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ABSTRACT

The first-order necessary conditions of
optimality are extended to include information
about robust design — cost insensitivity to model
inaccuracies and changes in design specification,
as well as the manufacturing tolerances treated in
more traditional approaches. In these extended
conditions, the Lagrangian is formulated as a
tradeoff between cost and cost variability, where
variability is measured as the flatness and
curvature of the objective relative to local
variations in design variables and constraints.
During optimization these conditions allow cost
and robustness to be considered simultaneously
at each iteration.

1. INTRODUCTION

With international competition to produce
- quality products with rapid time to market, the
field of cost optimization has become
iricreasingly important for both research and
practice. However, in addition to being optimal
with respect to objectives like weight and value,
quality products must be robust, i.e., cost
insensitive to variations in manufacturing,
modeling and performance criteria. A robust

* Authors listed in alphabetical order

design, then, is one that has minimal variation in
performance as the design optimum shifts. In
particular, a robust design is considered one that
is insensitive to pe{turbations in design
variables, design cqnstraints (inequality
constraints), performance criteria (the objective)
and the model itself (equality constraints). Thus,
existing optimization  frameworks must be
reformulated to account for robustness, and in
particular, the Karush-Kuhn-Tucker (KKT)
conditions of optimality must be re-thought.

The work presented here makes several novel
contributions. First,| while most work on
robustness concentrates on minimizing the
likelihood that process variations lead to
infeasible designs (e.g., faulty products) our
approach concentrates on minimizing variations
in cost. Second, our japproach accounts for
sensitivity to constraint variation, resulting from
model approximations, experimental error, and
changes in design specification. Third, our
metric for robustness provides a conservative
estimate of cost deviatioﬁ.:ased on the properties
of the gradient and Hessian norms, corresponding
to the tilt and curvatnré of the objective around
the design solution. Fourth, the conditions
developed here are formulated as the
minimization of a Robust Lagrangian — a weighted
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combination of nominal cost and cost variation of
the traditional Lagrangian. This allows a
simultaneous tradeoff between cost and
robustness which may be utilized concurrently to
make design decisions. Finally, our formulation
of robust optimality as an extension of the
Lagrangian and KKT provides a vehicle for
extending existing numerical optimization codes
to move in optimally robust directions. The
paper develops conditions for robust optimality
by re-examining the KKT conditions, defining
concepts of robustness in terms of the norms of
slope and curvature, and presenting the first
order necessary conditions of robust optimality.

2. EXAMPLE: PASSIVE FILTER NETWORK

Consider the following example taken from Suh
(1990). Figure 1 illustrates a circuit diagram for
a passive filter network where Vg is a time
varying input and Vg is the filter output. The
network is required to obtain a full scale
deflection (x) of x, = 3 inches and a filter cutoff
frequency (f) of f; = 6.84 Hz. The design objective
is to minimize the quality loss (Q) defined by:

Q= .5(ff;)2 + .5(x=x¢ )2.

The frequency is defined as:

£ (Rz +Rg)(Rs + R3) + R3Ry ’

2r(Rz + Rg)R3RC

and the deflection is defined as:

x= RsRgV .
G[(Rz +Rg)(Rg +R3) + R3R,]

Figure 1. PASSIVE FILTER NETWORK.

Figure 2. PLOT OF C VERSUS OBJECTIVE Q,

Two resistors (R; and R3) and the capacitance
(C) can each be adjusted. In this example, R; =
120Q, Rg = 98Q, G = 657.58uV/in., and V = 15mV.
The cost optimal solution minimizing Q has R; =
4780, and R3= 1416Q

Figure 2 shows a plot of C versus Q along the
cost optimal values of R; and R;. Note that
traditional optimization approaches would select
point A as the optimum value of Q, Certainly the
point represents the cost optimal solution;
however, note how steep the curve climbs to the
left of the point. A slight variation away from the
solution, to the left, will significantly change the
value of the objective function. Such a variation
may occur because the models of the physical
components are inaccurate, or the components
vary in performance due to the allowable
tolerance range.

