It specifies a set of temporal constraints on a set of abstract
group activities. The group activities are a simplified repre-
sentations of the detailed group plan.

The groups are in charge of scheduling their own plans,
therefore, with respect to the mission plan, the duration of
the group activities are uncontrollable. In order to main-
tain maximum flexibility in the group plans, the mission plan
models each group plan as a contingent link that is bounded
by the feasible duration of the group plan.

The group plans specify the details of each group activity.
Specifically, each group plan contains a set of activities to be
executed the agents in that group and a set of the temporal
constraints on those activities.

The two layer, partially controllable, multi-agent plans
with communication constraints are formalized as a two-
layer Multi-Agent Temporal Plan Network with Uncertainty
(MTPNU). A TPN is a set of activities to be performed,
each of which includes a start and end time, together with
a set of temporal constraints that specify the valid activity
start and end times for each activity, specified as a simple
temporal constraint. Hence a TPN is a generalization of
a STN consisting of a set of activities A, and a mappings,
T+ : A → N (+), andT− : A → N−, mapping the start
and end times of each activity to the timepoints in the STN.
A TPN under uncertainty (TPNU) is analogous, where the
temporal constraints are of the plan expressed as a STNU.
In this case, the duration of each activity is either control-
lable and expressed as a requirement link, or uncontrollable
and expressed as a contingent link. A multi-agent TPNU
(MTPNU) extends the TPNU. A MTPNU introduces a set
of agents, Q, and a distribution,D : N → Q, mapping the
timepoints, N, to an agent, Q.

A two-layer MTPNU extends the definition of the
MTPNU. The two-layer MPTNU is the tuple< M, G, B >,
whereM is the mission plan andG is a set of group plans,
andB is a function mapping the contingent group activities
A in the mission plan to a group plan. Both the mission plan
and group plans are specified as a MPTNU.

The mission plan,M =< Γ, A, T,Q, D,Π, Ψ >, where:

• Γ : is theSTNU =< N,E, l, u, C > that specifies the
temporal constraints of the plan.

• A: is a set of group activities

• T : consists of two functionsT+ : A → N , andT− :
A → N , which map the start time and end time of each
group activity to a timepoint, respectively.

• Q: is a set of groups.

• D: is a group distribution function,D : N → Q, mapping
each timepoint in the mission plan to a group.

A group plang ∈ G is a tuple< Γ, A, T,Q, D, Π >,
where:

• Γ : is a STNU =< N,E, l, u, C > that specifies the
temporal constraints of the group plan.

• A : is a set of activities.

• T : is a mappingT+ : A → N , andT− : A → N ,
which map the start time and end time of each activity to
a timepoint inΓ.

• Q : is a set of agents.

• D : is a distribution which is a mappingD : N → Q that
maps each timepoint in the group plan to an agent in Q.

We assume that the agents within each group plan are able
freely communicate with other agents in their group plan;
however, communication in not guaranteed between agents
in different groups.

Hierarchical Reformulation Algorithm
In this section, we present our novel Hierarchical Reformu-
lation (HR) algorithm. The HR algorithm is a centralized re-
formulation algorithm that transforms a two-layer plan into a
set of decoupled, minimally dispatchable group plans. The
HR algorithm enables each group to dynamically execute
their plan independently.

The HR algorithm operates on both layers of the two-layer
plan. The dynamic controllability algorithm operates on the
group plans, whereas, the decoupling algorithm, based on
the strong controllability algorithm, operates on the mission
plan.

The pseudo-code for the HR algorithm is shown in Fig-
ure 1. The algorithm takes in a two-layer MTPNU, P =
〈M,G, B〉, consisting of a mission plan,M , and a set of
group plans,G, and mappingB and generates a set of de-
coupled, dispatchable MTPNUs. The algorithm returns true
if the reformulation succeeds; otherwise, false.

The HR algorithm may fail for several reasons. The HR
algorithm fails if either the mission plan or group plans
are temporally inconsistent. Furthermore, the HR algorithm
fails if the group plans are not dynamically controllable or if
the mission plan is not strongly controllable.

Consider the two-layer plan illustrated in Figure 2. The
mission plan (shown in Figure 2a) contains two group activ-
ities: group act1 and group act2. The corresponding group
plans are shown Figure 2b,c. Both of the group plans consist
of three timepoints and one contingent activity.