A good design is robust in that it will not vary
significantly away from the solution point due to
slight variations in the physical state. Consider
point B in Figure 2. The curve in the
neighborhood of B is much more flat than that of
point A, and thus is more robust. Note, however,
that the cost of point B is also higher than that of
point A; cost is sacrificed for robustness.

Finally consider point C. This solution is
more costly than A and slightly more sensitive to
variations than B. C is thus a good compromise
between robustness and cost.

In this paper the tradeoffs between cost and
robustness are defined through a mathematical
formulation which extends the Karush-Kuhn-
Tucker (KKT) conditions of optimality. After the
KKT conditions are re-examined, robustness is
defined and incorporated into the optimality
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condition. The resulting first order conditions
can be used to solve problems such as this
circuit, and is illustrated analytically on a
simple objective with properties similar to the
filter.

3. KARUSH-KUHN-TUCKER CONDITIONS

The basis for theories of optimization stem
from the Karush-Kuhn-Tucker (KKT) conditions,
which model the first-order necessary conditions
of optimality. Consider an optimization problem
formulated as:

min; f(x)
s.t.: gx)s 0
h(x) = 0,

where x is a vector of variables, f(x) is the
objective function, g(x) is a vector of inequality
constraints, and h(x) is a vector of equality
constraints. In an unconstrained optimization
problem a necessary condition for optimality of x
is vf(x) =0 (ie., x is stationary). For
constrained optimization the Lagrangian L(x)
extends the objective to account for these
constraints:

L(x) = f(x) + A Th(x) + uT g(x),
g(x) < 0,
h(x) =0.

where A and u are the Lagrange multipliers of the
equality and inequality constraints. The KKT
conditiogs for x being a constrained optimum
(called x "), including constraints on u, is stated
as:

VL(x") = V f(x") + 2 TVh(x") + uT vg(x*) = 0,

. (KKT-1)
u 8i(x) = 0, (KKT-2)
n20. (KKT-3)

.Chapter 8 of Strang (1986) as well as chapter 4
of Papalambros and Wilde (1988) provide concise
developments of these conditions, derived by
Karush (1939), and Kuhn and Tucker (1951). The
conditions state that a point is stationary, and
possibly optimum, if the first derivative of the
objective is zero in any direction feasible with
respect to the equality and inequality

f(x) f(x)

X X

(@) | (b)

Figure 3. TWO EQUALLY OPTIMAL SOLUTIONS WHERE
THE FIRST DERIVATIVE IS ZERO.

f(x) f(x)

AN

(a) (b)

Figure 4. TWO EQUALLY OPTIMAL SOLUTIONS WHERE
THE OBJECTIVE IS BO ED BY THE CONSTRAINTS.

constraints. The second condition states that
either the inequality constraint is equal to zero,
indicating that the constraint is active, or its
corresponding Lagrange multiplier is zero,
indicating that the constraint is inactive. The
third condition states that the Lagrange
multiplier for each inequality constraint must be
positive or zero.

Since KKT is a first order condition, it does
not differentiate between Figures 3a and 3b, and
Figures 4a and 4b. In each figure the minimum is

found at the same value; however, in Figure 3b

cost is less sensitive
minimum than in Figure

to variation about the
3a, and cost in Figure 4b

is less sensitive to variation of the constraint
than in Figure 4a. Thus KKT is not a measure of

robustness.
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4, ROBUST DESIGN

Optimization for nominal cost has been
extensively studied. Nevertheless, this approach
can be quite problematic if the design is slightly
perturbed from the optimum. For example, a
perturbation produced by manufacturing error
may result in a product that fails to meet its
specification — the perturbation results in an
infeasible design. Techniques that reduce the
likelihood that a perturbation produces
infeasibility, such as statistical tolerancing, have
been well examined (see Evans, 1974, 1975a,
1975b).

There are, however, other sources and effects
of design perturbations that are not well
understood. In terms of effects, although a
perturbed design may remain feasible, its cost
might change drastically, where cost may be a
measure of dollar value, weight or performance.
In terms of sources of perturbations, optimization
codes necessarily operate on models and design
specifications that are only approximations of the
physical worid. Discrepancies introduced
through these idealizations may substantially
affect cost. This paper focuses on robustness
conditions that minimize cost variation due to
modeling inaccuracies and manufacturing errors.
Although not explicitly addressed, the conditions
developed here for minimizing cost variation are
complementary to techniques like statistical
tolerancing which reduce the effects of variations
on design feasibility.

Variations produced through manufacturing
errors and environmental noise are modeled as
perturbations Ax to the design variables x.
Intuitively a robust design x is one whose
objective is least sensitive to small variations
about the nominal solution, regardiess of the cost
objective. In the jdeal case the objective is
locaily flat around x .  That is,

f(x* ) = f(x"r + AX),

for laxl < €,, where €, is a vector qf positive
perturbations in the neighborhood of x . Figure
5 shows two designs that are equally robust,
although. not equally cost minimized. One
indicator of cost sensitivity is the "tilt" of the
hyperplane h(x) tangentto fat x ,

h(x*+a x) = f(x*)+VE(x")T ax.

f(x) f(x)

S
o

(a2l
’M& "
LTS

g

Figure 5. TWO EQUALLY ROBUST DESIGNS.

In our robustness metric tilt is meagured
using the gradient of the objective, Vf(x ). A
second indicator of cost sensitivity, is the
curvature of the objective around x . For
example, the points circled in Figures 3a and 3b
both have zero tilt; however, the curvature of the
point in Figure 3a is greater than that of Figure
3b, making it less robust. In our robustness
metric curvature is measured from the Hessian of
the objective,

H(x") = V2f(x ).

The relative significance of tilt versus curvature
depends on the degree to which x is perturbed.
For small variations tilt dominates, but as the
variations grow curvature becomes significant,
and eventually dominates.

Inaccuracies in the model or design
specification may result from measurement error,
engineering approximation, or partial design
knowledge. Incorporating these influences into
our criteria, a robust design is one that is also
insensitive to variations in inequality
constraints g(x), equality constraints h(x) and
the objective f(x). The Lagrange multipliers A
and p are indicators of the objective's sensitivity
to variations in h and g. They and their
gradients are used in our robustness metric to
measure tilt resuiting from constraint variation.

- Alternative approaches to robustness are
found in Taguchi (e.g., Taguchi and Wu, 1979)
where signal (target) to noise (variation) ratios
are calculated based on target variables
(Taguchi's inner arrays) and external variations
(Taguchi's outer arrays); however, variable
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interactions are limited in the modeling
assumptions when utilizing these orthogonal
arrays. Sundaresan, et al., (1991) use Taguchi's
orthogonal arrays to search for a robust design by
calculating flatness of the objective through
analysis of the statistical optimum. d'Entremont
and Ragsdell (1988) also utilize Taguchi's
orthogonal arrays within optimization code to
minimize variance. In contrast, our theory
simultaneously considers both cost optimality
and robustness through a formal presentation of
optimality conditions which, in theory, does not
presuppose a limited model of variable
independence.

5. FIRST-ORDER NECESSARY CONDITIONS OF
ROBUST OPTIMALITY

5.1 Trading Cost for Robustness

We now develop a criteria for robust
optimality based on the intuitions of the previous
section. The resulting conditions determine
solutions that optimize a weighted combination of
cost and robustness objectives, and in their
general form are an extension of KKT. A
designer's intuitions about robust design are
quantified through an objective f3(x). A design
that optimally trades off cost with robustness is
found by minimizing the weighted combination
froraL(X) of the cost and robustness objectives,

f1orAL(X) = of (X) + Bfg(X),

where o and P are user supplied constants
specifying the relative importance of robustness
versus cost. The first order necessary condition
for x" being an unconstrained robust optimum is
simply

VfTOTAL(x.) =0.