Lines 1-3 of the HR algorithm, shown in 1, calls the UP-
DATE GROUPACTIVITIES function and returns false if
the update reveals a temporal inconsistency in any of the
group plans. This function is called at the beginning of the

A
10

B

C

0

group act1

1

0

D
5

-1

8
0

group act2

Mission Plan

A
5

B

act1

-2
C

5

0

A
3

B

act2

0 C
1

0

(a) (b)

(c)

Group Plan1

Group Plan2

Figure 2: (a) The simple two-layer mission plan, (b) group
plan1 (c) group plan2.

Alg. 1 HIERARCHICAL REFORMULATION(P)
1: consistent← UPDATE GROUPACTIVITIES(G,M)
2: if ¬ consistent then
3: return FALSE
4: end if
5: consistent← COMPUTEAPSPGRAPH(M)
6: if ¬ consistent then
7: return FALSE
8: end if
9: UPDATE GROUPPLANS(G,M)

10: for eachg ∈ G do
11: controllable← DC(g)
12: if ¬ controllable then
13: return FALSE
14: end if
15: end for
16: UPDATE GROUPACTIVITIES(G,M)
17: success← DECOUPLE(M ,G)
18: returnsuccess

Alg. 2 UPDATE GROUPACTIVITIES(M ,G)
1: for each group plang ∈ G do
2: s← start timepoint ofg
3: if ¬ BELLMAN FORD SSSP(g,s) then
4: returnFALSE
5: end if
6: ub← max(d[n] for eachn ∈ N[g])
7: BELLMAN FORD SDSP(g,s)
8: lb← -min(d[n] for eachn ∈ N[g])
9: groupactivity ← GET GROUPACTIVITY(g)

10: UPDATE EDGE(M ,START[m], END[m],ub)
11: UPDATE EDGE(M ,END[m], START[m], -lb)
12: end for
13: returnTRUE

A
10

B

C

0

group act1

1

-2

D
4

-1

8
0

group act2

Figure 3: The UPDATEGROUPACTIVITIES function
updates the edges associated with the group activities in the
mission plan. AB is updated to 9 and CD is updated to 4.

HR algorithm, in order to synchronize the mission plan with
the constraints specified in the group plans.

The UPDATEGROUPACTIVITIES function first com-
putes the feasible duration of each group plan. Next, it
updates the contingent timebounds of the corresponding
contingent bounds in the mission plan. The pseudo code
for the UPDATEGROUPACTIVITIES function is shown
2. The feasible durations are computed by calling two
Bellman-Ford Single-Source Shortest-Path (SSSP) compu-
tations (Dechter, Meiri, & Pearl 1995) (Cormen, Leiserson,
& Rivest 1990). If the SSSP computation detects an in-
consistency in any of the group plans, the algorithm returns
false, otherwise true.

For example, the two-layer plan shown in Figure 2.
For group plan1, the maximum SSSP distance is 10 for
the path ABC, and the minimum SDSP is -2 for the
path CBA. The UPDATEGROUPACTIVITIES function
leaves the distance of the contingent edge AB in the mis-
sion plan at 10; however, the distance of the contingent
edge BA is updated to -2. For group plan2, the max-
imum SSSP distance is 4 for the path ABC, and the
minimum SDSP is 0 for the path CBA. For this group
plan, the UPDATEGROUPACTIVITIES function updates
the distance of the mission plan’s contingent edge CD to
4, while the contingent edge DC remains at -1. Both
group plans are temporally consistent; therefore, the UP-
DATE GROUPACTIVITIES function returns true. Fig-
ure 3 shows the updated mission plan after calling the UP-
DATE GROUPACTIVITIES in the HR algorithm.

Lines 4-7 of the HR algorithm computes the All-Pairs
Shortest-Path graph (APSP-graph) of the mission plan’s dis-
tance graph (returning false if the mission plan is tempo-
rally inconsistent). Then the HR algorithm updates the
timebounds of the group plans if the edges associated with
the group activities are tightened by the APSP-graph. The
COMPUTEAPSPGRAPH function in Line 4 computes the
APSP-graph, given the mission plan’s distance graph. This
APSP-graph is maintained separate from the mission plan’s
distance graph. The APSP computation is performed by
either Johnson’s algorithm or Floyd-Warshall’s algorithm
(Cormen, Leiserson, & Rivest 1990).