The next subsection develops fo(X) and the

robust optimality criteria for unconstrained

optima, over perturbations in X. This
corresponds roughly to the influence of
manufacturing tolerances on cost variation. The
second subsection pursues a similar development
for constrained optima, replacing f(x) with its
Lagrangian. The set of perturbations are
expanded to those in the objective and the

constraints. This corresponds to the effects of
inaccuracies in modeling.

A robust design is one that has minimal cost

variance p withig a region, lAX| < ex, about the

design solution x . We define variance as

p(X+AX) = If(x+AX) - f(X)I.

For the robustness onective fr(X), we use a

conservative estimate 'of the maximum cost
variance throughout the \region around a nominal
point x,

As was argued in the preceding section, the
robustness objective fg must include a measure of
the objective's curvature, as well as its tilt, since
near the traditional cost optimum tiit goes to
zero, as shown in Figure 3. Tilt and curvature
correspond to the first two terms in a Taylor
series expansion of the objective around x. Thus
the objective is approximated using a second
order Taylor series expansion, under the
presumption that e, is|sufficiently small that
higher order terms are negligible. That is,

F(X+AX) = £(X)+VE(X)T Ax+1§ AXT H(X)AX,

where

Lo

2 G
H(x) = V2£(x) [ —
Substituting for  in the variance

pX+AX) = |[VE(X)T Ax+li

f x_n

-2 results in

AxT H(X)A X,

Returning to fF(X)’ co?puMg the maximum of

p(X+AX) exactly for lax

< § involves solving a

constrained quadratic optimization problem for
every application of the robustness objective, and

can be computationally

rohibitive. Instead, we

construct a conservative gstimate of the maximum

using the norms of th
IVE(x)ll and IIH(x)Il, whe

gradient and Hessian,
the norms are measures

of the objective's degree of tilt and curvature at x.
By selecting compatible norms for the gradient

and Hessian,
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IIAxIl < IIAll lixl} for vector x and matrix A,

and by using the triangular inequalities and
related properties of both norms, the right hand
side of the relation for pXx+ax)is bounded above

by

IvE(x)T Ax+ IEAXT H(X)AXI<

IvE(x)ll lleli+I%l BN Haxi?,

This upper bound reaches a maximum at AX = €,,
thus defining a robust objective as

fr (%) = IVEQ)I llexl!+§1 NEK(X)N llg, I

provides a conservative estimate of the maximum
cost variance in the neighborhood of x.

In the above equations any pair of compatible
norms can be used for the gradient and Hessian.
For the gradient we select the Euclidean norm
(also called the 2-norm),

\2

V() = \; %’:)]

This measures the length of the gradient vector,

and comresponds to the tilt of the plane tangent to
f(x).

For the Hessian we use the Frobenius norm,
which generalizes the Euclidean norm to
matrices,

_ o%(x)
IH(X)llp = ¥zi"z"’[—axlax’ ]

"This provides a measure of the typical
curvature of f at X, and is compatible with the
Euclidean norm. Note that an alternative
satisfying compatibility is the Spectral norm,

IHEON, = E__Hx)T He,

where Epax IS thf square root of the largest
eigenvalue of H(x) H(x). This norm provides a
measure of worst case curvature,

Using the metric for robustness just developed,
the combined objective becomes,

= {HOO) fex [

Frora, (0 = of )+ [9£00] x| -

where o , B, and lIg,ll are supplied by the designer.

Finally, the first order necessary congition for
unconstrained robust optimality at X results
from setting the gradient of this combined
objective to zero,

* * 1 2 ‘ *
aVE(x ) + B ligyll VIVE(x )II+£BII€XII ViiHx )il = 0.

The first term measures absolute cost, the
second tilt and the third curvature. The
significance of curvature relative to tilt grows

with the amount, li§ll, that x may be perturbed.

Thus this condition captures the intuitions of
section 4.