The APSP-graph is computed for two purposes. First, it
checks if the mission plan is temporally consistent. If the
mission plan is inconsistent, then the algorithm returns false

A
9

B

C

0

group act1

1

-2

D4

-1

8

group act2

-1
7 3

5
-1

A
5

B

act1

-2
C

5

0

Group Plans

A
3

B

act2

0 C
1

0

group plan1

group plan 2

APSP-graph

9
(a)

(c)

(d)

A
9

B

C

0

group act1

1

-2

D
4

-1

8
0

group act2

Mission Plan

(b)

Figure 4: (a) mission plan’s APSP-graph (b) Updated mis-
sion plan (c) Updated group plan 1 (d) Updated group plan
2.

in Line 6. Second, the APSP-graph is used to deduce any
tightenings on the group activities implied by the constraints
in the mission plan’s distance graph. If the edges in the
APSP-graph, corresponding to the group activity edges, are
tightened, then the HR algorithm updates the correspond-
ing group plan. The group plans are updated by calling the
UPDATE GROUPPLANS function, in Line 7 of the HR al-
gorithm.

Alg. 3 UPDATE GROUPPLANS(M ,G)
1: for each group activitym ∈ Groupactivities[M] do
2: s← START(m)
3: e← END(m)
4: ub← M.APSPgraph[s, e]
5: lb← -M.APSPgraph[e, s]
6: UPDATE EDGE(M ,s,e,ub)
7: UPDATE EDGE(M ,e,s,−lb)
8: g ← GROUP(m)
9: s← START(g)

10: e← END(g)
11: UPDATE EDGE(g,s,e,ub)
12: UPDATE EDGE(g,e,s,−lb)
13: end for

The pseudo code for the UPDATEGROUPPLANS
function is shown in Figure 1-24. This function loops
through each group activity in the mission plan and updates
the bounds in the corresponding group plan.

For example, the mission plan’s APSP-graph is shown
in Figure 4. The APSP-graph edge AB is smaller than
the edge AB in the mission plan’s distance graph. This
edge AB is associated with the upper bound on the group
act1. The edge AB is tightened from 10 to 9. The UP-
DATE GROUPPLANS function updates the mission plan’s
distance graph accordingly, as shown in Figure 4b. The
UPDATE GROUPPLAN function then updates the group
plans. The updated group plans are shown in Figure 4(c-d).
The UPDATEGROUPPLANS function adds the edge AC
= 9 to group plan1, corresponding to the edge AB = 9 in
the mission plan, and adds the edge CA = -1 to group plan2,
corresponding to the edge DC = -1 in the mission plan. Note
that the edge DC = -1 was present in the original mission
plan, whereas the edge AB = 9 was derived by the APSP-
graph.

After the group plan’s timebounds are updated, the HR
algorithm calls the dynamic controllability (DC) algorithm
(Morris, Muscettola, & Vidal 2001), in order to reformulate
each group plan into a minimal dispatchable group plan, on

Line 9. If this reformulation succeeds, then the group plan
is dynamically controllable and the HR algorithm continues.
However, if the DC algorithm fails (for any group plan), then
the HR algorithm terminates and returns FALSE.

The complete description of the DC algorithm is pre-
sented in (Morris, Muscettola, & Vidal 2001). For now
the reader only needs to understand that the DC algorithm
is a reformulation algorithm that either adds or tightens
the constraints of the group plan. These additional con-
straints may alter the range of feasible durations of the
group plan. If the range of feasible durations of a group
plan is tightened (the lower bound is increased or the up-
per bound is decreased), then the HR updates the edges of
the corresponding group activity by once again calling UP-
DATE GROUPACTIVITIES. This is done in Line 14. Note
that tightening the constraints of the group activities only
serves to remove uncertainty from the mission plan. Thus,
the update performed in Line 14 only serves to make the
decoupling algorithm more likely to succeed.

In our simple example, both of the group plans are dy-
namically controllable. Furthermore, feasible durations of
the group plans are unchanged by the DC algorithm; there-
fore, the UPDATEGROUPACTIVITIES call in Line 14 of
the HR algorithm does not change the mission plan.

In Line 15, the HR algorithm calls the decoupling algo-
rithm on the mission plan. The decoupling algorithm fixes
the schedule for the start of each group plan. If the de-
coupling algorithm succeeds, then the HR algorithm returns
true; otherwise, the HR algorithm returns false.

The Decoupling Algorithm
In this section we describe thedecoupling algorithm,which
temporally decouples each group activity in the mission
plan. The effect of decoupling the group activities in the
mission plan is that each group plan may be scheduled inde-
pendently. The simplest method to perform this decoupling
is to use a slight variation of the strong controllability al-
gorithm, introduced by (Vidal 2000). Figure (?) shows the
decoupling procedure. First, the strong controllability algo-
rithm decouples the executable timepoint from the contin-
gent timepoints, by making all requirement edges, connect-
ing contingent timepoints, dominated (redundant). Next, the
decoupling algorithm selects a consistent assignment to the
executable timepoints in the mission plan.

This decoupling algorithm operates on the mission plan,
in order to generate a fixed schedule for the start timepoint of
each group activity. These fixed start times are then passed
to their respective group plans. The resulting group plans
can be scheduled independently. The decoupling builds
upon the strong controllability checking algorithm (Vidal &
Fargier 1999). The decoupling algorithm transforms the dis-
tance graph of the mission plan using the strong controllabil-
ity transformation rules. If this transformed graph is consis-
tent, the decoupling algorithm generates a schedule for the
timepoints of the transformed graph. Note that any consis-
tent schedule would work; however, we elect to schedule the
group activities as early as possible. This schedule is used
to fix the time of the corresponding group plans.

The pseudo-code for the decoupling algorithm is shown in
Figure 6. The algorithm takes in a two-layer plan, consisting
of a mission plan, M, and a set of group plans, G and fixes
the schedule for the mission plan.

group2.drive_to(B)

e
2

e
3

group3.drive_to(C)

[5,15]

[5,10]

e
1

[0,30]

[5,15]

[10,20]

[0,15]

[0,15]

group3.drive_to(B)

e
2

e
3

group3.drive_to(C)

[5,15]

[5,10]

group1.drive_to(A)

e
1

[5,15]

[10,20]

[0,15]

[0,15]

constraints relating

contingent timepoints

are transformed into

constraints relating

executable timepoints

A new set of

requirement links

between executable

timepoints

start timepoint

of mission

(a) (b)

[5,15]

[10,25]

s
1

s
2

s
3

z
s
2z

s
1

s
3

group2.drive_to(B)

e
2

e
3

group3.drive_to(C)

[5,15]

[5,10]

group1.drive_to(A)

e
1[10,20]

(c)

s
2z

s
1

s
3

T
z
 = 0

T
s1
= 10

T
s2
= 5

T
s3
= 15

requirements on

contingent timepoints

group1.drive_to(A)

[0,30]

fixed schedule for

executable timepoints

requirement constraint no

longer needed

Figure 5: (a) The original mission plan containing require-
ment edges connecting contingent timepoints. (b) The mis-
sion plan after the contingent timepoints are decoupled by
the strong controllability algorithm. Note, all requirement
edge connecting contingent timepoints are removed. (c) The
decoupling algorithm fixes the start time for each executable
timepoints. This eliminates the need to propagate schedul-
ing times during execution.

The decoupling algorithm runs in polynomial time. Lines
1-13 run in the same time as the strong controllability al-
gorithm (i.e. O(NE)). In Lines 14-20, the decoupling al-
gorithm loops through each timepoint and fixes the start
time of each group plan. Using a simple lookup, the
GET GROUPACTIVITY and GET GROUPPLAN run in
time linear in the number of group plans. Therefore, Lines
14-20 run in O(NG), whereG is the number of group plans.
The number of group plansG is less than the number of
edges in the distance graph; therefore, the decoupling algo-
rithm is dominated by the Bellman-Ford SDSP computation.
The running time of the decoupling algorithm is O(NE).

For our simple example, the decoupling algorithm suc-
ceeds. The decoupling algorithm is applied to the updated
mission plan, as shown in Figure 14(b). The distance graph
of the mission plan is converted into the transformed STN,
as shown in Figure 15(a). The decoupling algorithm first
copies over the executable timepoints, A and C, then it trans-
forms the edges, using the strong controllability transfor-
mation rules. The decoupling algorithm copies over the re-
quirement edges AC = 1 and CA = 0 from the mission plans
distance graph. The edge CB = 8 is transformed into an edge
CA = -1, which relaxes the edge CA in the transformed STN.
The edge BC = 0 is transformed into an edge AC = 2, which
is greater than the existing edge, so there is no change in the
transformed STN. Finally, the decoupling algorithm com-
putes the earliest execution time for each timepoint, using
an SDSP computation. The earliest execution time for A = 0
and B = 1, and, therefore, the start timepoint associated with
group plan1, is fixed at 0, and the start timepoint for group
plan2 is fixed at 1. The decoupled group plans are shown in
Figure 6(b,c).

Discussion
After running the HR algorithm on the two-layer MTPNU,
each group is able to efficiently execute the plan by using

Alg. 4 DECOUPLE(M ,G) Input : A mission planM and a
set of group plansG. Effects : Decouples the group plans
by fixing the start time of each group plan.Output : True
mission plan is strongly controllable; otherwise,False.