53 Robust Optimality -~ ~onstrained Optima

A particulari~ gnificant influence on
robustness, which . not been addressed in the
literature, is that ..f variations in the design
model and specifications, as modeled through the
design constraints. Accounting for these
requires a shift to constrained optimization
problems:

min: f(x)
s.t.: gx)< 0
h(x) = 0,

and the incorporation of variations in the
objective and the equality and inequality
constraints: Af, Ah, Ag. Equality constraints
model the physics, heuristics, and general design
knowledge of the design problem. Model
variations result from the engineering
approximations selectively made during model
formulation, as well as the inherently
approximate nature of even the most thorough
model, measurement inaccuracies, the absence of
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detailed knowledge during the early stages of the
design process, or decisions to change
technologies later on in the design process.
Inequality constraint variations reflect
variations in design specifications or
manufacturing processes, where the inequality
constraints represent acceptable performance
(usually in the worst case), the precision of the
manufacturing processes, or the limits and
failure modes of the materials and devices used.

Recall from section 3 that, given the objective f
of a constrained optimization problem, we
reformulate this to an unconstrained problem
with equivalent minima, whose objective is the
Lagrangian of f,

L(x) = f(x) + A Th(x) + uT g(x),
where

K 8i(x) = O,
uz0.

Our approach to robust optimality for
constrained problems is similar. We use the
Lagrangian to map between constrained and
unconstrained optima. We use a construction
similar to the previous section to map the
objective to one that measures the effects of
perturbations on the objective, where
perturbations are in f, g, and h'. The result we
call the robust Lagrangian Lg .

Similar to fg, we base Ly on a conservative
estimate of cost variance in L, in response to
perturbations. First, the effects of perturbations
on the Lagrangian are described by:

L(x + ax,f + Af g + Ag,h + ah) =
f(x+ ax) + aAf +

n{x+ Ax)T[g(x + Ax) + Ag] +

A(x + Ax)T[h(x + AX) + Ah]

1We drop the argument x where unambiguous,
thus f, g, h, A, 1 and L are used to represent
f(x), g(x), h(x), A(x), p(x) and L(x),
respectively.

By distributing p and A over g and h respectively,
and accumulating perturbations (Af, Ag and ah) to
the model, this is equivalent to:

L(x + ax,f + Af,g + Ag,h + Ah) =
L0 + A%) + Af + p(x + AX)TAg +A(x+ Ax)TAh.

To estimate the first term, L( X+AX), we need a
second order approximation around x:

L(x + A%) = L(x) + VL) T Ax + %AXTVZ L(x)ax

As was the case for the estimate of f(X+A X) in
the unconstrained case, the robust optimum may
lie near the traditional cost optimum, in which
case VL(x) = 0. Thus the first order term
approaches zero, and the second order term
becomes significant. Mapping to our intuitions
about robustness, the second and third terms of
the approximation measure the tilt and curvature
of the objective with respect to parameter
variations.

For p(x+Ax), a first order approximation is
sufficient,

H(X + AX) = p(x) + Vp(x)T

Vu will typically not be zero when its
corresponding constraint is active, and the first
order term dominates the second. Additionally,
the y term is multiplied by a small ag, further
reducing the significance of the second order
term relative to L. A similar approximation is
used for A.

AX + AX) ~ A(X) + VA(x)T

Mapping to our intuitions robustness, A
and p are, roughly speaking, measures of the
objective's sensitivity | (of/ag and 9df/oh) to
constraint variations. us the first and second
terms of these appro: tions correspond to the
tilt and curvature of the objective with respect to
the constraints.

Incorporating these approximations results in,

L(x + ax,f + Af,g + Ag,h + Ah) =

L) + VL) T Ax + %Avaz L(x)ax +
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af+ (p(x) + Vp(x)TA;x)T Ag +
(k(x) + Iux)T Ax)TAh.

Analogous to section 5.2, we define cost
variance of L as ‘

{(x+AX, g+ag, h+a h) =
IL(x+A X, g+Ag, h+a h) - L(x)l.

A robust design is taken to be one that has
minimal worst case variance in L throughout the
region, IAX| < ey, IAfl < e, 18l < g5, lah] < &, about
the design solution |x, where ey, g, and e, are
vectors of maximum positive deviations in x, g,
and h, respectively.