1: Gm ← get distance graph of mission plan
2: copy all executable timepoints ofGm to T
3: initialize all edges of T to NIL
4: for each requirement edge (u,v) ∈ E[Gm] do
5: transform the edge (u,v) using SC transformation

rules to and edge (u′,v′) with d(u′,v′) = x
6: UPDATE EDGE(T ,u′,v′,x)
7: end for
8: s← start timepoint ofT
9: consistent← BELLMAN FORD SDSP(T ,s)

10: if ¬ consistent then
11: returnFALSE
12: else
13: for each timepointn ∈ N[T] do
14: m← GET GROUPACTIVITY(n)
15: if m ¬ NIL then
16: g ← GROUPPLAN(m)
17: fix start time ofg to -d[n] as computed by line

10
18: end if
19: end for
20: end if
21: returnTRUE

A

C

-1 1

A
5

B

act1

-2
C

5

0

A
3

B

act2

0 C
1

0

group plan1

group plan 2

9(b)

(c)

-1

(a)
T = 0

T = 1

Figure 6: (a) The transformed STN (b) The start time of
group plan1 is fixed at T = 0 (c) The start time of group
plan2 is fixed at T = 1.

the dispatching algorithm presented by (Morris, Muscettola,
& Vidal 2001).

The HR algorithm is a polynomial time algorithm. It
gains efficiency by dividing the reformulation problem into
a set of smaller sub-problems.

Consider the runtime complexity of the HR algorithm. In
this discussion, we use the following notation.
• G = number of group plans.
• Nm = number of timepoints in the mission plan.
• Em = number of edges in the mission plan.
• Ng = maximum number of timepoints in any group plan.
• Eg = maximum number of edges in any group plan.

In Line 1, HR calls the UPDATEGROUPACTIVITIES
function. The UPDATEGROUPACTIVITIES function
loops through each group plan and the time of each loop
is dominated by the Bellman-Ford algorithm. There-
fore, the UPDATEGROUPACTIVITIES runs in O(G ∗
Ng ∗ Eg). Lines 2-3 of the HR algorithm run in con-
stant time. In Line 4, the HR algorithm calls COM-
PUTE APSPGRAPH. The Floyd-Warshall algorithm is
used, which runs in (N3

m). Lines 5-6 run in constant time.
Line 7 calls the UPDATEGROUPPLANS function. The
UPDATE GROUPPLANS function loops through each
group activity and each loop is performed in constant time.
Therefore, the UPDATEGROUPPLANS runs in O(G)
time. Lines 8-13 of the HR algorithm loop through each
group plan and calls the DC algorithm.

The time complexity of the DC algorithm is polynomial
(Morris, Muscettola, & Vidal 2001) however, experimental
results exhibit a running time of O(N3

g). Given this, the run-
ning time of Lines 8-13 is experimentally shown to be O(G∗
N3

g). Line 14 calls the UPDATEGROUPACTIVITIES
function. Finally, in Line 15, the HR algorithm calls DE-
COUPLE, which runs in O(G ∗Ng) time.

Adding the terms together, we get an expression for the
running time of the HR algorithm as O(G∗Ng∗Eg) + O(N3

m)
+ O(G) + O(G ∗ N3

g) + O(G ∗ Ng) + O(1), which can be
simplified to O(G ∗ N3

g + N3
m). TheN3

g term is derived by
an All-Pairs Shortest-Path (APSP) computation, applied to
the group plan used in the DC algorithm. TheN3

m term is
due to the APSP computation on the mission plan.

The HR algorithm, presented in this paper, is unique in
its ability to cope with both communication limitations and
temporal uncertainty, by combining properties of strong and
dynamic controllability. We believe this paper lays out a
framework that will enable multi-agent systems to manage
communication limitations in a pragmatic way.

References
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. Cambridge, MA: MIT Press.
Dechter; Meiri; and Pearl. 1995. Temporal constraint new-
works. InArtificial Intelligence, 61–95.
Morris, P. H., and Muscettola, N. 1999. Managing tempo-
ral uncertainty through waypoint controllability. InIJCAI,
1253–1258.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. InIJCAI, 494–
502.

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. InPrin-
ciples of Knowledge Representation and Reasoning, 444–
452.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
AAAI/IAAI, 254–261.
Vidal, and Fargier. 1996. Dealing with uncertain durations
in temporal constraint networks dedicated to planning. In
In Proc. of 12th European Conference on Artificial Intelli-
gence (ECAI-96), 48–52.
Vidal, and Fargier. 1999. Handling contingency in tem-
poral constraint networks: from consitency to controllabil-
ities. InJournal of Experimental and Theoretical Artificial
Intelligence, 23–45.
Vidal, T. 2000. Controllability characterization and check-
ing in contingent temporal constraint newtorks. InProc. of
Seveth Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR’2000).