Substituting our approximation of L in ¢
results in

G(x + ax,g + Ag,h + Al'i) =

|
VLTAX+%AXTV2LAX+Af+

(p, + VpTAx)TAg + (x + VATAx)TAh

where note that the parameters x of each function
have been left implicit. The first two terms
measure the effect on variance of the tilt and
curvature of the Lagrangian with respect to x.
The third term, Af, measures the effect of
variations in the objective. The fourth and fifth
terms measure the effect of variations in the
constraints on robustness, where yu and A are

. | . of of
tivities — and —,
approximately the sensi es ° an Y

respectively.
Ushgﬂxedeﬁniﬁondl.agmngianﬁngmdient
in the first term becomes
VL = V(f +uTg + XTh)
=Vf + V(pTg) + V(kTh)

=Vf + Vgu + Vug + Vha + Voh
=Vf +Vg|.l,+Vh7\-,

which is the familiar right hand side of KKT.

Note that on the third line the fifth term is

eliminated since h is always zero, and the third
term is eliminated since p. and thus Vy, is zero
whenever g is non-zero. The Hessian in the
second term of ¢ simplifies to

viL = V(VE + Vg + Vha)

= V¥ + V(Vgy) + v(Vha)
= V2 + v2gu + VuvgT + vZha + VAVAT.

Substituting these observations for the
gradient and Hessian of L in { results in

t(x + Ax,g + Ag,h + Ah) =
(VE + Vagu + vhx)TAx +

%AXT(VZf +Vigp + vuvgT + v2ha + V).VhT)Ax +.

Af+ (p, + VuTAi()TAg + (7» - VKTAX)TAh

The conservative estimate used for the robust

Lagrangian, Lg  (X), is:
Lr(x) 2 M+ " {x+AX, g+A g, h+Ah)
for laxi < fl < &5 1agl < eg, 1Bl < ep
Asinsect 3.2, we construct an upper bour: :

of {(x+Ax. ,+Ag, h+Ah), by selecting the
Euclidean and Frobenius norms as compatible
norms for the first and second derivatives, by
applying the triangular inequalities and related
properties of both norms, producing

¢(x +Ax,g + Ag,h + Ah) <
|VE + vgu + Vhl.“"Ax" +

_;_”vzf + V2 + Vuvg T + V2ha 4 VAVhT[[[}Ax"z +
jaf]+ Julag] + [|an] +

(I¥lag] + 1> o] ax.

The maximur:  his upper bound on € occurs
at the extremes of the variations, lAXI = e, IAfl = ¢
IAgl = &g, and shi = ¢y, thus
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LR(X) =
UVf +Vgu + Vhl""exu +

%”vzf +Vigu+vuvgT + v2ha + vxthH”ex“z +
(af] + Juleg] + {Aflen] +

(¥ulleg] + [97len e

The total Lagrangian is now approximated as:

LroraL(x) =
a{f+ ATh + uTg} +

.

ex||VE + Vg + Vha) +
%"e,“z“vzf +V2gu + vpvgT + vZha + VthT" +

lee] + eallle] + fenl] -
lex{legfiv] + fenll»))

7

Note that the calculation of some of these terms,
such as the derivatives of the Lagrange
multipliers, may be difficult analytically;
however, they are computable numerically.

Finally, the first order necessary conditions of
robust optimality for constrained problems
results from setting the gradient of the combined

Lagrangian to zero
VLTOTAL(X’) =0
and thus

o{VE+ Vha + vgu}+

r"ex"V"Vf +Vgu + th.u +

V£ + vigy + VuvgT R
+v2ha+ VAVAT
leal 7l + Jen[V]p] +
lex!(legl 7] + Jeni¥va])

1 2
Zleal”

subject to:

lligi(x. ) - 0’
u=0.

The first line is a weighted measure of nominal
cost, The second and third lines measure the tilt
and curvature, respectively, of the objective with
respect to X, biased by the active constraints
within h and g. The fourth and fifth lines
measure the tilt and curvature, respectively, with
respect to the constraints. Finally, note that the
term involving ¢y has been eliminated. Since
variation in f is modeled as independent of x, it
changes the robustness of all points uniformly,
and thus does not influence which point is most
robust.

With these conditions, the designer chooses
the relative weightings between cost optimality
(through o) and robustness (through p). Further,
the designer chooses theaneighborhood over which
sensitivities will be considered (through e, Egs
and &,).

6. EXAMPLE: SIGMOID CTION .
Recall the ‘examplg of the passive filter

network described in on 1. Although the
problem illustrates the concepts of robustness
versus cost optimality, the model leads to a first
order necessary condition of robust optimality
that is too complicated to solve analytically in a
short presentation. Instead, we apply the
conditions of robust optimality to a simpler
problem which maintains the basic properties of
separate optimal and robust regions of the
objective, with the addition of simple inequality
constraints. A constrained sigmoid function is
formulated as:

min: f(x) = 8 - (x-2)3
st: .5-x<0 g1(x)
x-35< 0. g2(x)

Figure 6 shows this sigmoid function and the
constraints. In this ple we assume that p
dominates Vp and thus terms with Vu are
neglected. A more accurate solution would
include these terms, computing Vu numerically.

The total Lagrangian is formulated as:
LroraL(x) = a{(8 - (x-2)3 ) + (.5 - x)

+u2(X - 3.5) + B {l(-3/(x-2)2 -y + p2)ll llgyl
+ 1-3(x-2)Il lle 12 + legll|+ Mt liggll?.
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The first order necessary conditions of robust
optimality are found by differentiating the total
Lagrangian and setting it equal to zero:

af-3(x-2)2 -pyp +p2}+
B{I6(x-2)l llell + 3ligI2} = O,

subject to:

p1(.5-x) =0,
uz(x-3.5) =0,

where the Vu term is dropped. Let ey = .25.

Let us consider the tradeoff between
robustness and cost. For cost optimization only
(o = 1; 8 = 0) the solution falls on constraint g;
(1 =O0and pz 2 0 im;blying g active) with x = 3.5.
For robustness only (o« = 0; p = 1), neither
constraint is active (p; = O and u; = 0) and the
robust solution occurs at the point of inflection
at x = 2. Finally, considering a skewed tradeoff
between robustness (p = .75) and cost (3: o = .25
and =75, the solution lies at x = 1.884,

Note that for the | ncosntrained cases, the first

order necessary conditions become:

|
a{-3(x-2)2 }+ B{1.5I(x-2)! + .1875} = 0.
i
For o = O, the x value for the minimum is:

i} s E 2.25(§ + a)
-60

X +2;

for a = 0, the x value for the minimum is x = 2.

In this problem three points are of interest
(see Figure 6). Point A (x=3.5) is the minimum
for the constrained cost optimum; point B (x=2.0)
illustrates the optimum robustness; point C
(x=1.884) models a weighted tradeoff between
robustness (75%) and cost optimum (259%).
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Figure 6. SIGMOID FUNCTION.

7. CONCLUSIONS

The first-order necessary conditions of robust
optimality are presented as an extension to the
Karush-Kuhn-Tucker conditions. These
conditions are novel in that they account for the
influence on robustness of model variations, as
well as parameter variations, and they provide a
simultaneous tradeoff of performance for
robustness. The conditions dictate that the robust
optimum will include terms that minimize cost
and variation about the optimum; the tradeoff
between these terms is defined by the designer.
The criteria define robustness as a measure of
tilt and curvature in a neighborhood about the
optimum; our metric provides a conservative
estimate - ~ost deviation based on the properties

of the gr. »nt and Hessian norms. The robust
Lagrangia. a weighted combination of nominal
cost and cost variation of the traditional

Lagrangian, is approximated as a second order
Taylor series modeling both cost variation and
constraint variation. This allows a simultaneous
tradeoff between cost and robustness which may
be utilized concurrently to make design
decisions. Finally, because our formulation of
robust optimality is an extension of the
Lagrangian and KKT, existing numerical
optimization codes may be extended to converge
on optimally robust minima. Such an
implementation is necessary to examine more
complicated, industriaily relevant problems.
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